Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = non-ionizing electromagnetic radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2341 KiB  
Article
Magnetic Field Measurement of Various Types of Vehicles, Including Electric Vehicles
by Hiromichi Fukui, Norihiro Minami, Masatoshi Tanezaki, Shinichi Muroya and Chiyoji Ohkubo
Electronics 2025, 14(15), 2936; https://doi.org/10.3390/electronics14152936 - 23 Jul 2025
Viewed by 320
Abstract
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), [...] Read more.
Since around the year 2000, following the introduction of electric vehicles (EVs) to the market, some people have expressed concerns about the level of magnetic flux density (MFD) inside vehicles. In 2013, we reported the results of MFD measurements for electric vehicles (EVs), hybrid electric vehicles (HEVs), and internal combustion engine vehicles (ICEVs). However, those 2013 measurements were conducted using a chassis dynamometer, and no measurements were taken during actual driving. In recent years, with the rapid global spread of EVs and plug-in hybrid electric vehicles (PHEVs), the international standard IEC 62764-1:2022, which defines methods for measuring magnetic fields (MF) in vehicles, has been issued. In response, and for the first time, we conducted new MF measurements on current Japanese vehicle models in accordance with the international standard IEC 62764-1:2022, identifying the MFD levels and their sources at various positions within EVs, PHEVs, and ICEVs. The measured MFD values in all vehicle types were below the reference levels recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) for public exposure. Furthermore, we performed comparative measurements with the MF data obtained in 2013 and confirmed that the MF levels remained similar. These findings are expected to provide valuable insights for risk communication with the public regarding electromagnetic fields, particularly for those concerned about MF exposure inside electrified vehicles. Full article
(This article belongs to the Special Issue Innovations in Electromagnetic Field Measurements and Applications)
Show Figures

Figure 1

51 pages, 5793 KiB  
Review
Electromagnetic Techniques Applied to Cultural Heritage Diagnosis: State of the Art and Future Prospective: A Comprehensive Review
by Patrizia Piersigilli, Rocco Citroni, Fabio Mangini and Fabrizio Frezza
Appl. Sci. 2025, 15(12), 6402; https://doi.org/10.3390/app15126402 - 6 Jun 2025
Cited by 1 | Viewed by 699
Abstract
When discussing Cultural Heritage (CH), the risk of causing damage is inherently linked to the artifact itself due to several factors: age, perishable materials, manufacturing techniques, and, at times, inadequate preservation conditions or previous interventions. Thorough study and diagnostics are essential before any [...] Read more.
When discussing Cultural Heritage (CH), the risk of causing damage is inherently linked to the artifact itself due to several factors: age, perishable materials, manufacturing techniques, and, at times, inadequate preservation conditions or previous interventions. Thorough study and diagnostics are essential before any intervention, whether for preventive, routine maintenance or major restoration. Given the symbolic, socio-cultural, and economic value of CH artifacts, non-invasive (NI), non-destructive (ND), or As Low As Reasonably Achievable (ALARA) approaches—capable of delivering efficient and long-lasting results—are preferred whenever possible. Electromagnetic (EM) techniques are unrivaled in this context. Over the past 20 years, radiography, tomography, fluorescence, spectroscopy, and ionizing radiation have seen increasing and successful applications in CH monitoring and preservation. This has led to the frequent customization of standard instruments to meet specific diagnostic needs. Simultaneously, the integration of terahertz (THz) technology has emerged as a promising advancement, enhancing capabilities in artifact analysis. Furthermore, Artificial Intelligence (AI), particularly its subsets—Machine Learning (ML) and Deep Learning (DL)—is playing an increasingly vital role in data interpretation and in optimizing conservation strategies. This paper provides a comprehensive and practical review of the key achievements in the application of EM techniques to CH over the past two decades. It focuses on identifying established best practices, outlining emerging needs, and highlighting unresolved challenges, offering a forward-looking perspective for the future development and application of these technologies in preserving tangible cultural heritage for generations to come. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 4838 KiB  
Article
Assessment of RF Electromagnetic Exposure to Car Driver from Monopole Array Antennas in V2V Communications Considering Thermal Characteristics
by Shirun Wang and Mai Lu
Sensors 2025, 25(10), 3247; https://doi.org/10.3390/s25103247 - 21 May 2025
Viewed by 476
Abstract
Vehicles are rapidly evolving into objects of intelligent interconnection. Vehicle-to-Vehicle (V2V) communications enable the interconnection between vehicles, while also leading to new electromagnetic exposure scenarios. This paper integrates a monopole array antenna into a shark-fin antenna on the car roof for V2V communications [...] Read more.
Vehicles are rapidly evolving into objects of intelligent interconnection. Vehicle-to-Vehicle (V2V) communications enable the interconnection between vehicles, while also leading to new electromagnetic exposure scenarios. This paper integrates a monopole array antenna into a shark-fin antenna on the car roof for V2V communications and evaluates the specific absorption rate (SAR) and temperature rise of a human body in a smart mobility communication scenario operating at 5.9 GHz. The V2V antenna is modeled and placed on a 3D vehicle model using COMSOL Multiphysics (v.6.2) to numerically estimate the SAR in the head and body regions of the human body model (adult male) inside the vehicle. Both the localized and whole-body 30 min average SAR are lower than the International Commission on Non-Ionizing Radiation Protection (ICNIRP) occupational restrictions for electromagnetic field exposure from 100 kHz to 6 GHz, being equal in the worst-case scenario to 0.981 W/kg (for the head), which is 9.81% of the ICNIRP limit (10 W/kg), and 0.008728 W/kg (for the whole-body average), which is 2.18% of the ICNIRP limit (0.4 W/kg). The 30 min average human core temperature rise is 0.055 °C, which is 5.5% of the ICNIRP limit. This indicates that, in typical automotive scenarios, the electromagnetic exposure from a monopole array antenna for V2V communications does not pose threat to the human body. This study provides knowledge related to emerging exposure scenarios in intelligent mobility communication, which is beneficial for evaluating possible health impacts and designing public health management policies. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

