ijms-logo

Journal Browser

Journal Browser

Degradable Polymers: Synthesis, Applications, and Environmental Impact

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Macromolecules".

Deadline for manuscript submissions: 20 February 2026 | Viewed by 638

Special Issue Editors


E-Mail Website
Guest Editor
Key Laboratory of Bio-Based Material Science and Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China
Interests: degradable polymers; biodegradable polylactic acid composites; biomass
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Interests: polymer chemistry; polymer synthesis; catalytic olefin polymerization; organometallic catalysts; metal-catalyzed polymerization; polyolefins
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Degradable polymers play a crucial role in achieving carbon neutrality and reducing plastic pollution. This Special Issue explores the transformative potential of degradable polymers in addressing global sustainability challenges. We invite cutting-edge research and reviews spanning polymer synthesis (e.g., novel catalysts, green chemistry approaches), diverse applications (packaging, biomedical devices, agriculture), and degradation mechanisms (enzymatic, hydrolytic, microbial). Moreover, it aims to bridge scientific innovation with actionable strategies for sustainability. By fostering dialogue across chemistry, environmental science, and engineering, we aspire to chart a roadmap for degradable polymers as catalysts for a waste-free future.

Dr. Ce Sun
Prof. Dr. Haiyang Gao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • degradable polymer
  • synthesis
  • degradation mechanisms
  • sustainability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 1743 KB  
Article
Bio-Based Mulching Films and Soil Conditioners for Non-Irrigated Tomato Cultivation: Toward Plastic-Free and Water-Efficient Crop Production
by Alessandro Sorze, Francesco Valentini, Tiziana Nardin, Roberto Larcher, Janine Bösing, Sebastian Hirschmüller, Andrea Dorigato and Alessandro Pegoretti
Int. J. Mol. Sci. 2025, 26(20), 9894; https://doi.org/10.3390/ijms26209894 - 11 Oct 2025
Viewed by 314
Abstract
This study examined the impact of different bio-based and biodegradable mulching films (TSCs) and soil conditioners (SCs) on plant productivity and fruit quality in a tomato cultivation trial under non-irrigated conditions. In particular, different TSCs were developed based on xanthan gum (XG) or [...] Read more.
This study examined the impact of different bio-based and biodegradable mulching films (TSCs) and soil conditioners (SCs) on plant productivity and fruit quality in a tomato cultivation trial under non-irrigated conditions. In particular, different TSCs were developed based on xanthan gum (XG) or gelatine (GEL) mixed with wood fibres (WFs), while SCs were produced using XG and cellulose fibres. A total of 72 plants of Solanum lycopersicum var. cerasiforme were planted. The yield and number of fruits were measured at harvest, followed by physico-chemical analyses, while plant root systems were examined at the end of the experimental period. The results highlighted that the GEL-based TSCs improved the total fruit yield compared to the control (+50% on average). Furthermore, improved fruit yield was also observed for the XG-based SCs when applied in the soil with a higher organic content. Overall, no significant differences in fruit quality (i.e., Brix degree, carotenoids, lutein and potassium content) and plant root system parameters were found for all the treatments applied. At the end of the test, it was noticed that GEL-based films substantially retained their consistency due to their greater density and thickness, while XG-based films were more disintegrated, indicating higher biodegradation. Full article
Show Figures

Figure 1

Back to TopTop