Impacts of Degradable Film Mulch on GHG Emissions in Paddy Fields and Rice Yield: A Case Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Greenhouse Experiment Design and Management
2.3. Field Experiment Design and Management
2.4. Sample Collection
2.4.1. Greenhouse Gas Sampling and Analysis
2.4.2. Soil Sampling and Analysis
2.5. Rice Yield Determination
2.6. Data Processing and Analysis
3. Results
3.1. Effects of Covering Practices on Greenhouse Gas Emissions and Rice Yield Under Greenhouse Conditions
3.1.1. CO2 Emissions
3.1.2. CH4 Emissions
3.1.3. N2O Emissions
3.1.4. Rice Yield and GHGI
3.1.5. SOC Content
3.2. Effects of Covering Practices on Greenhouse Gas Emissions and Rice Yield Under Field Conditions
3.2.1. CO2 Emissions
3.2.2. CH4 Emissions
3.2.3. N2O Emissions
3.2.4. Rice Yield and GHGI
3.2.5. SOC Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PM | Paper film |
BM | Biodegradable film |
CK | Non-film treatment |
SOC | Soil organic carbon |
GHG | Greenhouse gas |
PBAT | polybutylene adipate co-terephthalate |
PLA | polylactic acid |
GHGI | Greenhouse gas intensity |
GWP | Global warming potential |
FID | Flame ionization detector |
TCD | Thermal conductivity detector |
References
- Zhang, G.; Yang, Y.; Huang, Q.; Ma, J.; Yu, H.; Song, K.; Dong, Y.; Lv, S.; Xu, H. Reducing yield-scaled global warming potential and water use by rice plastic film mulching in a winter flooded paddy field. Eur. J. Agron. 2020, 114, 126007. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, C.; Zhang, J.; Dong, W.; Wang, Y.; Song, L. Research advances on sourch/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils. Chin. J. Eco-Agric. 2011, 19, 966–975. (In Chinese) [Google Scholar] [CrossRef]
- Huang, W.; Wu, F.; Han, W.; Li, Q.; Han, Y.; Wang, G.; Feng, L.; Li, X.; Yang, B.; Lei, Y.; et al. Carbon footprint of cotton production in China: Composition, spatiotemporal changes and driving factors. Sci. Total Environ. 2022, 821, 153407. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Nie, L.; Ashraf, U.; Wang, Z.; Zhang, Z.; Wu, T.; Tian, H.; Hamoud, Y.A.; Tang, X.; et al. Deep placement of nitrogen fertilizer increases rice yield and energy production efficiency under different mechanical rice production systems. Field Crops Res. 2022, 276, 108359. [Google Scholar] [CrossRef]
- Fawibe, O.O.; Honda, K.; Taguchi, Y.; Park, S.; Isoda, A. Greenhouse gas emissions from rice field cultivation with drip irrigation and plastic film mulch. Nutr. Cycl. Agroecosyst. 2019, 113, 51–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, K.; Tang, Y.; Feng, S. Rice cultivation under film mulching can improve soil environment and be beneficial for rice production in China. Rice Sci. 2024, 31, 545–555. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Q.; Yan, C.; Wu, Q.; Gong, D.; He, W.; Liu, H.; Wang, J.; Mei, X. Mitigation of greenhouse gas emissions and improved yield by plastic mulching in rice production. Sci. Total Environ. 2023, 880, 162984. [Google Scholar] [CrossRef]
