Response of Soil Properties, Bacterial Community Structure, and Function to Mulching Practices in Urban Tree Pits: A Case Study in Beijing
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Materials and Treatments
2.3. Methods
2.3.1. Soil and Plant Sampling
2.3.2. Soil and Test Materials’ Physicochemical Property Measurement
2.3.3. Soil Bacterial Community
2.4. Analysis
3. Results
3.1. Response of Soil Physicochemical Properties and Test Plant Growth to Mulching Practices
3.2. Response of Soil Bacterial Diversity and Community Structure Response to Mulching Practices
3.3. Soil Bacterial Community Composition and Environmental Drivers
3.4. Response of Soil Bacterial Community Functional Gene Abundance to Mulching Practices
4. Discussion
4.1. Response of Soil Physicochemical and Test Tree Growth Composition to Mulching Practices
4.2. Response of Soil Bacterial Diversity and Community Composition to Mulching Practices
4.3. Relationships Between Soil Properties, Bacterial Communities and Functional Potential
4.4. The Role of Mulching Practices in Shaping Soil Bacterial Communities and Functional Genes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Layman, R.M.; Day, S.D.; Mitchell, D.K.; Chen, Y.; Harris, J.R.; Daniels, W.L. Below ground matters: Urban soil rehabilitation increases tree canopy and speeds establishment. Urban For. Urban Green. 2016, 16, 25–35. [Google Scholar] [CrossRef]
- Murata, T.; Kawai, N. Degradation of the urban ecosystem function due to soil sealing: Involvement in the heat island phenomenon and hydrologic cycle in the Tokyo metropolitan area. Soil Sci. Plant Nutr. 2018, 64, 145–155. [Google Scholar] [CrossRef]
- Jim, C.Y. Soil compaction as a constraint to tree growth in tropical & subtropical urban habitats. Environ. Conserv. 1993, 20, 35–49. [Google Scholar] [CrossRef]
- Kargar, M.; Jutras, P.; Clark, O.G.; Hendershot, W.H.; Prasher, S.O. Macro-nutrient availability in surface soil of urban tree pits influenced by land use, soil age, and soil organic matter content. Urban Ecosyst. 2015, 18, 921–936. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Turner, N.C.; Gong, Y.H.; Li, F.M.; Fang, C.; Ge, L.J. Benefits and limitations to straw-and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. Eur. J. Agron. 2018, 99, 138–147. [Google Scholar] [CrossRef]
- Tang, M.; Gao, X.; Wu, P.; Li, H.; Zhang, C. Effects of living mulch and branches mulching on soil moisture, temperature and growth of rain-fed jujube trees. Plants 2022, 11, 2654. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Pereira, L.S. Mulching effects on soil evaporation, crop evapotranspiration and crop coefficients: A review aimed at improved irrigation management. Irrig. Sci. 2024, 42, 525–539. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, X.; Li, S.; Qu, B.; Zhang, J. How organic mulching influences the soil bacterial community structure and function in urban forests. Microorganisms 2024, 12, 520. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, Y.-H.; Zhang, Z.-T.; Huang, W.-L.; Li, L.-P.; Li, J.-T.; Liu, J.-S.; Zheng, Y.; Mo, J.-M.; Zhang, W.; et al. Dissolved organic matter characteristics in soils of tropical legume and non-legume tree plantations. Soil Biol. Biochem. 2020, 148, 107880. [Google Scholar] [CrossRef]
- Marble, S.C.; Steed, S.T.; Saha, D.; Khamare, Y. On-farm evaluations of wood-derived, waste paper, and plastic mulch materials for weed control in Florida container nurseries. HortTechnology 2019, 29, 866–873. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, X.; Li, S.; Du, T.; Zheng, Y.; Fan, Z. Effects of organic mulching on soil aggregate stability and aggregate binding agents in an urban forest in Beijing, China. J. For. Res. 2022, 33, 1083–1094. [Google Scholar] [CrossRef]
