Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (763)

Search Parameters:
Keywords = non-grain production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1814 KiB  
Article
Comparative Evaluation of Nutritional Quality and In Vitro Protein Digestibility in Selected Vegetable Soybean Genotypes at R6 and R8 Maturity
by Kanneboina Soujanya, T. Supraja, Aparna Kuna, Ramakrishnan M. Nair, S. Triveni and Kalenahalli Yogendra
Foods 2025, 14(14), 2549; https://doi.org/10.3390/foods14142549 - 21 Jul 2025
Viewed by 365
Abstract
The nutritional and quality characteristics of improved vegetable soybean genotypes were evaluated and compared with those of a grain-type soybean at the R6 (green maturity) and R8 (physiological maturity) stages. Significant variation (p < 0.05) was observed among genotypes for all measured [...] Read more.
The nutritional and quality characteristics of improved vegetable soybean genotypes were evaluated and compared with those of a grain-type soybean at the R6 (green maturity) and R8 (physiological maturity) stages. Significant variation (p < 0.05) was observed among genotypes for all measured traits. The overall quality parameters increased from the R6 (green maturity) stage to the R8 (physiological maturity) stage. Among the R6-stage genotypes, AVSB2001 recorded the highest contents of protein (15.30 ± 0.57 g/100 g), ash (2.31 ± 0.06 g/100 g), fat (8.05 ± 0.17 g/100 g), and calcium (140.78 ± 0.97 mg/100 g). The genotype Karune exhibited significantly higher levels of total sugars, non-reducing sugars, iron, and magnesium than the other entries. At the R8 stage, Swarna Vasundhara showed the highest protein content (39.23%), while AGS 447 recorded the highest values for fat, total sugars, in vitro protein digestibility, iron, copper, magnesium, and manganese. Notably, in vitro protein digestibility was lower across all genotypes at the R8 stage compared to the R6 stage. These findings suggest that selected vegetable soybean genotypes possess substantial nutritional value and can contribute meaningfully to meeting the recommended dietary allowance (RDA) across different age and occupational groups, underscoring this research’s potential public health impact. Based on stage-specific quality profiles, R6-stage genotypes may be better suited for fresh vegetables, whereas R8-stage genotypes can be utilized similarly to grain-type soybean for processing into products such as dhal, oil, flour, and other value-added foods. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

16 pages, 1945 KiB  
Article
Debaryomyces hansenii Enhances Growth, Nutrient Uptake, and Yield in Rice Plants (Oryza sativa L.) Cultivated in Calcareous Soil
by Jorge Núñez-Cano, Francisco J. Ruiz-Castilla, José Ramos, Francisco J. Romera and Carlos Lucena
Agronomy 2025, 15(7), 1696; https://doi.org/10.3390/agronomy15071696 - 14 Jul 2025
Viewed by 480
Abstract
Calcareous soils, characterized by high pH and calcium carbonate content, often limit the availability of essential nutrients for crops such as rice (Oryza sativa L.), reducing yield and nutritional quality. In this study, we evaluated the effect of the halotolerant yeast Debaryomyces [...] Read more.
Calcareous soils, characterized by high pH and calcium carbonate content, often limit the availability of essential nutrients for crops such as rice (Oryza sativa L.), reducing yield and nutritional quality. In this study, we evaluated the effect of the halotolerant yeast Debaryomyces hansenii on the growth, nutrient uptake, and phosphorus acquisition mechanisms of rice plants cultivated in calcareous soil under controlled greenhouse conditions. Plants inoculated with D. hansenii, particularly via root immersion, exhibited significantly higher SPAD chlorophyll index, plant height, and grain yield compared to controls. A modest increase (~4%) in dry matter content was also observed under sterilized soil conditions. Foliar concentrations of Fe, Zn, and Mn significantly increased in plants inoculated with D. hansenii via root immersion in non-sterilized calcareous soil, indicating improved micronutrient acquisition under these specific conditions. Although leaf phosphorus levels were not significantly increased, D. hansenii stimulated acid phosphatase activity, as visually observed through BCIP staining, and upregulated genes involved in phosphorus acquisition under both P-sufficient and P-deficient conditions. At the molecular level, D. hansenii upregulated the expression of acid phosphatase genes (OsPAP3, OsPAP9) and a phosphate transporter gene (OsPTH1;6), confirming its influence on P-related physiological responses. These findings demonstrate that D. hansenii functions as a plant growth-promoting yeast (PGPY) and may serve as a promising biofertilizer for improving rice productivity and nutrient efficiency in calcareous soils, contributing to sustainable agricultural practices in calcareous soils and other nutrient-limiting environments. Full article
Show Figures

