Development of a PCR Assay for the Detection of Legionella micdadei in the Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial and Fungal Strains
2.2. DNA Isolation
2.3. Primer and Probe Design
2.4. PCR Conditions
2.5. In Vitro Performance Characteristics of the PCR Assay
2.6. Competition Evaluation from Other Legionella spp.
2.7. Environmental Specimen Preparation
3. Results
3.1. In Silico Analysis of Primers and Probes
3.2. In Vitro Performance Characteristics of the PCR Assay
3.3. Competition and Co-Amplification Analysis
3.4. Environmental Specimens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winn, W.C., Jr. Legionella. In Bergey’s Manual of Systematics of Archaea and Bacteria; American Cancer Society: Hoboken, NJ, USA, 2015; pp. 1–44. ISBN 978-1-118-96060-8. [Google Scholar]
- Barskey, A.; Lee, S.; Hannapel, E.; Smith, J.; Edens, C. Disease Surveillance Summary Report, United States; Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC ; Center for Disease Control and Prevention: Atlanta, GA, USA, 2022; p. 49. [Google Scholar]
- Mercante, J.W.; Winchell, J.M. Current and Emerging Legionella Diagnostics for Laboratory and Outbreak Investigations. Clin. Microbiol. Rev. 2015, 28, 95–133. [Google Scholar] [CrossRef]
- van Heijnsbergen, E.; van Deursen, A.; Bouwknegt, M.; Bruin, J.P.; de Roda Husman, A.M.; Schalk, J.A.C. Presence and Persistence of Viable, Clinically Relevant Legionella pneumophila Bacteria in Garden Soil in the Netherlands. Appl. Environ. Microbiol. 2016, 82, 5125–5131. [Google Scholar] [CrossRef]
- Currie, S.L.; Beattie, T.K.; Knapp, C.W.; Lindsay, D.S.J. Legionella Spp. in UK Composts—A Potential Public Health Issue? Clin. Microbiol. Infect. 2014, 20, O224–O229. [Google Scholar] [CrossRef] [PubMed]
- Conza, L.; Pagani, S.C.; Gaia, V. Presence of Legionella and Free-Living Amoebae in Composts and Bioaerosols from Composting Facilities. PLoS ONE 2013, 8, e68244. [Google Scholar] [CrossRef]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. (Eds.) Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Elsevier: Philadelphia, PA, USA, 2020; Volume 2, ISBN 978-0-323-48255-4. [Google Scholar]
- Del Castillo, M.; Lucca, A.; Plodkowski, A.; Huang, Y.-T.; Kaplan, J.; Gilhuley, K.; Babady, N.E.; Seo, S.K.; Kamboj, M. Atypical Presentation of Legionella pneumonia among Patients with Underlying Cancer: A Fifteen-Year Review. J. Infect. 2016, 72, 45–51. [Google Scholar] [CrossRef]
- Lachant, D.; Prasad, P. Legionella micdadei: A Forgotten Etiology of Growing Cavitary Nodules: A Case Report and Literature Review. Case Rep. Pulmonol. 2015, 2015, 535012. [Google Scholar] [CrossRef] [PubMed]
- Foissac, M.; Bergon, L.; Vidal, J.; Cauquil, P.; Mainar, A.; Mourguet, M. Pneumonia and Pulmonary Abscess Due to Legionella micdadei in an Immunocompromised Patient. Germs 2019, 9, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Waldron, P.R.; Martin, B.A.; Ho, D.Y. Mistaken Identity: Legionella micdadei Appearing as Acid-Fast Bacilli on Lung Biopsy of a Hematopoietic Stem Cell Transplant Patient. Transpl. Infect. Dis. 2015, 17, 89–93. [Google Scholar] [CrossRef]
- Palusińska-Szysz, M.; Jurak, M.; Gisch, N.; Waldow, F.; Zehethofer, N.; Nehls, C.; Schwudke, D.; Koper, P.; Mazur, A. The Human LL-37 Peptide Exerts Antimicrobial Activity against Legionella micdadei Interacting with Membrane Phospholipids. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2022, 1867, 159138. [Google Scholar] [CrossRef]