- Dlamini, P.; Ukoh, I.B.; van Rensburg, L.D.; du Preez, C.C. Reduction of evaporation from bare soil using plastic and gravel mulches and assessment of gravel mulch for partitioning evapotranspiration under irrigated canola. Soil Res. 2016, 55, 222–233. [Google Scholar] [CrossRef]
- Al-Zboon, K.K.; Al-Tabbal, J.A.; Al-Kharabsheh, N.M.; Al-Mefleh, N.K. Natural volcanic tuff as a soil mulching: Effect on plant growth and soil chemistry under water stress. Appl. Water Sci. 2019, 9, 123. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, J.; Li, Q.; Liang, F.; Mu, X.; Pei, D.; Jia, H.; Wang, Z. Effects of film mulching on soil microbial diversity and community structure in the maize root zone under drip irrigation in northwest China. Agronomy 2024, 14, 1139. [Google Scholar] [CrossRef]
- He, X.; Wu, Y.; Liu, K.; Ji, J.; Wu, C.; Li, J.; Song, H.; Hu, D.; Zhou, C. The combined application of inorganic and organic materials over two years improves soil pH, slightly increases soil organic carbon, and enhances crop yields in severely acidic red Soil. Agronomy 2025, 15, 498. [Google Scholar] [CrossRef]
- Hao, H.; Zhao, X.; Wang, Y.; Zhang, Y.; Xie, Z.; Guo, Z.; Wang, R. Effects of gravel-sand mulching on soil bacterial community and metabolic capability in the semi-arid Loess Plateau, China. World J. Microbiol. Biotechnol. 2017, 33, 209. [Google Scholar] [CrossRef]
- Czarnecki, S.; Düring, R.A. Influence of long-term mineral fertilization on metal contents and properties of soil samples taken from different locations in Hesse, Germany. Soil Discuss. 2014, 1, 239–265. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, R.; Blagodatskaya, E.; Blagodatsky, S.; Liu, D.; Yu, Y.; Zhu, X.; Feng, Y. Long-term application of mineral fertilizer weakens the stability of microbial n-transforming functions via the decrease of soil microbial diversity. J. Sustain. Agric. Environ. 2024, 3, e70014. [Google Scholar] [CrossRef]
- Kader, M.A.; Singha, A.; Begum, M.A.; Jewel, A.; Khan, F.H.; Khan, N.I. Mulching as water-saving technique in dryland agriculture: Review article. Bull. Natl. Res. Cent. 2019, 43, 147. [Google Scholar] [CrossRef]
- Khan, S.U.; Wang, X.; Mehmood, T.; Latıf, S.; Khan, S.U.; Fiaz, S.; Qayyum, A. Comparison of organic and inorganic mulching for weed suppression in wheat under rain-Fed conditions of Haripur, Pakistan. Agronomy 2021, 11, 1131. [Google Scholar] [CrossRef]
- Yang, J.; Mcbride, J.; Zhou, J.; Sun, Z. The urban forest in beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Dhiman, D.; Vishvamitera, S.; Baghla, S.; Singh, S.; Kumar, D.; Kumar, A.; Chauhan, R. Synergistic effect of mulch and nitrogen management on growth and essential oil yield of Salvia sclarea L. Sci. Rep. 2024, 14, 32075. [Google Scholar] [CrossRef]
- Greenly, K.M.; Rakow, D.A. The effect of wood mulch type and depth on weed and tree growth and certain soil parameters. Arboric. Urban For. 1995, 21, 225–232. [Google Scholar] [CrossRef]
- Maggard, A.O.; Will, R.E.; Hennessey, T.C.; McKinley, C.R.; Cole, J.C. Tree-based mulches influence soil properties and plant growth. HortTechnology 2012, 22, 353–361. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-Scale Biomass Estimators for United States Tree Species. For. Sci. 2003, 49, 12–35. [Google Scholar] [CrossRef]
- Catchpole, W.R.; Wheeler, C.J. Estimating plant biomass: A review of techniques. Austral Ecol. 1992, 17, 121–131. [Google Scholar] [CrossRef]
- Burdett, A.N. A nondestructive method for measuring the volume of intact plant parts. Can. J. For. Res. 1979, 9, 120–122. [Google Scholar] [CrossRef]
- Vogt, K.A.; Persson, H. Measuring growth and development of roots. In Techniques and Approaches in Forest Tree Ecophysiology; CRC Press: Boca Raton, FL, USA, 1991; pp. 477–501. [Google Scholar]