- Hu, G.; Zhu, D.; Xu, Y.; Chen, H.; Xiang, J.; Zhang, Y.; Zhang, Y. Research progress on rice cultivated by film mulching. J. Agric. Sci. Technol. 2019, 21, 163–170. (In Chinese) [Google Scholar] [CrossRef]
- Lee, J.G.; Cho, S.R.; Jeong, S.T.; Hwang, H.Y.; Kim, P.J. Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil. Sci. Total Environ. 2019, 696, 133827. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Xu, Z.; Zhang, D.; Yang, W.; Ding, Y.; Li, C.; Gao, L.; Siddique, K.H.M.; Qu, Z. Effects of a single biochar application on soil carbon storage and water and fertilizer productivity of drip-irrigated, film-mulched maize production. Agronomy 2024, 14, 2028. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, J.; Wang, W.; Sun, D.; Sun, H.; Bi, Q.; Wang, C.; Zhang, J.; Zhou, S.; Luo, L. Ecological and economic benefits of greenhouse gas emission reduction strategies in rice production: A case study of the southern rice propagation base in Hainan Province. Agronomy 2024, 14, 222. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, L.; Ma, J.; Yin, J.; Guo, W.; Han, X.; Li, C.; Jiang, L.; Zhang, P. Effects of different types full biodegradation film on taro yield and soil environment. China Veg. 2022, 2, 88–94. (In Chinese) [Google Scholar] [CrossRef]
- Albarracín, M.; Dyner, L.; Giacomino, M.S.; Weisstaub, A.; Zuleta, A.; Drago, S.R. Modification of nutritional properties of whole rice flours (Oryza sativa L.) by soaking, germination, and extrusion. J. Food Biochem. 2019, 43, e12854. [Google Scholar] [CrossRef]
- Jayasekara, R.; Harding, I.; Bowater, I.; Lonergan, G. Biodegradability of a selected range of polymers and polymer bl-ends and standard methods for assessment of biodegradation. J. Polym. Environ. 2005, 13, 231–251. [Google Scholar] [CrossRef]
- Li, A.; Zhang, J.; Ren, S.; Zhang, Y.; Zhang, F. Research progress on preparation and field application of paper mulch. Environ. Technol. Innov. 2021, 24, 101949. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Martin-Closas, L.; Pelacho, A.M.; DeBruyn, J.M. Biodegradable plastic mulch films: Impacts on soil microbial communities and ecosystem functions. Front. Microbiol. 2018, 9, 819. [Google Scholar] [CrossRef]
- Ryu, Y.; Bouharras, F.E.; Cha, M.; Mudondo, J.; Kim, Y.; Ramakrishnan, S.R.; Shin, S.; Yu, Y.; Lee, W.; Park, J.; et al. Recent advancements in the evolution, production, and degradation of biodegradable mulch films: A review. Environ. Res. 2025, 277, 121629. [Google Scholar] [CrossRef]
- Wang, M.; Li, W.; Zhao, F.; Deng, S.; Li, T.; Wu, X.; Mu, Y.; Yang, K.; Zhang, A.; Yang, X. A review on the application of starch in biodegradable mulch films. Int. J. Biol. Macromol. 2025, 320, 145915. [Google Scholar] [CrossRef] [PubMed]
- Claramunt, J.; Mas, M.T.; Pardo, G.; Cirujeda, A.; Verdu, A.M.C. Mechanical characterization of blends containing recycled paper pulp and other lignocellulosic materials to develop hydromulches for weed control. Biosyst. Eng. 2020, 191, 35–47. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Su, Z.; Hao, Y.; Li, X.; Ji, M.; Peng, S.; Wang, S.; Li, F.; Zhang, C. Porous biodegradable biomass c-omposites based on cationic starch and plant fibers. Int. J. Biol. Macromol. 2025, 318, 144714. [Google Scholar] [CrossRef]