- Yang, G.; Benson, R.; Pelish, T.; Brown, E.; Winchell, J.M.; Fields, B. Dual Detection of Legionella pneumophila and Legionella Species by Real-Time PCR Targeting the 23S-5S rRNA Gene Spacer Region. Clin. Microbiol. Infect. 2010, 16, 255–261. [Google Scholar] [CrossRef]
- Lee, T.C.; Vickers, R.M.; Yu, V.L.; Wagener, M.M. Growth of 28 Legionella Species on Selective Culture Media: A Comparative Study. J. Clin. Microbiol. 1993, 31, 2764–2768. [Google Scholar] [CrossRef]
- Leber, A.L. (Ed.) Clinical Microbiology Procedures Handbook; ASM Press: Washington, DC, USA, 2016; ISBN 978-1-68367-076-6. [Google Scholar]
- Buchbinder, S.; Leitritz, L.; Trebesius, K.; Banas, B.; Heesemann, J. Mixed Lung Infection by Legionella pneumophila and Legionella gormanii Detected by Fluorescent in Situ Hybridization. Infection 2004, 32, 242–245. [Google Scholar] [CrossRef]
- Coscollá, M.; Fernández, C.; Colomina, J.; Sánchez-Busó, L.; González-Candelas, F. Mixed Infection by Legionella pneumophila in Outbreak Patients. Int. J. Med. Microbiol. 2014, 304, 307–313. [Google Scholar] [CrossRef]
- Wewalka, G.; Schmid, D.; Harrison, T.G.; Uldum, S.A.; Lück, C. Dual Infections with Different Legionella Strains. Clin. Microbiol. Infect. 2014, 20, O13–O19. [Google Scholar] [CrossRef] [PubMed]
- Trigui, H.; Matthews, S.; Bedard, E.; Charron, D.; Chea, S.; Fleury, C.; Maldonado, J.F.G.; Rivard, M.; Faucher, S.P.; Prevost, M. Assessment of Monitoring Approaches to Control Legionella pneumophila within a Complex Cooling Tower System. Sci. Total Environ. 2024, 950, 175136. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Yang, W.; Li, Y. Clinical and Laboratory Diagnosis of Legionella pneumonia. Diagnostics 2023, 13, 280. [Google Scholar] [CrossRef] [PubMed]
- Jahan, R.; Tarafder, S.; Saleh, A.A.; Miah, R.A. Identification of Legionella from Clinically Diagnosed Pneumonia Patients and Environmental Samples. Bangladesh Med. Res. Counc. Bull. 2016, 41, 24–28. [Google Scholar] [CrossRef]
- Young, C.; Smith, D.; Wafer, T.; Crook, B. Rapid Testing and Interventions to Control Legionella Proliferation Following a Legionnaires’ Disease Outbreak Associated with Cooling Towers. Microorganisms 2021, 9, 615. [Google Scholar] [CrossRef]
- Josephson, K.L.; Gerba, C.P.; Pepper, I.L. Polymerase Chain Reaction Detection of Nonviable Bacterial Pathogens. Appl. Environ. Microbiol. 1993, 59, 3513–3515. [Google Scholar] [CrossRef]
- Guo, L.; Wan, K.; Zhu, J.; Ye, C.; Chabi, K.; Yu, X. Detection and Distribution of Vbnc/Viable Pathogenic Bacteria in Full-Scale Drinking Water Treatment Plants. J. Hazard. Mater. 2021, 406, 124335. [Google Scholar] [CrossRef]
- Cross, K.E.; Mercante, J.W.; Benitez, A.J.; Brown, E.W.; Diaz, M.H.; Winchell, J.M. Simultaneous Detection of Legionella Species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei Using Conserved Primers and Multiple Probes in a Multiplex Real-Time PCR Assay. Diagn. Microbiol. Infect. Dis. 2016, 85, 295–301. [Google Scholar] [CrossRef]
- Chang, B.; Sugiyama, K.; Taguri, T.; Amemura-Maekawa, J.; Kura, F.; Watanabe, H. Specific Detection of Viable Legionella Cells by Combined Use of Photoactivated Ethidium Monoazide and PCR/Real-Time PCR. Appl. Environ. Microbiol. 2009, 75, 147–153. [Google Scholar] [CrossRef]