- Angel, R.; Soares, M.I.M.; Ungar, E.D.; Gillor, O. Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J. 2010, 4, 553–563. [Google Scholar] [CrossRef]
- Pellissier, L.; Niculita-Hirzel, H.; Dubuis, A.; Pagni, M.; Guex, N.; Ndiribe, C.; Salamin, N.; Xenarios, I.; Goudet, J.; Sanders, I.R.; et al. Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Mol. Ecol. 2014, 23, 4274–4290. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic Forms. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Potassium. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar]
- Böhme, L.; Langer, U.; Böhme, F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric. Ecosyst. Environ. 2005, 109, 141–152. [Google Scholar] [CrossRef]
- DeForest, J.L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil Biol. Biochem. 2009, 41, 1180–1186. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef]
- Noguchi, H.; Taniguchi, T.; Itoh, T. MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006, 34, 5623–5630. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Li, R.; Yu, C.; Li, Y.; Lam, T.W.; Yiu, S.M.; Kristiansen, K.; Wang, J. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics 2009, 25, 1966–1967. [Google Scholar] [CrossRef]
- Kumar, R.; Sood, S.; Sharma, S.; Kasana, R.C.; Pathania, V.L.; Singh, B.; Singh, R.D. Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in Western Himalayas. Int. J. Plant Prod. 2014, 8, 311–334. [Google Scholar] [CrossRef]
- Sun, X.; Wang, G.; Ma, Q.; Liao, J.; Wang, D.; Guan, Q.; Jones, D.L. Organic mulching promotes soil organic carbon accumulation to deep soil layer in an urban plantation forest. For. Ecosyst. 2021, 8, 2. [Google Scholar] [CrossRef]
- Pavl, L.; Kodeová, R.; Fér, M.; Nikodem, A.; Proke, R. The impact of various mulch types on soil properties controlling water regime of the Haplic Fluvisol. Soil Tillage Res. 2021, 205, 104748. [Google Scholar] [CrossRef]
- Basak, B.B.; Sarkar, B.; Naidu, R. Environmentally safe release of plant available potassium and micronutrients from organically amended rock mineral powder. Environ. Geochem. Health 2021, 43, 3273–3286. [Google Scholar] [CrossRef]
- Abou-El-Seoud, I.I.; Abdel-Megeed, A. Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J. Biol. Sci. 2012, 19, 55–63. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Li, W.; Su, Q.; Ma, B.; Mu, M.; Jia, Z.; Zhao, G. Effect of the release of gravel elements on soil nutrients and jujube fruit yield under wet-and-dry cycles. Agronomy 2022, 12, 2881. [Google Scholar] [CrossRef]
- Ramos, C.G.; Querol, X.; Oliveira, M.L.S.; Pires, K.; Kautzmann, R.M.; Oliveira, L.F.S. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Sci. Total Environ. 2015, 512, 371–380. [Google Scholar] [CrossRef]
- Machado, D.L.; Dourado, M.N.; de Freitas, M.S.; de Souza, L.M.; da Silva, E.M.; Podadera, D.S.; Andrade, C.R.; Ferreira, W.C.; Guilherme, F.A.G. Organic mulching alters the soil microclimate, increases survival and growth of tree seedlings in restoration planting. Forests 2024, 15, 1777. [Google Scholar] [CrossRef]
- Degens, B.P.; Schipper, L.A.; Sparling, G.P.; Vojvodic-Vukovic, M. Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 2000, 32, 189–196. [Google Scholar] [CrossRef]
- Nair, A.; Ngouajio, M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Appl. Soil Ecol. 2012, 58, 45–55. [Google Scholar] [CrossRef]
- Detheridge, A.P.; Brand, G.; Fychan, R.; Crotty, F.V.; Sanderson, R.; Griffith, G.W.; Marley, C.L. The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agric. Ecosyst. Environ. 2016, 228, 49–61. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Luo, Y.; Awasthi, M.; Yang, J.; Duan, Y.; Li, H.; Zhao, Z. Mulching practices alter the bacterial-fungal community and network in favor of soil quality in a semiarid orchard system. Sci. Total Environ. 2020, 725, 138527. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Ren, C.; Wang, D.; Wu, R.; Wang, Y.; Li, Z.; Huang, D.; Qi, H. Microbial community assembly and its influencing factors of secondary forests in Qinling Mountains. Soil Biol. Biochem. 2023, 184, 109075. [Google Scholar] [CrossRef]