16 pages, 8389 KiB  
Article
Safety Assessment of Microwave Breast Imaging: Heating Analysis on Digital Breast Phantoms
by Alessandra Ronca, Luca Zilberti, Oriano Bottauscio, Gianluigi Tiberi and Alessandro Arduino
Appl. Sci. 2025, 15(8), 4262; https://doi.org/10.3390/app15084262 - 12 Apr 2025
Viewed by 741
Abstract
The impact of breast cancer on public health is serious, and due to risk/benefit assessment, screening programs are usually restricted to women older than 49 years. Microwave imaging devices offer advantages such as non-ionizing radiation, low cost, and the ability to distinguish between [...] Read more.
The impact of breast cancer on public health is serious, and due to risk/benefit assessment, screening programs are usually restricted to women older than 49 years. Microwave imaging devices offer advantages such as non-ionizing radiation, low cost, and the ability to distinguish between cancerous and healthy tissues due to their electrical properties. Ensuring the safety of this technology is vital for its potential clinical application. To estimate the temperature increase in breast tissues from a microwave imaging scanner, cases of healthy, benign, and malignant breast tissues were analyzed using three digital models and adding two healthy breast models with varying densities. Virtual experiments were conducted using the Sim4Life software (version 7.2) with a system consisting of a horn antenna in transmission and a Vivaldi antenna in reception. Temperature increases were estimated based on the Specific Absorption Rate distributions computed for different configurations and frequencies. The highest temperature increase obtained in this analysis is lower than 60 μK in fibroglandular tissue or skin, depending on the frequency and breast density. The presence of a receiving antenna acting as a scatterer modifies the temperature increase, which is almost negligible. Microwave examination can be performed without harmful thermal effects due to electromagnetic field exposure. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Graphical abstract

