Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = non-mulched soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4266 KB  
Article
Biodegradable Film Mulching Increases Soil Respiration: A Two-Year Field Comparison with Polyethylene Film Mulching in a Semi-Arid Region of Northern China
by Xiaowei Liu, Dejun Wang, Mahepali Bazhabaike, Mingdong Zhou and Tao Yin
Agronomy 2025, 15(11), 2631; https://doi.org/10.3390/agronomy15112631 - 16 Nov 2025
Viewed by 780
Abstract
Biodegradable film mulching is increasingly used to replace polyethylene in agriculture, but effects on soil respiration (SR) and components remain unclear, especially during degradation. This study investigated biodegradable mulching’s regulation of SR, root-derived respiration (RDR), and non-root-derived respiration (NRDR) under varying phases. A [...] Read more.
Biodegradable film mulching is increasingly used to replace polyethylene in agriculture, but effects on soil respiration (SR) and components remain unclear, especially during degradation. This study investigated biodegradable mulching’s regulation of SR, root-derived respiration (RDR), and non-root-derived respiration (NRDR) under varying phases. A two-year field experiment was conducted in a rainfed maize system in northern China, comparing conventional tillage with biodegradable film mulching (BM), conventional tillage with polyethylene film mulching (PM), and conventional tillage without mulching (CT). Continuous measurements of soil CO2 concentration (SCC), temperature, water content, and respiration components were used to assess dynamic responses. Results showed that BM enhanced SR and shifted peak timing, with the SR peaking at 106 days after sowing (DAS) under BM, 91.8 DAS under PM, and 91.2 DAS under CT, mainly through a more sustained RDR (BM peak at 103 DAS with a broader peak and greater cumulative RDR than PM and CT). As the biodegradable plastic film degraded, NRDR was higher during the degradation phase, consistent with a priming-like response. These phase-dependent effects suggest that BM first facilitates root growth then serves as a microbial substrate. Moreover, elevated SCC was positively associated with both RDR and NRDR, indicating that CO2 may function as a regulatory signal rather than a passive byproduct of respiration. These findings reveal distinct temporal mechanisms by which BM influences soil carbon fluxes and offer mechanistic insights into the sustainable application of biodegradable film mulching. Future research should evaluate long-term effects on microbial community composition, soil carbon balance, and potential trade-offs with crop productivity and environmental risks. Full article
(This article belongs to the Special Issue Microplastics in Farmland and Their Impact on Soil)
Show Figures

Figure 1

14 pages, 4077 KB  
Article
Effects of Rice Straw Size on Flow Velocity and Rill Erosion: A Laboratory-Scale Experiment
by Misagh Parhizkar, Manuel Esteban Lucas-Borja and Demetrio Antonio Zema
Environments 2025, 12(11), 421; https://doi.org/10.3390/environments12110421 - 7 Nov 2025
Viewed by 544
Abstract
The residues of rice production could be used as a mulch to reduce the effects of rill erosion on long and steep hillslopes. However, there is a need to identify the most effective size of this residue to apply as a countermeasure of [...] Read more.
The residues of rice production could be used as a mulch to reduce the effects of rill erosion on long and steep hillslopes. However, there is a need to identify the most effective size of this residue to apply as a countermeasure of rill erosion, exploring its effect on hydraulic variables. Several investigations have focused on the anti-erosive effects of other crop residues, while experiences on rice straw applications to reduce rill erosion are still lacking. To fill this gap, this study has measured the variability in flow velocity, stream power and the resulting soil loss in a rill covered by rice straw. Flume experiments simulating rill erosion have been carried out comparing soil loss among treatments with rice straw (dose of 3 tonnes ha−1 and lengths between 20 and 70, 80 and 130, or 140 and 190 mm) and a non-mulched control. Moreover, a multiple regression model that predicts soil loss for a rill cover with rice straw of a given length has been proposed. The application of rice straw reduced the soil loss by at least 20% compared to bare soils. The most suitable size of the applied straw was 90 to 130 mm, which reduces soil loss by 45%. Finer straw (20 to 70 mm) did not significantly improve the soil’s resistance to rill erosion. The beneficial effects of straw must be ascribed to the reduction in flow velocity due to the presence of straw, as shown by accurate power equations regressing the soil loss to this variable. In spite of some limitations (small experimental scale, local environmental conditions, and low incorporation level of the substrate), the results are useful for land managers and hydrologists for soil conservation in hillslopes subjected to intense rill erosion and with similar climatic and hydrological and geomorphological conditions as the case study. Full article
(This article belongs to the Special Issue New Insights in Soil Quality and Management, 2nd Edition)
Show Figures