- Wang, M.; Shao, Y.; Zhang, W.; Yu, B.; Shen, Z.; Fan, Z.; Zu, W.; Dai, G.; Fu, S. Secondary succession increases diversity and network complexity of soil microbial communities in subtropical and temperate forests. Catena 2024, 249, 108662. [Google Scholar] [CrossRef]
- Giguere, A.T.; Eichorst, S.A.; Meier, D.V.; Herbold, C.W.; Richter, A.; Greening, C.; Woebken, D. Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils. ISME J. 2021, 15, 363–376. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, S.H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef]
- Hu, J.; Wei, Z.; Weidner, S.; Friman, V.-P.; Xu, Y.-C.; Shen, Q.-R.; Jousset, A. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 2017, 113, 122–129. [Google Scholar] [CrossRef]
- Miyatake, F.; Iwabuchi, K. Effect of high compost temperature on enzymatic activity and species diversity of culturable bacteria in cattle manure compost. Bioresour. Technol. 2005, 96, 1821–1825. [Google Scholar] [CrossRef] [PubMed]
- Blumer-Schuette, S.E.; Brown, S.D.; Sander, K.B.; Bayer, E.A.; Kataeva, I.; Zurawski, J.V.; Conway, J.M.; Adams, M.W.W.; Kelly, R.M. Thermophilic lignocellulose deconstruction. FEMS Microbiol. Rev. 2014, 38, 393–448. [Google Scholar] [CrossRef]
- Chi, Z.; Ju, S.; Li, H.; Li, J.; Wu, H.; Yan, B. Deciphering edaphic bacterial community and function potential in a Chinese delta under exogenous nutrient input and salinity stress. Catena 2021, 201, 105212. [Google Scholar] [CrossRef]
- Mu, X.; Wang, J.; Qin, H.; Ding, J.; Mou, X.; Liu, S.; Wang, L.; Zhang, S.; Zhang, J.; Wang, P. Analyses of Rhizosphere Soil Physicochemical Properties and Microbial Community Structure in Cerasus humilis Orchards with Different Planting Years. Horticulturae 2024, 10, 1102. [Google Scholar] [CrossRef]
- Gui, H.; Fan, L.; Wang, D.; Yan, P.; Li, X.; Zhang, L.; Han, W. Organic management practices shape the structure and associations of soil bacterial communities in tea plantations. Appl. Soil Ecol. 2021, 163, 103975. [Google Scholar] [CrossRef]
- Shen, F.; Fei, L.; Tuo, Y.; Peng, Y.; Yang, Q.; Zheng, R.; Wang, Q.; Liu, N.; Fan, Q. Effects of water and fertilizer regulation on soil physicochemical properties, bacterial diversity and community structure of Panax notoginseng. Sci. Hortic. 2024, 326, 112777. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z.; Chen, K.; Chen, Z.; Zeng, X.; Yu, H.; Guo, S.; Shangguan, Y.; Chen, Q.; Fan, H.; et al. Changes in soil physicochemical properties and bacterial communities at different soil depths after long-term straw mulching under a no-till system. Soil 2021, 7, 595–609. [Google Scholar] [CrossRef]
- Ridl, J.; Kolar, M.; Strejcek, M.; Strnad, H.; Stursa, P.; Paces, J.; Macek, T.; Uhlik, O. Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated Soil. Front. Microbiol. 2016, 7, 995. [Google Scholar] [CrossRef]
- Liu, H.Q.; Li, S.C.; Li, H.J.; Peng, Z.C. Soil pH Determining the assembly processes of abundant and rare bacterial communities in response to cultivation modes in lemon farmlands. Plants 2025, 14, 1852. [Google Scholar] [CrossRef]
- Ren, K.; Song, W.; Wei, Z.; Song, L.; Liu, M.; Zhou, Y.; Zhen, Y.; Wu, X.; Gu, K.; Simarani, K.; et al. Organic material mulching regulated core microbial groups to promote soil carbon and nitrogen cycling and improve faba bean productivity under a triple-cropping system in purple soil hilly region of southwest China. Front. Microbiol. 2025, 16, 1602633. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, L.; Xie, J.; Coulter, J.A.; Zhang, R.; Luo, Z.; Cai, L.; Wang, L.; Gopalakrishnan, S. Soil bacterial diversity and potential functions are regulated by long-term conservation tillage and straw mulching. Microorganisms 2020, 8, 836. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Q.; Liu, C.; Ding, Y.; Liu, L.; Tian, Y.; Wu, X.; Li, H.; Awasthi, M.K.; Zhao, Z. Mulching practices alter soil microbial functional diversity and benefit soil quality in orchards on the Loess Plateau. Sci. Total Environ. 2020, 271, 138527. [Google Scholar] [CrossRef]