Figure 1

32 pages, 735 KiB  
Article
Dynamic Balance: A Thermodynamic Principle for the Emergence of the Golden Ratio in Open Non-Equilibrium Steady States
by Alejandro Ruiz
Entropy 2025, 27(7), 745; https://doi.org/10.3390/e27070745 - 11 Jul 2025
Viewed by 520
Abstract
We develop a symmetry-based variational theory that shows the coarse-grained balance of work inflow to heat outflow in a driven, dissipative system relaxed to the golden ratio. Two order-2 Möbius transformations—a self-dual flip and a self-similar shift—generate a discrete non-abelian subgroup of [...] Read more.
We develop a symmetry-based variational theory that shows the coarse-grained balance of work inflow to heat outflow in a driven, dissipative system relaxed to the golden ratio. Two order-2 Möbius transformations—a self-dual flip and a self-similar shift—generate a discrete non-abelian subgroup of PGL(2,Q(5)). Requiring any smooth, strictly convex Lyapunov functional to be invariant under both maps enforces a single non-equilibrium fixed point: the golden mean. We confirm this result by (i) a gradient-flow partial-differential equation, (ii) a birth–death Markov chain whose continuum limit is Fokker–Planck, (iii) a Martin–Siggia–Rose field theory, and (iv) exact Ward identities that protect the fixed point against noise. Microscopic kinetics merely set the approach rate; three parameter-free invariants emerge: a 62%:38% split between entropy production and useful power, an RG-invariant diffusion coefficient linking relaxation time and correlation length Dα=ξz/τ, and a ϑ=45 eigen-angle that maps to the golden logarithmic spiral. The same dual symmetry underlies scaling laws in rotating turbulence, plant phyllotaxis, cortical avalanches, quantum critical metals, and even de-Sitter cosmology, providing a falsifiable, unifying principle for pattern formation far from equilibrium. Full article
(This article belongs to the Section Entropy and Biology)
Show Figures

Figure 1

27 pages, 6583 KiB  
Article
Spatiotemporal Evolution and Causality Analysis of the Coupling Coordination of Multiple Functions of Cultivated Land in the Yangtze River Economic Belt, China
by Nana Zhang, Kun Zeng, Xingsheng Xia and Gang Jiang
Sustainability 2025, 17(13), 6134; https://doi.org/10.3390/su17136134 - 4 Jul 2025
Viewed by 317
Abstract
The evolutionary patterns and influencing factors of the coupling coordination among multiple functions of cultivated land serve as an important basis for emphasizing the value of cultivated land utilization and promoting coordinated regional development. The entropy weight TOPSIS model, coupling coordination degree (CCD) [...] Read more.
The evolutionary patterns and influencing factors of the coupling coordination among multiple functions of cultivated land serve as an important basis for emphasizing the value of cultivated land utilization and promoting coordinated regional development. The entropy weight TOPSIS model, coupling coordination degree (CCD) model, spatial autocorrelation analysis, and Geodetector were employed in this study along with panel data from 125 cities in the Yangtze River Economic Belt (YREB) for 2010, 2015, 2020, and 2022. Three key aspects in the region were investigated: the spatiotemporal evolution of cultivated land functions, characteristics of coupling coordination, and their underlying influencing factors. The results show the following: (1) The functions of cultivated land for food production, social support, and ecological maintenance are within the ranges of [0.023, 0.460], [0.071, 0.451], and [0.134, 0.836], respectively. The grain production function (GPF) shows a continuous increase, the social carrying function (SCF) first decreases and then increases, and the ecological maintenance function (EMF) first increases and then decreases. Spatially, these functions exhibit non-equilibrium characteristics: the grain production function is higher in the central and eastern regions and lower in the western region; the social support function is higher in the eastern and western regions and lower in the central region; and the ecological maintenance function is higher in the central and eastern regions and lower in the western region. (2) The coupling coordination degree of multiple functions of cultivated land is within the range of [0.158, 0.907], forming a spatial pattern where the eastern region takes the lead, the central region is rising, and the western region is catching up. (3) Moran’s I index increased from 0.376 in 2010 to 0.437 in 2022, indicating that the spatial agglomeration of the cultivated land multifunctionality coupling coordination degree has been continuously strengthening over time. (4) The spatial evolution of the coupling coordination of cultivated land multifunctionality is mainly influenced by the average elevation and average slope. However, the explanatory power of socioeconomic factors is continuously increasing. Interaction detection reveals characteristics of nonlinear enhancement or double-factor enhancement. The research results enrich the study of cultivated land multifunctionality and provide a decision-making basis for implementing the differentiated management of cultivated land resources and promoting mutual enhancement among different functions of cultivated land. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