- Cirujeda, A.; Anzalone, A.; Aibar, J.; Moreno, M.M.; Zaragoza, C. Purple nutsedge (Cyperus rotundus L.) control with paper mulch in processing tomato. Crop Prot. 2012, 39, 66–71. [Google Scholar] [CrossRef]
- Sánchez, E.; Lamont, W.J., Jr.; Orzolek, M.D. Newspaper mulches for suppressing weeds for organic high-tunnel cucumber production. HortTechnology 2008, 18, 154–157. [Google Scholar] [CrossRef]
- Hu, G.; Wang, J.; Wang, Y.; Zhu, D.; Chen, H.; Xiang, J.; Zhang, Y.; Zhang, Y. Effect of biodegradable film mulching on greenhouse gas emission and yield of rice (Oryza sativa L.). Ecol. Environ. Sci. 2020, 29, 977–986. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Liu, C.; Lin, S.; Zuo, Q.; Butterbach-Bahl, K. Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Sci. Rep. 2017, 7, 39855. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, Y.; Xiao, M.; Zhao, C.; Yao, H. A meta-analysis of film mulching cultivation effects on soil organic carbon and soil greenhouse gas fluxes. Catena 2021, 206, 105483. [Google Scholar] [CrossRef]
- Guo, H.; Yu, X.; Jin, W.; He, N.; Guo, W. Establishment of prediction model for tensile mechanics of plastic film and prediction of film thickness. J. Chin. Agric. Mech. 2020, 41, 173–178. (In Chinese) [Google Scholar] [CrossRef]
- Li, M.; Peng, J.; Lu, Z.; Zhu, P. Research progress on carbon sources and sinks of farmland ecosystems. Resour. Environ. Sust. 2023, 11, 100099. [Google Scholar] [CrossRef]
- Sun, Y.; Mi, W.; Su, L.; Shan, Y.; Wu, L. Controlled-release fertilizer enhances rice grain yield and N recovery efficiency in continuous non-flooding plastic film mulching cultivation system. Field Crops Res. 2019, 231, 122–129. [Google Scholar] [CrossRef]
- Chen, X.; Yang, W.; Jiang, B.; Yin, H.; Yang, X.; Yang, S.; Ma, Y. Characteristic variations of N2O flux in winter wheat field under different tillage methods. Agric. Res. Arid Areas 2016, 34, 221–227. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Qin, B.; Lan, C.; Xu, H.; Zou, J.; Zhang, B.; Fang, C.; Zhang, Z.; Chen, H.; Lin, W. Rhizosphere microecological mechanism of carbon sequestration and its emission mitigation in rice ratooning. Agr. Ecosyst. Environ. 2025, 381, 109406. [Google Scholar] [CrossRef]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 923–1054. [Google Scholar] [CrossRef]
- Islam, S.F.; van Groenigen, J.W.; Sander, B.O.; de Neergaard, A. The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci. Total Environ. 2018, 612, 1329–1339. [Google Scholar] [CrossRef]
- Zhou, X.; Smaill, S.J.; Gu, X.; Clinton, P.W. Manipulation of soil methane oxidation under drought stress. Sci. Total Environ. 2021, 757, 144089. [Google Scholar] [CrossRef] [PubMed]
- Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 2007, 96, 1–63. [Google Scholar] [CrossRef]