Figure 1

12 pages, 580 KB  
Article
Development of a PCR Assay for the Detection of Legionella micdadei in the Environment
by William N. Bélanger, Martine Bastien, Eve Bérubé, Martin Gagnon, Yesmine G. Sahnoun, Valérie Dancause, Karel Boissinot, Cindy Lalancette, Christian Riel-Roberge, Marieve Jacob-Wagner, Sylvie Trottier, Damien Biot-Pelletier, Annie Ruest, Isabelle Tétreault, Mathieu Thériault and Sandra Isabel
Infect. Dis. Rep. 2025, 17(5), 131; https://doi.org/10.3390/idr17050131 - 17 Oct 2025
Viewed by 570
Abstract
Background/Objectives: Legionella micdadei is a clinically significant species within the Legionella genus, requiring accurate detection methods, surveillance, and precise clinical diagnosis. Our objective was to develop a sensitive polymerase chain reaction (PCR) assay specific for L. micdadei to detect its presence in environmental [...] Read more.
Background/Objectives: Legionella micdadei is a clinically significant species within the Legionella genus, requiring accurate detection methods, surveillance, and precise clinical diagnosis. Our objective was to develop a sensitive polymerase chain reaction (PCR) assay specific for L. micdadei to detect its presence in environmental specimens. Methods: We targeted the 23S–5S intergenic spacer region, which can differentiate Legionella spp. We tested the detection of L. micdadei with 20 strains and determined the limit of detection with 2 strains. We verified assay specificity with 17 strains of other Legionella spp., 62 strains of other bacterial and fungal genera, and three human DNA specimens. We evaluated intra- and inter-run precision. We tested 15 environmental specimens (water, swabs of water faucets, mulch, and soil) by PCR. Results: The PCR assay demonstrated 100% analytical specificity (no cross-reactivity with non-targeted species), 100% inclusivity (detection of all L. micdadei strains), and high precision, with a coefficient of variation ≤ 2% across replicates. The limit of detection was estimated at 5 genomic DNA copies per reaction. We detected L. micdadei in environmental specimens. Conclusions: This PCR assay enables accurate detection of L. micdadei and is not subject to competition with other Legionella spp., thereby addressing limitations of current broad-spectrum Legionella approaches. The evaluation supports its application in environmental detection for surveillance. Full article
(This article belongs to the Special Issue Prevention, Diagnosis and Treatment of Infectious Diseases)
Show Figures