13 pages, 2219 KiB  
Article
Worker Safety in High-Field NMR Spectroscopy Laboratories: Challenges and Risk Assessment
by Alessandra Flori, Giuseppe Acri, Maria Antonietta D’Avanzo, Massimo Mattozzi and Valentina Hartwig
Environments 2025, 12(4), 113; https://doi.org/10.3390/environments12040113 - 8 Apr 2025
Viewed by 737
Abstract
Magnetic Resonance (MR) technology is extensively used in academic and industrial research laboratories and represents one of the most significant methodologies in clinical radiology. Although MR does not use ionizing radiation, it cannot be considered risk-free due to the strong static magnetic fields [...] Read more.
Magnetic Resonance (MR) technology is extensively used in academic and industrial research laboratories and represents one of the most significant methodologies in clinical radiology. Although MR does not use ionizing radiation, it cannot be considered risk-free due to the strong static magnetic fields and time-varying electromagnetic fields employed in the technology. To mitigate risks for MR operators, the European Community and ICNIRP have established safety limits based on the existing literature, primarily related to diagnostic MR. However, the literature on occupational exposure in non-clinical nuclear magnetic resonance (NMR) spectroscopy is limited. Due to their specificity, non-medical NMR environments present unique challenges from the point of view of operator exposure. NMR spectrometers are characterized by extremely high static magnetic fields, reaching up to 28 T in commercial systems; moreover, routine activities performed near the magnet, where field gradients are highest, increase operator exposure. Such environments are not typically perceived as hazardous and are frequented by various types of personnel, often without specific training. This study aims to highlight the critical issues in managing a preclinical MR laboratory equipped with a high-field NMR spectrometer, discussing operator safety challenges and presenting risk assessment data. Full article
Show Figures

Figure 1

16 pages, 7075 KiB  
Article
A Study on the Electromagnetic Environment and Experimental Simulation of Electrified Railroad Mobile Catenary
by Xiaoying Yu, Junrui Yang, Yang Su, Liying Song, Caizhuo Wei, Yongjia Cheng and Yixiao Liu
Sustainability 2025, 17(4), 1518; https://doi.org/10.3390/su17041518 - 12 Feb 2025
Cited by 2 | Viewed by 1004
Abstract
The mobile catenary is installed in the railway loading and unloading line, which could significantly increase the railway freight volume, provide a practical and efficient alternative to the traditional mobile catenary, and greatly improve the sustainability of electrified railroad freight transport. The increase [...] Read more.
The mobile catenary is installed in the railway loading and unloading line, which could significantly increase the railway freight volume, provide a practical and efficient alternative to the traditional mobile catenary, and greatly improve the sustainability of electrified railroad freight transport. The increase in freight volume also leads to greater traction load and a more complex electromagnetic environment. To study whether the electromagnetic environment when the mobile catenary works meets the power frequency electromagnetic field exposure limit stipulated by the International Commission on Non-Ionizing Radiation Protection, this paper performed an experiment on the sunken mobile catenary. The results showed that the maximum magnetic induction intensity near the ground is 0.03 mT, and the peak electric field intensity on the ground is 1.1 KV/m. The finite element software is adopted to establish the pantograph–catenary model and mobile catenary model according to Principles of Electric Field Calculation and Finite Element Theory, and the space electric field is numerically simulated to study the changes in electric field intensity and distribution of electric field in catenary when the catenary arc occurs. The simulated results are basically consistent with the experimental results, to verify the reliability of the simulation model, which could effectively solve the difficulty and high cost of the experiment. The conclusion proves that the equipment meets the regulations and it highlights the potential, which provides a cost-effective and scalable solution for the electromagnetic environment when the mobile catenary works. Full article
Show Figures