- Bernander, S.; Hanson, H.-S.; Johansson, B.; Von Stedingk, L.-V. A Nested Polymerase Chain Reaction for Detection of Legionella pneumophila in Clinical Specimens. Clin. Microbiol. Infect. 1997, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.-Y.; Li, L.-Q.; Hu, C.-H.; Zhu, Q.-Y. Two-Step Scheme for Rapid Identification and Differentiation of Legionella pneumophila and Non-Legionella pneumophila Species. J. Clin. Microbiol. 2010, 48, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.F.Y.; Tan, S.H.; Wee, J.; Tee, J.J.; Sansom, F.M.; Newton, H.J.; Hartland, E.L. Molecular Detection of Legionella: Moving on From mip. Front. Microbiol. 2010, 1, 7584. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.-Y.; Yang, J.-L.; Sun, H.; Zhou, X.; Qian, Y.-C.; Huang, K.; Leng, Y.; Huang, B.; He, Y. Presence of Viable, Clinically Relevant Legionella Bacteria in Environmental Water and Soil Sources of China. Microbiol. Spectr. 2022, 10, e01140-21. [Google Scholar] [CrossRef]
- Toplitsch, D.; Platzer, S.; Zehner, R.; Maitz, S.; Mascher, F.; Kittinger, C. Comparison of Updated Methods for Legionella Detection in Environmental Water Samples. Int. J. Environ. Res. Public. Health 2021, 18, 5436. [Google Scholar] [CrossRef]
- Isabel, S.; Leblanc, É.; Boissinot, M.; Boudreau, D.K.; Grondin, M.; Picard, F.J.; Martel, E.A.; Parham, N.J.; Chain, P.S.; Bader, D.E.; et al. Divergence among Genes Encoding the Elongation Factor Tu of Yersinia Species. J. Bacteriol. 2008, 190, 7548–7558. [Google Scholar] [CrossRef]
- Isabel, S.; Boissinot, M.; Charlebois, I.; Fauvel, C.M.; Shi, L.-E.; Lévesque, J.-C.; Paquin, A.T.; Bastien, M.; Stewart, G.; Leblanc, É.; et al. Rapid Filtration Separation-Based Sample Preparation Method for Bacillus Spores in Powdery and Environmental Matrices. Appl. Environ. Microbiol. 2012, 78, 1505–1512. [Google Scholar] [CrossRef]
- Parks, D.H.; Chuvochina, M.; Rinke, C.; Mussig, A.J.; Chaumeil, P.-A.; Hugenholtz, P. GTDB: An Ongoing Census of Bacterial and Archaeal Diversity through a Phylogenetically Consistent, Rank Normalized and Complete Genome-Based Taxonomy. Nucleic Acids Res. 2022, 50, D785–D794. [Google Scholar] [CrossRef]
- ISO 12869:2019; Water Quality—Detection and Quantification of Legionella spp. and/or Legionella pneumophila by Concentration and Genic Amplification by Quantitative Polymerase Chain Reaction (qPCR). ISO: Geneva, Switzerland, 2019.
- Yin, X.; Chen, Y.-Z.; Ye, Q.-Q.; Liao, L.-J.; Cai, Z.-R.; Lin, M.; Li, J.-N.; Zhang, G.-B.; Peng, X.-L.; Shi, W.-F.; et al. Detection Performance of PCR for Legionella pneumophila in Environmental Samples: A Systematic Review and Meta-Analysis. Ann. Clin. Microbiol. Antimicrob. 2022, 21, 12. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef]
- van Doorn, R.; Klerks, M.M.; van Gent-Pelzer, M.P.E.; Speksnijder, A.G.C.L.; Kowalchuk, G.A.; Schoen, C.D. Accurate Quantification of Microorganisms in PCR-Inhibiting Environmental DNA Extracts by a Novel Internal Amplification Control Approach Using Biotrove OpenArrays. Appl. Environ. Microbiol. 2009, 75, 7253–7260. [Google Scholar] [CrossRef]
- Trombley Hall, A.; McKay Zovanyi, A.; Christensen, D.R.; Koehler, J.W.; Devins Minogue, T. Evaluation of Inhibitor-Resistant Real-Time PCR Methods for Diagnostics in Clinical and Environmental Samples. PLoS ONE 2013, 8, e73845. [Google Scholar] [CrossRef]
- Han, X.Y. Effects of Climate Changes and Road Exposure on the Rapidly Rising Legionellosis Incidence Rates in the United States. PLoS ONE 2021, 16, e0250364. [Google Scholar] [CrossRef]