Figure 1

16 pages, 1363 KB  
Article
Impacts of Degradable Film Mulch on GHG Emissions in Paddy Fields and Rice Yield: A Case Study
by Mengmeng Ru, Xiaochan He, Dezheng Shi, Jie Shen, Xiaofang Xu, Jiarong Cui, Zhongxian Lu, Yongming Ruan and Pingyang Zhu
Agriculture 2025, 15(20), 2144; https://doi.org/10.3390/agriculture15202144 - 15 Oct 2025
Viewed by 748
Abstract
Paddy fields are a key agricultural ecosystem for achieving carbon neutrality in southern China, with significant potential to sequester carbon and mitigate emissions of CO2, CH4, and N2O. Film-covering is an emerging agricultural technique in rice production [...] Read more.
Paddy fields are a key agricultural ecosystem for achieving carbon neutrality in southern China, with significant potential to sequester carbon and mitigate emissions of CO2, CH4, and N2O. Film-covering is an emerging agricultural technique in rice production systems in China. This study evaluated the effects of degradable film coverings on greenhouse gas (GHG) emissions and rice yield. It provides an assessment of different mulching practices in paddy fields by employing controlled greenhouse experiments as well as field experiments. A key innovative aspect lies in the evaluation of not only different film types but also their varying thicknesses, a factor largely unexamined in previous studies. Greenhouse and field experiments were conducted using three thicknesses of biodegradable films (BMs; 0.01 mm, 0.015 mm, and 0.02 mm), one paper film (PM), and a non-film treatment (CK). Results showed that BM treatments reduced CO2 and CH4 emissions by more than 14.01% and 32.17%, respectively, compared with CK in the greenhouse experiment. Additionally, the film-covered treatment increased soil organic carbon content by 32.24–46.66% at rice maturity in the field experiment. These findings suggest that covering rice fields with 0.02 mm BM not only promotes ecological sustainability but also maintains grain yield. These findings provide a viable strategy for environmentally friendly rice production. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

17 pages, 3393 KB  
Article
Response of Soil Properties, Bacterial Community Structure, and Function to Mulching Practices in Urban Tree Pits: A Case Study in Beijing
by Yi Zheng, Jixin Cao, Ying Wang, Yafen Wei, Yu Tian and Yanchun Wang
Forests 2025, 16(10), 1573; https://doi.org/10.3390/f16101573 - 12 Oct 2025
Viewed by 576
Abstract
Soil degradation and poor fertility severely constrain vegetation growth in urban ecosystems, particularly in compacted and nutrient-depleted tree pits. Mulching has emerged as an effective strategy to improve soil quality and regulate soil–microbe–plant interactions, yet the combined use of organic and inorganic mulching [...] Read more.
Soil degradation and poor fertility severely constrain vegetation growth in urban ecosystems, particularly in compacted and nutrient-depleted tree pits. Mulching has emerged as an effective strategy to improve soil quality and regulate soil–microbe–plant interactions, yet the combined use of organic and inorganic mulching in urban landscapes remains underexplored. In this study, a one-year field experiment was conducted to evaluate the effects of four mulching treatments on soil bacterial community diversity and functional potential. Four treatments were applied green waste compost + wood chips (GW), green waste compost + wood chips + volcanic rocks (GWV), green waste compost + wood chips + pebbles (GWP), and a non-mulched control (CK). Organic mulching (GW) effectively reduced bulk density, enhanced cellulase and protease activities, increased bacterial community richness and balance, and enriched microbial genes associated with carbon and nitrogen metabolism, while organic–inorganic mulching further promoted soil nutrition and reshaped bacterial community structure. Soil pH, nitrogen content, and protease activity served as key drivers of bacterial community structure and function. These findings demonstrate that different mulching practices provide distinct ecological advantages, and together highlight the role of mulching in regulating soil–microbe–plant interactions and improving urban tree pit management. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

16 pages, 1743 KB  
Article
Bio-Based Mulching Films and Soil Conditioners for Non-Irrigated Tomato Cultivation: Toward Plastic-Free and Water-Efficient Crop Production
by Alessandro Sorze, Francesco Valentini, Tiziana Nardin, Roberto Larcher, Janine Bösing, Sebastian Hirschmüller, Andrea Dorigato and Alessandro Pegoretti
Int. J. Mol. Sci. 2025, 26(20), 9894; https://doi.org/10.3390/ijms26209894 - 11 Oct 2025
Viewed by 604
Abstract
This study examined the impact of different bio-based and biodegradable mulching films (TSCs) and soil conditioners (SCs) on plant productivity and fruit quality in a tomato cultivation trial under non-irrigated conditions. In particular, different TSCs were developed based on xanthan gum (XG) or [...] Read more.
This study examined the impact of different bio-based and biodegradable mulching films (TSCs) and soil conditioners (SCs) on plant productivity and fruit quality in a tomato cultivation trial under non-irrigated conditions. In particular, different TSCs were developed based on xanthan gum (XG) or gelatine (GEL) mixed with wood fibres (WFs), while SCs were produced using XG and cellulose fibres. A total of 72 plants of Solanum lycopersicum var. cerasiforme were planted. The yield and number of fruits were measured at harvest, followed by physico-chemical analyses, while plant root systems were examined at the end of the experimental period. The results highlighted that the GEL-based TSCs improved the total fruit yield compared to the control (+50% on average). Furthermore, improved fruit yield was also observed for the XG-based SCs when applied in the soil with a higher organic content. Overall, no significant differences in fruit quality (i.e., Brix degree, carotenoids, lutein and potassium content) and plant root system parameters were found for all the treatments applied. At the end of the test, it was noticed that GEL-based films substantially retained their consistency due to their greater density and thickness, while XG-based films were more disintegrated, indicating higher biodegradation. Full article
Show Figures