Figure 1

15 pages, 772 KiB  
Article
Use of Mobile Phones and Radiofrequency-Emitting Devices in the COSMOS-France Cohort
by Isabelle Deltour, Florence Guida, Céline Ribet, Marie Zins, Marcel Goldberg and Joachim Schüz
Int. J. Environ. Res. Public Health 2024, 21(11), 1514; https://doi.org/10.3390/ijerph21111514 - 14 Nov 2024
Viewed by 1620
Abstract
COSMOS-France is the French part of the COSMOS project, an international prospective cohort study that investigates whether the use of mobile phones and other wireless technologies is associated with health effects and symptoms (cancers, cardiovascular diseases, neurologic pathologies, tinnitus, headaches, or sleep and [...] Read more.
COSMOS-France is the French part of the COSMOS project, an international prospective cohort study that investigates whether the use of mobile phones and other wireless technologies is associated with health effects and symptoms (cancers, cardiovascular diseases, neurologic pathologies, tinnitus, headaches, or sleep and mood disturbances). Here, we provide the first descriptive results of COSMOS-France, a cohort nested in the general population-based cohort of adults named Constances. Methods: A total of 39,284 Constances volunteers were invited to participate in the COSMOS-France study during the pilot (2017) and main recruitment phase (2019). Participants were asked to complete detailed questionnaires on their mobile phone use, health conditions, and personal characteristics. We examined the association between mobile phone use, including usage for calls and Voice over Internet Protocol (VoIP), cordless phone use, and Wi-Fi usage with age, sex, education, smoking status, body mass index (BMI), and handedness. Results: The participation rate was 48.4%, resulting in 18,502 questionnaires in the analyzed dataset. Mobile phone use was reported by 96.1% (N = 17,782). Users reported typically calling 5–29 min per week (37.1%, N = 6600), making one to four calls per day (52.9%, N = 9408), using one phone (83.9%, N = 14,921) and not sharing it (80.4% N = 14,295), mostly using the phone on the side of the head of their dominant hand (59.1%, N = 10,300), not using loudspeakers or hands-free kits, and not using VoIP (84.9% N = 15,088). Individuals’ age and sex modified this picture, sometimes markedly. Education and smoking status were associated with ever use and call duration, but neither BMI nor handedness was. Cordless phone use was reported by 66.0% of the population, and Wi-Fi use was reported by 88.4%. Conclusion: In this cross-sectional presentation of contemporary mobile phone usage in France, age and sex were important determinants of use patterns. Full article
(This article belongs to the Special Issue Epidemiology of Lifestyle-Related Diseases)
Show Figures

Figure 1

17 pages, 7120 KiB  
Article
Two-Step Iterative Medical Microwave Tomography
by Zekun Zhang, Heng Liu, Xiang Gao, Zeyu Zhang, Zhongxia Simon He, Luoyuan Liu, Rui Zong and Zhizhen Qin
Sensors 2024, 24(21), 6897; https://doi.org/10.3390/s24216897 - 27 Oct 2024
Cited by 2 | Viewed by 1986
Abstract
In the field of medical imaging, microwave tomography (MWT) is based on the scattering and absorption characteristics of different tissues to microwaves and can reconstruct the electromagnetic property distribution of biological tissues non-invasively and without ionizing radiation. However, due to the inherently nonlinear [...] Read more.
In the field of medical imaging, microwave tomography (MWT) is based on the scattering and absorption characteristics of different tissues to microwaves and can reconstruct the electromagnetic property distribution of biological tissues non-invasively and without ionizing radiation. However, due to the inherently nonlinear and ill-posed characteristics of MWT calculations, actual imaging is prone to overfitting or artifacts. To address this, this paper proposes a two-step iterative imaging approach for rapid medical microwave tomography. This method establishes corresponding objective functions for microwave imaging across multiple frequencies and conducts iterative calculations on images at varying resolutions. This effectively enhances image clarity and accuracy while alleviating the issue of prolonged computational time associated with imaging complex structures at high resolution due to insufficient prior information during iterative processes. In the electromagnetic simulation section, we simulated a three-layer brain model and conducted imaging experiments. The results demonstrate that the algorithm significantly enhances imaging resolution, accurately pinpointing cerebral hemorrhages at different locations using an eight-antenna array and successfully reconstructs tomography images with a hemorrhage area radius of 1 cm. Lastly, experiments were conducted using a medical microwave tomography platform and four simplified human brain models, achieving millimeter-level accuracy in MWT. Full article
(This article belongs to the Special Issue Novel Signal Processing Techniques for Wireless Communications)
Show Figures