Isolation | PCR Ct | ||||||
---|---|---|---|---|---|---|---|
Species | Strain | Source | Year | gDNA per rxn | L. micdadei | Internal Control | PCR Interp. |
Legionella micdadei | CCRI-25807 | Human | Unk | 10 copies | 33.10 | 32.80 | D |
CCRI-25808 | Human | 2024 | 10 copies | 33.10 | 32.60 | D | |
CCRI-25809 | Human | 2024 | 10 copies | 33.70 | 32.70 | D | |
CCRI-25810 | Human | 2024 | 10 copies | 33.50 | 32.80 | D | |
CCRI-25817 | Human | 2024 | 10 copies | 35.00 | 32.70 | D | |
CCRI-25819 | Human | 2023 | 10 copies | 32.20 | 32.70 | D | |
CCRI-25820 | Human | 2023 | 10 copies | 33.00 | 32.50 | D | |
ATCC 33218 | Human | 1980 | 10 copies | 32.20 | 32.95 | D | |
ID063037 | Human | Unk | Lysate | 24.30 | - | D | |
ID081869 | Human | Unk | Lysate | 24.70 | - | D | |
ID088926 | Human | Unk | Lysate | 25.20 | 32.42 | D | |
ID090456 | Human | Unk | Lysate | 25.10 | 30.35 | D | |
ID103059 | Human | Unk | Lysate | 24.50 | - | D | |
ID108784 | Human | Unk | Lysate | 24.80 | - | D | |
ID114570 | Human | Unk | Lysate | 25.10 | 33.40 | D | |
ID125965 | Human | Unk | Lysate | 25.30 | - | D | |
L00132833 | Human | Unk | Lysate | 25.20 | 33.60 | D | |
L00166407 | Human | Unk | Lysate | 25.10 | 32.39 | D | |
L00495253 | Human | Unk | Lysate | 25.10 | 33.25 | D | |
CCRI-25845 | Human | 2024 | Lysate | 24.60 | - | D | |
Legionella anisa | CCRI-25814 | Env | 2024 | Lysate | ND | 32.23 | ND |
CCRI-25815 | Env | 2024 | Lysate | ND | 32.52 | ND | |
CCRI-25816 | Env | 2024 | Lysate | ND | 32.73 | ND | |
CCRI-25842 | Water | Unk | Lysate | ND | 29.04 | ND | |
Legionella bozemanae | ATCC 33217 | Human | 2005 | 1ng | ND | 32.43 | ND |
ID108728 | Human | Unk | Lysate | ND | 29.13 | ND | |
Legionella dumoffii | CCRI-25821 | Env | 2021 | Lysate | ND | 32.39 | ND |
Legionella gormanii | L00153453 | Human | Unk | Lysate | ND | 29.24 | ND |
Legionella jordanis | CCRI-11729 | River Water | Unk | 1ng | ND | 32.83 | ND |
Legionella longbeachae | L00659637 | Human | Unk | Lysate | ND | 29.33 | ND |
Legionella pneumophila | ATCC 33152 | Human | Unk | 1ng | ND | 32.79 | ND |
ATCC 33215 | Human | Unk | Lysate | ND | 32.34 | ND | |
CCRI-25844 | Water | Unk | Lysate | ND | 29,26 | ND | |
Legionella quinlivanii | ID143958 | Human | Unk | Lysate | ND | 29.16 | ND |
Legionella sp. | CCRI-25841 | Water | Unk | Lysate | ND | 29.16 | ND |
CCRI-25843 | Water | Unk | Lysate | ND | 29.24 | ND | |
Legionella yabuuchiae | L00683472 | Human | Unk | Lysate | ND | 29.07 | ND |
Name | Oligonucleotide | Sequence (5′ → 3′) | Concn [µM] | Length (nt) | Tm 1 (°C) | Amplicon Size (bp) |
---|---|---|---|---|---|---|
Legionella micdadeiset | ||||||
23S–5S_LmicF | Forward primer | ACTGCCTTTAGGTTATGAGTGA | 0.4 | 22 | 62.7 | 205 |
Pan-Legionella_R 2 | Reverse primer | TTCACTTCTGAGTTCGAGATGG | 0.4 | 22 | 63.1 | |
Lmicdadei-T1-F2 2,3 | TaqMan probe | AGCTGATTGGTTAATAGCCCAATCGG | 0.2 | 26 | 66.9 | - |
Bacillus subtilisinternal control set | ||||||
ABsub150 | Forward primer | GCCTCTTCATTTAGGTGATGATAC | 0.4 | 24 | 62.7 | 412 |
ABsub542 | Reverse primer | GCCGGCGAATACAGAGATAC | 0.4 | 20 | 63.1 | |
Aspores-T1-G2 3 | TaqMan probe | ATGGCATCTACAGAYGGTRTTCAGCGC | 0.3 | 27 | 66.9 | - |
L. micdadei Strains | Positive Amplification per cp Number | ||||
---|---|---|---|---|---|
20 cp | 10 cp | 5 cp | 2 cp | 1 cp | |
ATCC 33218, N = 16 | 16 | 16 | 16 | 16 | 13 |
CCRI-25808, N = 16 | 16 | 16 | 16 | 13 | 9 |
L. micdadei | Repeatability (Intra-Run) | Reproducibility | ||||||