Figure 1

19 pages, 3909 KB  
Article
The Effects of Long-Term Manure and Grass Mulching on Microbial Communities, Enzyme Activities, and Soil Organic Nitrogen Fractions in Orchard Soils of the Loess Plateau, China
by Qi Wang, Luxiao Guo, Xue Gao, Songling Chen, Xinxin Song, Fei Gao, Wei Liu, Hua Guo, Guoping Wang and Xinping Fan
Agriculture 2025, 15(19), 2084; https://doi.org/10.3390/agriculture15192084 - 6 Oct 2025
Viewed by 862
Abstract
Organic manure and grass mulching are widely recognized as modifiers of soil microbial communities and nutrient dynamics; however, the combined effects of these practices on nitrogen fractionation and microbial functionality in orchard ecosystems remain poorly understood. This study conducted a comprehensive evaluation of [...] Read more.
Organic manure and grass mulching are widely recognized as modifiers of soil microbial communities and nutrient dynamics; however, the combined effects of these practices on nitrogen fractionation and microbial functionality in orchard ecosystems remain poorly understood. This study conducted a comprehensive evaluation of soil nitrogen fractions, enzymatic activity, microbial diversity and functional traits in walnut orchards under three management practices: organic manure (OM), grass mulching combined with manure (GM), and chemical fertilization (CF) in China’s Loess Plateau. The results revealed that OM and GM significantly enhanced soil nutrient pools, with GM elevating total nitrogen by 1.96-fold, soil organic carbon by 97.79%, ammonium nitrogen by 128%, and nitrate nitrogen by 54.56% relative to CF. Furthermore, the OM significantly increased the contents of total hydrolysable nitrogen, amino sugar nitrogen, amino acid nitrogen, ammonia nitrogen, hydrolysable unidentified nitrogen, non-acid-hydrolyzable nitrogen compared to the CF and GM treatments. Meanwhile, ASN and AN had significant effects on mineral and total nitrogen. The OM and GM had higher activities of leucine aminopeptidase enzymes (LAP), α-glucosidase enzyme, β-glucosidase enzyme (βG), and N-acetyl-β-D-glucosidase enzyme (NAG). Microbial community analysis revealed distinct responses to different treatments: OM and GM enhanced bacterial Shannon index, while suppressing fungal diversity, promoting the relative abundance of copiotrophic bacterial phyla such as Proteobacteria and Chloroflexi. Moreover, GM favored the enrichment of lignocellulose-degrading Ascomycota fungi. Functional annotation indicated that Chemoheterotrophy (43.54%) and Aerobic chemoheterotrophy (42.09%) were the dominant bacterial metabolic pathways. The OM significantly enhanced the abundance of fermentation-related genes. Additionally, fungal communities under the OM and GM showed an increased relative abundance of saprotrophic taxa, and a decrease in the relative abundances of potential animal and plant pathogenic taxa. The Random forest model further confirmed that βG, LAP, and NAG, as well as Basidiomycota, Mortierellomycota, and Ascomycota served as pivotal mediators of soil organic nitrogen fraction. Our findings demonstrated that combined organic amendments and grass mulching can enhance soil N retention capacity, microbial functional redundancy, and ecosystem stability in semi-arid orchards. These insights support the implementation of integrated organic management as a sustainable approach to enhance nutrient cycling and minimize environmental trade-offs in perennial fruit production systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 3579 KB  
Review
Mulching for Weed Management in Medicinal and Aromatic Cropping Systems
by Ana Dragumilo, Tatjana Marković, Sava Vrbničanin, Stefan Gordanić, Milan Lukić, Miloš Rajković, Željana Prijić and Dragana Božić
Horticulturae 2025, 11(9), 998; https://doi.org/10.3390/horticulturae11090998 - 22 Aug 2025
Cited by 1 | Viewed by 1984
Abstract
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a [...] Read more.
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a sustainable, non-chemical method for weed management in the cultivation of MAPs and examines how effectively organic, synthetic, and living mulches reduce weeds and increase yields. Regarding different mulch materials such as straw, sawdust, bark, needles, compost, polyethylene, and biodegradable films, the basic processes of mulch activity, including light interception, physical suppression, and microclimate adjustment, are examined. The review further analyzes the impact of mulching on soil parameters (moisture, temperature, pH, chlorophyll content) and the biosynthesis of secondary metabolites. The findings consistently indicate that mulching substantially reduces weed biomass, improves crop performance, and supports organic farming practices. However, there are still issues with cost, material availability, and possible soil changes, and the efficacy is affected by variables including cultivated plant species, mulch type, and application thickness. The review highlights the importance of further research to optimize the selection of mulch and MAPs and their application across various agroecological conditions, and indicates that mulching is a potential, environmentally friendly technique for weed control in MAP cultivations. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