Figure 1

21 pages, 6516 KiB  
Article
Deep Learning-Based Electric Field Enhancement Imaging Method for Brain Stroke
by Tong Zuo, Lihui Jiang, Yuhan Cheng, Xiaolong Yu, Xiaohui Tao, Yan Zhang and Rui Cao
Sensors 2024, 24(20), 6634; https://doi.org/10.3390/s24206634 - 15 Oct 2024
Viewed by 1629
Abstract
In clinical settings, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) are commonly employed in brain imaging to assist clinicians in determining the type of stroke in patients. However, these modalities are associated with potential hazards or limitations. In [...] Read more.
In clinical settings, computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) are commonly employed in brain imaging to assist clinicians in determining the type of stroke in patients. However, these modalities are associated with potential hazards or limitations. In contrast, microwave imaging emerges as a promising technique, offering advantages such as non-ionizing radiation, low cost, lightweight, and portability. The primary challenges faced by microwave tomography include the severe ill-posedness of the electromagnetic inverse scattering problem and the time-consuming nature and unsatisfactory resolution of iterative quantitative algorithms. This paper proposes a learning electric field enhancement imaging method (LEFEIM) to achieve quantitative brain imaging based on a microwave tomography system. LEFEIM comprises two cascaded networks. The first, based on a convolutional neural network, utilizes the electric field from the receiving antenna to predict the electric field distribution within the imaging domain. The second network employs the electric field distribution as input to learn the dielectric constant distribution, thereby realizing quantitative brain imaging. Compared to the Born Iterative Method (BIM), LEFEIM significantly improves imaging time, while enhancing imaging quality and goodness-of-fit to a certain extent. Simultaneously, LEFEIM exhibits anti-noise capabilities. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 4733 KiB  
Article
High Frequency Electromagnetic Field Exposure in Paediatric and Female Patients with Implanted Cardiac Pacemaker
by Frederika Bacova, Mariana Benova, Zuzana Psenakova, Milan Smetana, Miroslav Pacek and Jan Ochodnicky
Appl. Sci. 2024, 14(16), 7198; https://doi.org/10.3390/app14167198 - 15 Aug 2024
Cited by 2 | Viewed by 1215
Abstract
This article investigates the effects of electromagnetic field (EMF) from mobile phones on human tissues and implanted medical devices. The intensity of the electric field (E) is evaluated based on simulations and measurements of various exposure scenarios. An area of interest is the [...] Read more.
This article investigates the effects of electromagnetic field (EMF) from mobile phones on human tissues and implanted medical devices. The intensity of the electric field (E) is evaluated based on simulations and measurements of various exposure scenarios. An area of interest is the case of a person with an implanted device (heart pacemaker) who may be affected by this exposure. Due to the rapid development of communication technologies and the growing awareness of the potential health risks of radio frequency (RF) EMF, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has established exposure limits within the European Union. Our study models and analyses EMF values in human tissues in an ideal environment, in a situation where a person uses a mobile phone in the DCS (Digital Cellular System) band, including the case of a person with an implanted pacemaker. Pilot simulations were verified by experimental measurements. Based on them, specific human models with the best matching results were selected for modelling other possible interactions of exogenous EMF and cardiac pacemaker in the same situations and locations. Full article
Show Figures

Figure 1

14 pages, 1582 KiB  
Article
Delayed Growth in Immature Male Rats Exposed to 900 MHz Radiofrequency
by Raphaël Bodin, Franck Robidel, Stéphanie Rodrigues, Anthony Lecomte and Anne-Sophie Villégier
Appl. Sci. 2024, 14(16), 6978; https://doi.org/10.3390/app14166978 - 9 Aug 2024
Cited by 1 | Viewed by 1302
Abstract
People have been exposed to the 900 MHz mobile phone electromagnetic field for approximately 30 years. There is still no conclusion from immature rodent experiments regarding the potential effects of nonthermal radiofrequency (RF) 900 MHz continuous wave exposure during biological development. Here, we [...] Read more.
People have been exposed to the 900 MHz mobile phone electromagnetic field for approximately 30 years. There is still no conclusion from immature rodent experiments regarding the potential effects of nonthermal radiofrequency (RF) 900 MHz continuous wave exposure during biological development. Here, we test the hypothesis that mother rats exposed at a whole-body specific absorption rate (wbSAR) occupational (Oc) limit of the International Commission on Non-Ionizing Radiation Protection for humans (0.4 W/kg) will show impairments in development, with less effect at the public (Pu) limit (0.08 W/kg). The wbSAR was estimated at 0.4 W/kg to mimic working mothers (OcM exposure) and 0.08 W/kg for non-working mothers, i.e., public (PuM exposure). This pre- and postnatal study is the first to compare public and occupational exposure limits on rat pup physical development. Litter endpoints and the descendants’ body weights and lengths were recorded regularly from birth concomitantly with the age of developmental landmarks. Male neonates showed earlier pinna ear detachment and earlier eye opening in both the OcM and PuM groups, but earlier incisor eruption only in the PuM group. The OcM-exposed males showed lower body weight as juveniles until adolescence. The OcM- and PuM-exposed descendant females showed earlier pinna ear detachment and eye opening with similar body weight. These data suggest variations in the development time of descendant rats when the mother rats received daily 900 MHz continuous waves at human limits for workers and non-workers (public). Full article
(This article belongs to the Special Issue Electromagnetic Fields (EMF) Applications in Medicine)
Show Figures