---|---|---|---|---|---|---|---|---|
Strains 1 | PCR Runs | 1 | 2 | 3 | 4 | 5 | 6 | (Inter-Run) |
ATCC 33218 | Ct (avg) | 32.9 | 32.4 | 32.3 | 32.0 | 32.3 | 33.3 | 32.5 |
CV% | 1.2 | 0.7 | 0.9 | 0.6 | 0.5 | 1.3 | 1.4 | |
n | 8 | 8 | 4 | 4 | 3 | 2 | 29 | |
CCRI-25808 | Ct (avg) | 32.5 | 33.5 | - | - | - | - | 33.0 |
CV% | 0.7 | 1.3 | - | - | - | - | 2.0 | |
n | 8 | 8 | - | - | - | - | 16 |
Specimen Type | Specimen | L. micdadei PCR Ct | IC PCR Ct | PCR Interpretation | Culture |
---|---|---|---|---|---|
Tap water | Neg Control 1 | ND | 30.28 | ND | No growth |
Tap water | Neg Control 2 | ND | 29.93 | ND | No growth |
Tap water | 1 | ND | ND | Invalid | L. pneumophila |
Tap water | 1 1 | ND | 32.72 | ND | L. anisa |
Tap water | 2 | ND | ND | Invalid | L. anisa |
Tap water | 2 1 | ND | 31.08 | ND | No growth |
Tap water | 3 | ND | 30.38 | ND | L. anisa |
Tap water | 4 | ND | 33.26 | ND | No growth |
Tap water | 5 | ND | 30.15 | ND | No growth |
Tap water | 6 | ND | 30.21 | ND | No growth |
Tap water | 7 | ND | 30.15 | ND | L. feeleii |
Tap water | 8 | ND | 30.21 | ND | No growth |
Swab of faucet | 9 | ND | 30.69 | ND | L. pneumophila |
Swab of faucet | 10 | ND | 29.94 | ND | No growth |
Dust | 11 | ND | 32.92 | ND | N/A |
Wood mulch mixed with soil | 12 | 31.68 | ND | D | N/A |
Gardening soil | 13 | ND | ND | Invalid | N/A |
Gardening soil | 13 2 | ND | 30.21 | ND | N/A |
Gardening soil | 14 | ND | ND | Invalid | N/A |
Gardening soil | 14 2 | 38.04 | 30.45 | D | N/A |
Gardening soil | 15 | ND | 29.20 | ND | N/A |
Tap water | spiked with L. micdadei | 29.83 | 30.33 | D | L. micdadei |
Pos ctrl | 10 copies gDNA L. micdadei | 30.36 | 29.87 | D | N/A |
Pos ctrl | 10 copies gDNA L. micdadei | 30.58 | 29.86 | D | N/A |
Pos ctrl | 10 copies gDNA L. micdadei | 32.39 | 32.75 | D | N/A |
Neg ctrl | TE 1X | ND | 29.72 | ND | N/A |
Neg ctrl | TE 1X | ND | 32.14 | ND | N/A |
Neg ctrl | TE 1X | ND | 30.07 | ND | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bélanger, W.N.; Bastien, M.; Bérubé, E.; Gagnon, M.; Sahnoun, Y.G.; Dancause, V.; Boissinot, K.; Lalancette, C.; Riel-Roberge, C.; Jacob-Wagner, M.; et al. Development of a PCR Assay for the Detection of Legionella micdadei in the Environment. Infect. Dis. Rep. 2025, 17, 131. https://doi.org/10.3390/idr17050131
Bélanger WN, Bastien M, Bérubé E, Gagnon M, Sahnoun YG, Dancause V, Boissinot K, Lalancette C, Riel-Roberge C, Jacob-Wagner M, et al. Development of a PCR Assay for the Detection of Legionella micdadei in the Environment. Infectious Disease Reports. 2025; 17(5):131. https://doi.org/10.3390/idr17050131
Chicago/Turabian StyleBélanger, William N., Martine Bastien, Eve Bérubé, Martin Gagnon, Yesmine G. Sahnoun, Valérie Dancause, Karel Boissinot, Cindy Lalancette, Christian Riel-Roberge, Marieve Jacob-Wagner, and et al. 2025. "Development of a PCR Assay for the Detection of Legionella micdadei in the Environment" Infectious Disease Reports 17, no. 5: 131. https://doi.org/10.3390/idr17050131
APA StyleBélanger, W. N., Bastien, M., Bérubé, E., Gagnon, M., Sahnoun, Y. G., Dancause, V., Boissinot, K., Lalancette, C., Riel-Roberge, C., Jacob-Wagner, M., Trottier, S., Biot-Pelletier, D., Ruest, A., Tétreault, I., Thériault, M., & Isabel, S. (2025). Development of a PCR Assay for the Detection of Legionella micdadei in the Environment. Infectious Disease Reports, 17(5), 131. https://doi.org/10.3390/idr17050131