- Rabha, J.; Devi, S.P.; Das, S.; Kumar, A.; Jha, D.K. Chapter 18—Diversity and functional role of ammonia-oxidizing bacteria in soil microcosms. In Development in Wastewater Treatment Research and Processes; Shah, M.P., Rodriguez-Couto, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 371–392. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Wassmann, R.; Villegas-Pangga, G.; Sanabria, J.; Aquino, E.; Sta Cruz, P.C.; Paningbatan, E.P., Jr. Effects of increased temperatures and rice straw incorporation on methane and nitrous oxide emissions in a greenhouse experiment with rice. Eur. J. Soil. Sci. 2016, 67, 868–880. [Google Scholar] [CrossRef]
- Raseduzzaman, M.; Gaudel, G.; Ali, M.R.; Timilsina, A.; Bizimana, F.; Aluoch, S.O.; Li, X.; Zhang, Y.; Hu, C. Cereal-legume mixed residue addition increases yield and reduces soil greenhouse gas emissions from fertilized winter wheat in the North China Plain. Agronomy 2024, 14, 1167–1191. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Gu, B.; Xing, J.; Liu, C.; Liu, T.; Zhao, S.; Zhang, X.; Zhu, L.; Xu, Z. Role of methanogenesis and methanotrophy in CH4 fluxes from rice paddies under elevated CO2 concentration and elevated temperature. Sci. Total Environ. 2024, 951, 175466. [Google Scholar] [CrossRef]
- Song, K.; Zhang, G.; Yu, H.; Huang, Q.; Zhu, X.; Wang, T.; Xu, H.; Lv, S.; Ma, J. Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields. J. Clean. Prod. 2021, 297, 126650. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.; Zhang, X.; Peng, S.; Li, C.; Wang, J.; Zhang, Y. Effects of different plastic mulchin-g on soil temperature and rice growth. J. Water Resour. Archit. Eng. 2020, 18, 15–19. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.; Ma, J.; Yang, Y.; Yu, H.; Song, K.; Dong, Y.; Lv, S.; Xu, H. Achieving low methane and nitrous oxide emissions with high economic incomes in a rice-based cropping system. Agric. For. Meteorol. 2018, 259, 95–106. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Wang, R.; Liu, C.; Lin, S.; Butterbach-Bahl, K. Benefits of integrated nutrient management on N2O and NO mitigations in water-saving ground cover rice roduction systems. Sci. Total Environ. 2019, 646, 1155–1163. [Google Scholar] [CrossRef]
- Xiong, J.; Ye, T.; Sun, K.; Gao, Y.; Chen, H.; Xiang, J.; Wang, Y.; Wang, Z.; Zhang, Y.; Zhang, Y. Greenhouse gas emissions and bacterial community structure as influenced by biodegradable film mulching in Eastern China. Agronomy 2023, 13, 1535. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Zheng, X.; Wang, Y. Quantifying direct N2O emissions in paddy fields during rice growing seaso-n in mainland China: Dependence on water regime. Atmos. Environ. 2007, 41, 8030–8042. [Google Scholar] [CrossRef]
- Wang, H.; Yan, Z.; Ju, X.; Song, X.; Zhang, J.; Li, S.; Zhu-Barker, X. Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils: Laboratory study and literature synthesis. Front. Microbiol. 2023, 13, 1110151. [Google Scholar] [CrossRef]