15 pages, 1328 KB  
Article
Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System
by Shujuan Jiao, Yichen Kang, Weina Zhang, Yuhui Liu, Hong Li, Wenlin Li and Shuhao Qin
Agronomy 2025, 15(8), 1784; https://doi.org/10.3390/agronomy15081784 - 24 Jul 2025
Viewed by 739
Abstract
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity [...] Read more.
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity in fully mulched treatments (T2–T3) versus controls (CK), suggesting mulching enhances microbial community richness. This result suggests that complete mulching combined with ridge planting (T2) may significantly enhance bacterial proliferation in soil. The bacterial communities were predominantly composed of Acidobacteria, Pseudomonadota, Bacteroidota, Chloroflexota, and Planctomycetota. Among these, Acidobacteria showed the highest abundance, with ridge planting patterns favoring greater Acidobacteria richness compared to furrow planting. In contrast, Pseudomonadota exhibited higher abundance under half-mulching conditions than under complete mulching. At class level, Acidobacteria and Proteobacteria emerged as the most abundant groups, with Proteobacteria constituting 22.6–35.7% of total microbial populations. Notably, Proteobacteria demonstrated particular dominance under the complete mulching with ridge planting pattern (T2). At the genus level, Subgroup_6_norank represented the most dominant taxon among the 439 identified bacterial genera, accounting for 14.0–20.2% of communities across all treatments, with half-mulching ridge planting (T4) showing the highest relative abundance. Our findings demonstrate that different ridge-furrow film mulching patterns significantly influence soil microbial diversity. While traditional non-mulched (CK) and mulched flat plots (T1) exhibited similar impacts on bacterial community structure, other treatments displayed distinct taxonomic profiles. Complete mulching patterns, particularly ridge planting (T2), appear most conducive to microbial development, suggesting their potential to enhance soil biogeochemical cycling in continuous cropping systems. These results provide valuable insights for optimizing mulching practices to improve soil health in agricultural ecosystems. Full article
Show Figures