Figure 1

27 pages, 14100 KiB  
Article
Electromagnetic Environment Assessment and Safety Research of Electrified High-Speed Railway Carriages
by Lei Shi, Junyi Liang, Yazhi Liu, Yuanyuan Zhao and Xinran Li
Electronics 2024, 13(4), 740; https://doi.org/10.3390/electronics13040740 - 12 Feb 2024
Cited by 2 | Viewed by 2214
Abstract
With the advent of modern, high-speed electrified rail systems, there has been increasing concern about electromagnetic safety in rail carriages. The aim of this study was to assess the electromagnetic safety of passengers on trains by utilizing advanced 3D electromagnetic simulation software. A [...] Read more.
With the advent of modern, high-speed electrified rail systems, there has been increasing concern about electromagnetic safety in rail carriages. The aim of this study was to assess the electromagnetic safety of passengers on trains by utilizing advanced 3D electromagnetic simulation software. A comprehensive model of the electromagnetic environment experienced by passengers on a CR400AF train, specifically under the influence of catenary radiation, was constructed. We analyzed the magnetic field strength, electric field strength, and current density in the brains of 20 passengers in various positions in the train. The findings revealed that among the 20 passengers analyzed, the maximum and minimum magnetic induction intensity recorded in the brain were 8.41 and 0.01 μT, respectively. The maximum and minimum induced electric field intensities were 1110 and 10 μV/m, respectively. Lastly, the maximum and minimum induced current densities were 1200 and 10 μA/m2, respectively. The results show that when people ride on the CR400AF train, the magnetic induction intensity, induced electric field strength, and induced current density in the brain are below the recommended basic limits of exposure to power frequency electromagnetic fields in the guidelines of the International Committee on Non-Ionizing Radiation Protection. The power frequency magnetic field generated by the catenary can be effectively shielded by the aluminum alloy car body. The final result of this study indicates that the electromagnetic exposure from the contact wire at the level 25 kV does not pose a threat to the health of passengers on the CR400AF train. Full article
(This article belongs to the Special Issue Advances in Electromagnetic Interference and Protection)
Show Figures

Figure 1

14 pages, 7617 KiB  
Article
The Electromagnetic Exposure Level of a Pure Electric Vehicle Inverter Based on a Real Human Body
by Xuwei Dong, Yunshan Gao and Mai Lu
Appl. Sci. 2024, 14(1), 32; https://doi.org/10.3390/app14010032 - 20 Dec 2023
Cited by 3 | Viewed by 9115
Abstract
In order to quantitatively analyze the electromagnetic exposure dose of an inverter in a pure electric vehicle to the driver’s body and assess the safety of the electromagnetic exposure, based on a real human anatomy model in the virtual home project, a real [...] Read more.
In order to quantitatively analyze the electromagnetic exposure dose of an inverter in a pure electric vehicle to the driver’s body and assess the safety of the electromagnetic exposure, based on a real human anatomy model in the virtual home project, a real human model with several organs and tissues, including muscles, bones, a heart, lungs, a liver, kidneys, a bladder, a skull, a scalp, white matter, and a cerebellum, was constructed. The inverter of a pure electric vehicle is considered to be the electromagnetic exposure source; for this study, an equivalent electromagnetic environment model composed of a real human body, an inverter, and a vehicle body was built. The distribution of induced fields in the driver’s tissues and organs was calculated and analyzed using the finite element method. The results show that the distribution of the magnetic flux density, induced electric field, and induced current density in the driver’s body was affected by the spatial distance of the inverter. The farther the distance was, the weaker the value was. Specifically, due to the different dielectric properties of the different tissues, the induced field in the different tissues was significantly different. However, the maximum magnetic flux density over the space occupied by the driver’s body and induced electric field in the driver’s trunk and central nervous system satisfied the exposure limits of the International Commission on Non-Ionization Radiation Protection, indicating that the electromagnetic environments generated by the inverter proposed in this paper are safe for the vehicle driver’s health. The numerical results of this study could also effectively supplement the study of the electromagnetic environments of pure electric vehicles and provide some references for protecting the drivers of pure electric vehicles from electromagnetic radiation. Full article
Show Figures