- Liu, T.; Qin, S.; Pang, Y.; Yao, J.; Zhao, X.; Clough, T.; Wrage-Moennig, N.; Zhou, S. Rice root Fe plaque enhances paddy soil N2O emissions via Fe (II) oxidation-coupled denitrification. Soil Biol. Biochem. 2019, 139, 107610. [Google Scholar] [CrossRef]
- Carlson, H.K.; Clark, I.C.; Melnyk, R.A.; Coates, J.D. Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: Balancing electron uptake and detoxification. Front. Microbiol. 2012, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; An, X.; Li, S.; Zhang, G.; Zhu, Y. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ. Sci. Technol. 2014, 48, 10641–10647. [Google Scholar] [CrossRef]
- Liu, M.; Lin, S.; Dannenmann, M.; Tao, Y.; Saiz, G.; Zuo, Q.; Sippel, S.; Wei, J.; Cao, J.; Cai, X.; et al. Do water-saving ground cover rice production systems increase grain yields at regional scales? Field Crops Res. 2013, 150, 19–28. [Google Scholar] [CrossRef]
- Fu, F.; Long, B.; Huang, Q.; Li, J.; Zhou, W.; Yang, C. Integrated effects of residual plastic films on soil-rhizosphere microbe-plant ecosystem. J. Hazard. Mater. 2023, 445, 130420. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Yang, J.; Zhang, J. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation. Field Crops Res. 2008, 108, 71–81. [Google Scholar] [CrossRef]
- Li, J.; He, Y.; Liu, J.; Wang, Y.; Guo, Y.; Lu, Y. Effects of biodegradable film mulching and water-saving irrigation on soil moisture and temperature in paddy fields of the black soil region. Agriculture 2025, 15, 1956. [Google Scholar] [CrossRef]
- Han, Y.; Chen, H. A review on the studies and applications of mulching paper. J. Agric. Mech. Res. 2008, 12, 244–246. (In Chinese) [Google Scholar]
- Yang, Z.; Ma, H.; Sun, C.; Jia, H.; Wu, X.; Ma, X.; Shan, N. Effects of residual plastic film on cotton yield and soil health in arid areas of Xinjiang Province, China. Appl. Ecol. Environ. Res. 2025, 23, 4921–4936. (In Chinese) [Google Scholar] [CrossRef]
Treatment | Number of Leaves (Leaves/m2) | Number of Spikes (Panicles/m2) | Rice Yield (t·ha−1) | Total Aboveground Biomass (t·ha−1) |
---|---|---|---|---|
A | 736 ± 67.67 | 186 ± 24.25 | 1.70 ± 0.28 | 5.00 ± 0.55 |
B | 700 ± 129.17 | 184 ± 30.51 | 1.60 ± 0.43 | 4.80 ± 0.94 |
C | 862 ± 30.81 | 239 ± 7.00 | 2.00 ± 0.07 | 6.00 ± 0.14 |
CK | 576 ± 58.28 | 167 ± 14.73 | 1.80 ± 0.24 | 4.90 ± 0.59 |
Treatment | CO2 | CH4 | N2O | ||||||
---|---|---|---|---|---|---|---|---|---|
CO2 Emissions (kg·ha−1) | GWP-CO2 (kg·CO2-eq·ha−1) | CH4 Emissions (kg·ha−1) | GWP-CH4 (kg·CO2-eq·ha−1) | N2O Emissions (kg·ha−1) | GWP-N2O (kg·CO2-eq·ha−1) | GWP (kg·CO2-eq·ha−1) | Rice Yield (t·ha−1) | GHGI (t·CO2-eq·t−1 Yield) | |
A | 34,574.68 ± 834.85 ab | 34,574.68 ± 834.85 ab | 55.69 ± 4.62 c | 1503.66 ± 124.71 c | 6.59 ± 0.10 | 1799.80 ± 28.43 | 37,878.15 ± 966.17 | 1.70 ± 0.28 | 23.48 ± 4.61 |
B | 33,280.06 ± 1209.27 ab | 33,280.06 ± 1209.27 ab | 59.03 ± 4.76 bc | 1593.72 ± 128.52 bc | 6.44 ± 0.06 | 1757.86 ± 16.39 | 36,631.65 ± 1073.56 | 1.60 ± 0.43 | 28.13 ± 9.51 |