Figure 1

24 pages, 1488 KB  
Article
Assessment of the Agricultural Effectiveness of Biodegradable Mulch Film in Onion Cultivation
by Hyun Hwa Park, Young Ok Kim and Yong In Kuk
Plants 2025, 14(15), 2286; https://doi.org/10.3390/plants14152286 - 24 Jul 2025
Cited by 2 | Viewed by 1936
Abstract
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across [...] Read more.
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across multiple regions and years (2023–2024). The BD and PE films demonstrated similar impacts on onion growth, bulb size, yield, and weed suppression, significantly outperforming NM, with yield increases of over 13%. There were no consistent differences in soil pH, electrical conductivity, and physical properties in crops that used either BD or PE film. Soil temperature and moisture were also comparable regardless of which film type was used, confirming BD’s viability as an alternative to PE. However, areas that used BD film had soils which exhibited reduced microbial populations, particularly Bacillus and actinomycetes which was likely caused by degradation by-products. BD film degradation was evident from 150 days post-transplantation, with near-complete decomposition at 60 days post-burial, whereas PE remained largely intact (≈98%) during the same period. These results confirm that BD film can match the agronomic performance of PE while offering the advantage of environmentally friendly degradation. Further research should optimize BD film durability and assess its cost-effectiveness for large-scale sustainable agriculture. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

13 pages, 1373 KB  
Article
A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches
by Cuyler Borrowman, Karen Little, Raju Adhikari, Kei Saito, Stuart Gordon and Antonio F. Patti
Agriculture 2025, 15(15), 1581; https://doi.org/10.3390/agriculture15151581 - 23 Jul 2025
Viewed by 1025
Abstract
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for [...] Read more.
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for a single growing season, and thus, their use and non-biodegradability come with some serious environmental consequences due to their persistence in the soil and potential for microplastic pollution, particularly when retrieval and disposal options are poor. On the microscale, particles < 5 mm from degraded films have been observed to disrupt soil structure, impede water and nutrient cycling, and affect soil organisms and plant health. On the macroscale, there are obvious and serious environmental consequences associated with the burning of plastic film and its leakage from poorly managed landfills. To maintain the crop productivity afforded by mulching with PE film while avoiding the environmental downsides, the development and use of biodegradable polymer technologies is being explored. Here, the efficacy of a newly developed, water-dispersible, sprayable, and biodegradable polyester–urethane–urea (PEUU)-based polymer was compared with two commercial PE mulches, non-degradable polyethylene (NPE) and OPE (ox-degradable polyethylene), in a greenhouse tomato growth trial. Water savings and the effects on plant growth and soil characteristics were studied. It was found that PEUU provided similar water savings to the commercial PE-based mulches, up to 30–35%, while showing no deleterious effects on plant growth. The results should be taken as preliminary indications that the sprayable, biodegradable PEUU shows promise as a replacement for PE mulch, with further studies under outside field conditions warranted to assess its cost effectiveness in improving crop yields and, importantly, its longer-term impacts on soil and terrestrial fauna. Full article
Show Figures

Figure 1

25 pages, 4261 KB  
Article
Influence of Mulching and Planting Density on Agronomic and Economic Traits of Melissa officinalis L.
by Stefan V. Gordanić, Dragoja Radanović, Miloš Rajković, Milan Lukić, Ana Dragumilo, Snežana Mrđan, Petar Batinić, Natalija Čutović, Sara Mikić, Željana Prijić and Tatjana Marković
Horticulturae 2025, 11(8), 866; https://doi.org/10.3390/horticulturae11080866 - 22 Jul 2025
Cited by 2 | Viewed by 1523
Abstract
Melissa officinalis L. (Lamiaceae) is a perennial plant species widely used in the pharmaceutical and food industries, particularly valued for its sedative properties. This study investigates the impact of synthetic mulch film and planting density as two experimental factors on agronomic performance, raw [...] Read more.
Melissa officinalis L. (Lamiaceae) is a perennial plant species widely used in the pharmaceutical and food industries, particularly valued for its sedative properties. This study investigates the impact of synthetic mulch film and planting density as two experimental factors on agronomic performance, raw material quality, and economic efficiency in lemon balm production. The experiment was conducted at three locations in Serbia (L1: Bačko Novo Selo, L2: Bavanište, L3: Vilandrica) from 2022 to 2024, using two planting densities on synthetic mulch film (F1: 8.3 plants m−2; F2: 11.4 plants m−2) and a control treatment without mulch (C). The synthetic mulch film used was a synthetic black polypropylene film (Agritela Black, 90 g/m2), uniformly applied in strips across the cultivation area, covering approximately 78% of the soil surface. The results showed consistent increases in morphological parameters and yield across the years. Plant height in F1 and F2 treatments ranged from 65 to 75 cm, while in the control it reached up to 50 cm (2022–2024). Fresh biomass yield varied from 13.4 g per plant (C) to 378.08 g per plant (F2), and dry biomass yield from 60.3 g (C) to 125.4 g (F2). The highest essential oil content was observed in F2 (1.2% in 2022), while the control remained at 0.8%. The F2 treatment achieved complete weed suppression throughout the experiment without the use of herbicides, demonstrating both agronomic and ecological advantages. Economic evaluation revealed that F2 generated the highest cumulative profit (€142,164.5) compared to the control (€65,555.3). Despite higher initial investment, F2 had the most favorable cost–benefit ratio in the long term. This study highlights the crucial influence of mulching and planting density on optimizing lemon balm production across diverse climatic and soil conditions, while also underscoring the importance of sustainable, non-chemical weed management strategies in lemon balm cultivation. Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
Show Figures