Figure 1

16 pages, 16619 KiB  
Article
Specific Absorption Rate and Temperature Distributions in the Human Head with Implanted Deep Brain Stimulation Subjected to Mobile Phone Electromagnetic Radiation
by Rui Tian, Yu-Qin Wu, Mai Lu and Xin-Fa Miao
Electronics 2023, 12(21), 4389; https://doi.org/10.3390/electronics12214389 - 24 Oct 2023
Cited by 6 | Viewed by 2554
Abstract
Deep Brain Stimulation (DBS), also known as the brain pacemaker, has gradually evolved from a scientific experiment into an effective clinical treatment for movement disorders as a method of improving movement disorders. At present, there are few studies on the effects of 5G [...] Read more.
Deep Brain Stimulation (DBS), also known as the brain pacemaker, has gradually evolved from a scientific experiment into an effective clinical treatment for movement disorders as a method of improving movement disorders. At present, there are few studies on the effects of 5G mobile phone antenna radiation on the heads of adult patients implanted with DBS. In this study, COMSOL Multiphysics was used to establish a mobile phone model with a 5G/4G patch antenna, a real human head, and the DBS models. Then, we calculated the specific absorption rate (SAR) of various layers of the head tissues with the mobile phone at different distances from the human head, as well as the temperature change rule of the head and the DBS irradiated by the antenna for 30 min. The simulation results showed that when the frequency is 3500 MHz, the electromagnetic radiation of the phone to the patient’s head is generally greater than that of the 2400 MHz. When at 3500 MHz, the distance between the phone and the head is inversely proportional to the SAR value; thus, when the distance between the phone and the head is 1 cm, the maximum SAR value—which is 1.132 W/kg—appeared in the skin layer of the head with implanted DBS. But it is worth noting that the largest temperature rise appeared in the brain layer at 2400 MHz and at a distance of 1 cm, which is 0.2148 °C. Although the SAR values and temperature rise obtained from all simulations are below the limits of 2 W/kg and +1 °C specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), we still recommend that patients with implanted DBS maintain a distance when using the phones. Full article
Show Figures

Figure 1

12 pages, 3277 KiB  
Article
Non-Destructive Imaging of Defects Using Non-Cooperative 5G Millimeter-Wave Signals
by Stavros Vakalis, Jorge R. Colon-Berrios, Daniel Chen and Jeffrey A. Nanzer
Sensors 2023, 23(14), 6421; https://doi.org/10.3390/s23146421 - 14 Jul 2023
Cited by 6 | Viewed by 1688
Abstract
Recent developments in fifth-generation (5G) wireless communications networks are creating an increasingly crowded electromagnetic environment at microwave (3–30 GHz) and millimeter-wave (30–300 GHz) frequencies. Radiation at these bands can provide non-destructive testing of defects and shielded structures using non-ionizing signals. In an actual [...] Read more.
Recent developments in fifth-generation (5G) wireless communications networks are creating an increasingly crowded electromagnetic environment at microwave (3–30 GHz) and millimeter-wave (30–300 GHz) frequencies. Radiation at these bands can provide non-destructive testing of defects and shielded structures using non-ionizing signals. In an actual building setting where 5G millimeter-wave communications signals are present, passive imaging of the radiation that is propagating through a wall defect can take place by means of interferometric processing without emitting additional signals in an already-crowded spectrum. We investigate the use of millimeter-wave interferometric imaging of defects in building walls and shielded structures by capturing the transmission of 5G millimeter-wave signals through the defects. We experimentally explore the ability to image defects by capturing the transmission of 38 GHz signals through materials using a 24-element interferometric receiving array. Full article
Show Figures

Figure 1

Back to TopTop