C | 31,092.46 ± 1479.25 b | 31,092.46 ± 1479.25 b | 76.06 ± 7.46 b | 2053.59 ± 201.52 b | 6.53 ± 0.04 | 1783.08 ± 12.15 | 34,929.13 ± 1650.07 | 2.00 ± 0.07 | 17.15 ± 1.25 |
CK | 36,158.27 ± 819.83 a | 36,158.27 ± 819.83 a | 112.14 ± 5.60 a | 3027.90 ± 151.26 a | 6.56 ± 0.09 | 1791.98 ± 23.63 | 40,978.15 ± 722.37 | 1.80 ± 0.24 | 23.67 ± 3.18 |
Treatment | Number of Leaves (Leaves/m2) | Number of Spikes (Panicles/m2) | Rice yield (t·ha−1) | Total Aboveground Biomass (t·ha−1) |
---|---|---|---|---|
A | 920 ± 67.00 abc | 278 ± 18.67 ab | 3.20 ± 0.39 | 7.20 ± 0.72 |
B | 1033 ± 41.59 a | 324 ± 11.88 a | 3.30 ± 0.24 | 8.10 ± 0.34 |
C | 979 ± 46.52 ab | 312 ± 13.12 a | 3.30 ± 0.31 | 7.90 ± 0.45 |
D | 842 ± 45.63 bc | 262 ± 14.36 b | 3.20 ± 0.23 | 7.30 ± 0.46 |
CK | 803 ± 36.92 c | 264 ± 13.83 b | 3.80 ± 0.22 | 7.80 ± 0.40 |
Treatment | CO2 | CH4 | N2O | ||||||
---|---|---|---|---|---|---|---|---|---|
CO2 Emissions (kg·ha−1) | GWP-CO2 (kg·CO2-eq·ha−1) | CH4 Emissions (kg·ha−1) | GWP-CH4 (kg·CO2-eq·ha−1) | N2O Emissions (kg·ha−1) | GWP-N2O (kg·CO2-eq·ha−1) | GWP (kg·CO2-eq·ha−1) | Rice Yield (t·ha−1) | GHGI (t·CO2-eq·t−1 Yield) | |
A | 36,834.21 ± 1030.77 | 36,834.21 ± 1030.77 | 543.43 ± 41.45 | 20,431.42 ± 2872.78 | 5.89 ± 0.02 | 1591.61 ± 16.20 | 60,197.14 ± 4169.43 | 3.20 ± 0.39 | 19.54 ± 1.81 |
B | 38,176.72 ± 1339.51 | 38,176.72 ± 1339.51 | 695.82 ± 29.74 | 19,327.78 ± 907.58 | 5.95 ± 0.05 | 1616.98 ± 12.52 | 59,573.92 ± 1412.23 | 3.30 ± 0.24 | 17.90 ± 0.52 |
C | 36,764.21 ± 912.32 | 36,764.21 ± 912.32 | 763.38 ± 72.54 | 19,478.82 ± 1789.01 | 5.85 ± 0.03 | 1597.35 ± 6.21 | 59,827.13 ± 2158.37 | 3.30 ± 0.32 | 18.61 ± 1.84 |
D | 41,682.55 ± 2642.33 | 41,682.55 ± 2642.33 | 497.3 ± 20.96 | 20,385.97 ± 4773.54 | 5.94 ± 0.13 | 1607.64 ± 30.53 | 61,186.91 ± 7676.92 | 3.2 ± 0.23 | 19.53 ± 3.61 |
CK | 37,474.13 ± 903.82 | 37,474.13 ± 903.82 | 808.71 ± 116.56 | 20,179.76 ± 2773.45 | 5.84 ± 0.10 | 1574.11 ± 28.19 | 59,817.40 ± 3579.70 | 3.80 ± 0.20 | 15.66 ± 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ru, M.; He, X.; Shi, D.; Shen, J.; Xu, X.; Cui, J.; Lu, Z.; Ruan, Y.; Zhu, P. Impacts of Degradable Film Mulch on GHG Emissions in Paddy Fields and Rice Yield: A Case Study. Agriculture 2025, 15, 2144. https://doi.org/10.3390/agriculture15202144
Ru M, He X, Shi D, Shen J, Xu X, Cui J, Lu Z, Ruan Y, Zhu P. Impacts of Degradable Film Mulch on GHG Emissions in Paddy Fields and Rice Yield: A Case Study. Agriculture. 2025; 15(20):2144. https://doi.org/10.3390/agriculture15202144
Chicago/Turabian StyleRu, Mengmeng, Xiaochan He, Dezheng Shi, Jie Shen, Xiaofang Xu, Jiarong Cui, Zhongxian Lu, Yongming Ruan, and Pingyang Zhu. 2025. "Impacts of Degradable Film Mulch on GHG Emissions in Paddy Fields and Rice Yield: A Case Study" Agriculture 15, no. 20: 2144. https://doi.org/10.3390/agriculture15202144
APA StyleRu, M., He, X., Shi, D., Shen, J., Xu, X., Cui, J., Lu, Z., Ruan, Y., & Zhu, P. (2025). Impacts of Degradable Film Mulch on GHG Emissions in Paddy Fields and Rice Yield: A Case Study. Agriculture, 15(20), 2144. https://doi.org/10.3390/agriculture15202144