Figure 1

16 pages, 2288 KB  
Article
Unveiling Heavy Metal Distribution in Different Agricultural Soils and Associated Health Risks Among Farming Communities of Bangladesh
by Sumaya Sharmin, Qingyue Wang, Md. Rezwanul Islam, Yogo Isobe, Christian Ebere Enyoh and Wu Shangrong
Environments 2025, 12(6), 198; https://doi.org/10.3390/environments12060198 - 11 Jun 2025
Cited by 4 | Viewed by 2430
Abstract
Heavy metal pollution is a growing public health concern owing to rising environmental pollution throughout the world. The situation is more vulnerable in Bangladesh; therefore, this study assessed contamination levels in different land use categories such as rural, local market, industrial, research, and [...] Read more.
Heavy metal pollution is a growing public health concern owing to rising environmental pollution throughout the world. The situation is more vulnerable in Bangladesh; therefore, this study assessed contamination levels in different land use categories such as rural, local market, industrial, research, and coastal areas, as well as the related health risks for farmers in Bangladesh. A total of 45 soil samples were considered from three depths (0–5 cm, 5–10 cm, and 10–15 cm) across five different areas, with three replications per depth, following the monsoon season. Samples were prepared using a diacid mixture, and heavy metals (Cu, Ni, Mn, Cr, Zn, Pb) were investigated using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Health risks were evaluated using standard assessment models. The results showed that coastal agricultural soils had the highest heavy metal concentrations (except Pb), while rural areas had the lowest (except Cu and Ni), with no clear depth-based pattern. Two contamination sources were identified: component 1 (Cu, Ni, Mn, Cr, Zn) and component 2 (Pb, Zn), indicating mixed and anthropogenic sources, respectively. The Pollution Load Index (PLI) was highest in coastal areas and lowest in rural areas. The average daily intake of metals followed the order of inhalation > dermal > ingestion, with inhalation being the primary exposure route. The highest cumulative cancer risk (CCR) was observed in coastal agricultural soils (5.82 × 10−9), while rural soils had the lowest CCR (8.24 × 10−10), highlighting significant regional differences in health risks. Full article
Show Figures