- Cheng, H.; Wu, B.; Wei, M.; Wang, S.; Rong, X.; Du, D.; Wang, C. Changes in community structure and metabolic function of soil bacteria depending on the type restoration processing in the degraded alpine grassland ecosystems in Northern Tibet. Sci. Total Environ. 2021, 755, 142619. [Google Scholar] [CrossRef]
Mulching Materials | pH | OM (g/kg) | TN (g/kg) | AN (g/kg) | AP (mg/kg) | AK (mg/kg) |
---|---|---|---|---|---|---|
Green waste compost | 8.22 | 158 | 23.20 | 0.40 | 161.12 | 3802 |
Wood chips | 7.40 | 429 | 11.80 | / | / | / |
Treatments | BD (g/cm3) | pH | SOM (g/kg) | TN (g/kg) | AN (g/kg) | AP (mg/kg) | AK (mg/kg) | CEL (ug/g·h) | PR (ug/g·h) |
---|---|---|---|---|---|---|---|---|---|
CK | 1.29 ± 0.01 b | 8.46 ± 0.12 b | 9.10 ± 0.71 d | 0.62 ± 0.03 c | 40.89 ± 1.72 c | 11.95 ± 0.90 c | 176 ± 8 d | 3.04 ± 0.45 d | 1.21 ± 0.30 c |
GW | 1.26 ± 0.01 c | 8.57 ± 0.09 a | 9.75 ± 0.79 c | 0.70 ± 0.04 b | 46.98 ± 1.81 a | 12.04 ± 1.17 c | 194 ± 16 c | 3.99 ± 0.42 a | 1.96 ± 0.43 a |
GWP | 1.31 ± 0.01 a | 8.43 ± 0.10 bc | 10.57 ± 0.65 b | 0.63 ± 0.03 c | 44.54 ± 2.03 b | 17.43 ± 2.03 a | 213 ± 22 a | 3.45 ± 0.53 b | 1.55 ± 0.29 b |
GWV | 1.29 ± 0.01 b | 8.38 ± 0.08 c | 11.11 ± 0.83 a | 0.81 ± 0.04 a | 47.11 ± 2.49 a | 13.77 ± 1.68 b | 203 ± 19 b | 3.73 ± 0.39 c | 1.86 ± 0.46 a |
Treatments | TH (m) | CW (m) | DBH (cm) | ADW (kg) | BDW (kg) | RV (dm3) | TB (kg) |
---|---|---|---|---|---|---|---|
CK | 2.66 ± 0.19 b | 1.57 ± 0.18 d | 2.90 ± 0.14 b | 4.69 ± 0.25 c | 2.03 ± 0.23 a | 2.48 ± 0.47 b | 6.72 ± 0.30 c |
GW | 3.19 ± 0.31 a | 1.79 ± 0.20 b | 3.06 ± 0.12 a | 5.92 ± 0.36 ab | 2.06 ± 0.28 a | 3.20 ± 0.53 a | 7.98 ± 0.34 a |
GWP | 3.21 ± 0.22 a | 1.91 ± 0.24 a | 3.10 ± 0.15 a | 5.92 ± 0.25 ab | 2.08 ± 0.26 a | 3.21 ± 0.37 a | 8.01 ± 0.22 a |
GWV | 3.15 ± 0.25 a | 1.69 ± 0.19 bc | 3.04 ± 0.21 a | 6.02 ± 0.46 a | 2.03 ± 0.34 a | 3.22 ± 0.43 a | 8.05 ± 0.39 a |
Treatments | Chao1 | Shannon | Simpson | Pielou |
---|---|---|---|---|
CK | 223 ± 1 b | 2.64 ± 0.01 c | 0.1303 ± 0.0012 b | 0.4879 ± 0.0009 c |
GW | 225 ± 2 a | 2.66 ± 0.02 b | 0.1351 ± 0.0040 a | 0.4912 ± 0.0031 b |
GWP | 225 ± 2 a | 2.62 ± 0.02 d | 0.1319 ± 0.0041 ab | 0.4835 ± 0.0040 d |
GWV | 221 ± 1 c | 2.68 ± 0.01 a | 0.1199 ± 0.0028 c | 0.4971 ± 0.0012 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Cao, J.; Wang, Y.; Wei, Y.; Tian, Y.; Wang, Y. Response of Soil Properties, Bacterial Community Structure, and Function to Mulching Practices in Urban Tree Pits: A Case Study in Beijing. Forests 2025, 16, 1573. https://doi.org/10.3390/f16101573
Zheng Y, Cao J, Wang Y, Wei Y, Tian Y, Wang Y. Response of Soil Properties, Bacterial Community Structure, and Function to Mulching Practices in Urban Tree Pits: A Case Study in Beijing. Forests. 2025; 16(10):1573. https://doi.org/10.3390/f16101573
Chicago/Turabian StyleZheng, Yi, Jixin Cao, Ying Wang, Yafen Wei, Yu Tian, and Yanchun Wang. 2025. "Response of Soil Properties, Bacterial Community Structure, and Function to Mulching Practices in Urban Tree Pits: A Case Study in Beijing" Forests 16, no. 10: 1573. https://doi.org/10.3390/f16101573
APA StyleZheng, Y., Cao, J., Wang, Y., Wei, Y., Tian, Y., & Wang, Y. (2025). Response of Soil Properties, Bacterial Community Structure, and Function to Mulching Practices in Urban Tree Pits: A Case Study in Beijing. Forests, 16(10), 1573. https://doi.org/10.3390/f16101573