Figure 1

20 pages, 3605 KB  
Article
Effect of Film-Mulching on Soil Evaporation and Plant Transpiration in a Soybean Field in Arid Northwest China
by Danni Yang, Chunyu Wang, Zhenyu Guo, Sien Li, Yingying Sun, Xiandong Hou and Zhenhua Wang
Agronomy 2025, 15(5), 1089; https://doi.org/10.3390/agronomy15051089 - 29 Apr 2025
Cited by 2 | Viewed by 1690
Abstract
Drip irrigation technology, known for its advantages in high water use efficiency and yield increase, has been a focal point of research regarding its combined effects with the plastic film-mulching technique on field water consumption and crop growth. To accurately quantify the water-saving [...] Read more.
Drip irrigation technology, known for its advantages in high water use efficiency and yield increase, has been a focal point of research regarding its combined effects with the plastic film-mulching technique on field water consumption and crop growth. To accurately quantify the water-saving effect of plastic film-mulching techniques and investigate the mechanisms of mulching on evaporation (E) and transpiration (T), this study was conducted on soybean using the Bowen ratio–energy balance system and micro-lysimeters as the observation means and the MSW model as the data partitioning tool, during 2019–2021 in arid northwest China. We compared evapotranspiration (ET) under the film-mulched drip irrigation (FM) and non-mulched drip irrigation (NM) treatments. The results show that ET, E, and T under FM were reduced by 32.6 mm, 76.1 mm, and −43.5 mm, respectively. Moreover, mulching increased the leaf area index (LAI) by 20.7%, soybean yield from 2727.0 kg ha−1 to 3250.5 kg ha−1, and WUE from 0.64 kg m−3 to 0.83 kg m−3 on average, which means mulching reduced water consumption in the field by decreasing soil evaporation and improved water use efficiency by promoting crop growth. Further analysis indicated that mulching has strengthened the connection between soil temperature and humidity and weakened the effect of soil temperature on soybean leaf growth. Soil water content (SWC) and LAI had a direct negative effect on E, with LAI causing a stronger effect on E under the FM treatment. Mulching has weakened the direct effect of SWC on T, so that only LAI and soil temperature had a significant direct positive effect on T. Following the rapid growth of soybean LAI, the isolating effect of the mulch was gradually replaced by the dense leaf canopy. The results provide a reference for further exploring the water-saving and yield-increasing benefits of plastic film-mulching techniques, and to facilitate wider promotion of the plastic film-mulching techniques and the water–fertilizer integration technology in arid regions. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

19 pages, 5134 KB  
Article
A Garbage Detection and Classification Model for Orchards Based on Lightweight YOLOv7
by Xinyuan Tian, Liping Bai and Deyun Mo
Sustainability 2025, 17(9), 3922; https://doi.org/10.3390/su17093922 - 27 Apr 2025
Cited by 4 | Viewed by 2079
Abstract
The disposal of orchard garbage (including pruning branches, fallen leaves, and non-biodegradable materials such as pesticide containers and plastic film) poses major difficulties for horticultural production and soil sustainability. Unlike general agricultural garbage, orchard garbage often contains both biodegradable organic matter and hazardous [...] Read more.
The disposal of orchard garbage (including pruning branches, fallen leaves, and non-biodegradable materials such as pesticide containers and plastic film) poses major difficulties for horticultural production and soil sustainability. Unlike general agricultural garbage, orchard garbage often contains both biodegradable organic matter and hazardous pollutants, which complicates efficient recycling. Traditional manual sorting methods are labour-intensive and inefficient in large-scale operations. To this end, we propose a lightweight YOLOv7-based detection model tailored for the orchard environment. By replacing the CSPDarknet53 backbone with MobileNetV3 and GhostNet, an average accuracy (mAP) of 84.4% is achieved, while the computational load of the original model is only 16%. Meanwhile, a supervised comparative learning strategy further strengthens feature discrimination between horticulturally relevant categories and can distinguish compost pruning residues from toxic materials. Experiments on a dataset containing 16 orchard-specific garbage types (e.g., pineapple shells, plastic mulch, and fertiliser bags) show that the model has high classification accuracy, especially for materials commonly found in tropical orchards. The lightweight nature of the algorithm allows for real-time deployment on edge devices such as drones or robotic platforms, and future integration with robotic arms for automated collection and sorting. By converting garbage into a compostable resource and separating contaminants, the technology is aligned with the country’s garbage segregation initiatives and global sustainability goals, providing a scalable pathway to reconcile ecological preservation and horticultural efficiency. Full article
Show Figures

Figure 1

Back to TopTop