18 pages, 8242 KiB  
Article
Quasi-In Situ EBSD Investigation of Variant Evolution and Twin Formation in a Hot Isostatic Pressing-Treated Additively-Manufactured Titanium Alloy Under Tensile Loading
by Fengli Zhu, Jiahong Liang, Guojian Cao, Aihan Feng, Hao Wang, Shoujiang Qu and Daolun Chen
Materials 2025, 18(13), 3169; https://doi.org/10.3390/ma18133169 - 3 Jul 2025
Viewed by 459
Abstract
The advent of additive manufacturing (AM), also known as 3D printing, has revolutionized the production of titanium alloys, offering significant advantages in fabricating complex geometries with enhanced mechanical properties. This study investigates the variant-specific deformation mechanisms in HIP-treated TA15 (Ti-6.5Al-2Zr-1Mo-1V) titanium alloy, fabricated [...] Read more.
The advent of additive manufacturing (AM), also known as 3D printing, has revolutionized the production of titanium alloys, offering significant advantages in fabricating complex geometries with enhanced mechanical properties. This study investigates the variant-specific deformation mechanisms in HIP-treated TA15 (Ti-6.5Al-2Zr-1Mo-1V) titanium alloy, fabricated via selective electron beam melting (SEBM). The alloy exhibits a dual-phase (α+β) microstructure, where six distinct α variants are formed through the β→α phase transformation following the Burgers orientation relationship. Variant selection during AM leads to a non-uniform distribution of these α variants, with α6 (22.3%) dominating due to preferential growth. Analysis of the prismatic slip Schmid factor reveals that α4–α6 variants, with higher Schmid factors (>0.45), primarily undergo prismatic slip, while α1–α3 variants, with lower Schmid factors (<0.3), rely on basal or pyramidal slip and twinning for plastic deformation. In-grain misorientation axis (IGMA) analysis further reveals strain-dependent slip transitions: pyramidal slip is activated in α1–α3 variants at lower strains, while prismatic slip becomes the dominant deformation mechanism in α4–α6 variants at higher strains. Additionally, deformation twins, primarily {10–12}<1–101> extension twins (7.1%), contribute to the plasticity of hard-oriented α variants. These findings significantly enhance the understanding of the orientation-dependent deformation mechanisms in HIPed TA15 alloy and provide a crucial basis for optimizing the performance of additively-manufactured titanium alloys. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

14 pages, 1224 KiB  
Article
Biotechnological Valorization of Brewer’s Spent Grain from Old Bread and Barley Malt: Fermentative Potential of Saccharomyces cerevisiae
by Anita Lalić, Jolita Jagelavičiūtė, Zorana Trivunović, Marina Marić, Andrea Karlović and Loreta Bašinskienė
Fermentation 2025, 11(7), 382; https://doi.org/10.3390/fermentation11070382 - 2 Jul 2025
Viewed by 944
Abstract
Brewer’s spent grain (BSG), the most abundant by-product from breweries, is mainly discarded or used as animal feed. However, to increase the brewing sustainability, biotechnological utilization of BSG is a much preferred solution. This study examined the fermentation of BSG, composed of old [...] Read more.
Brewer’s spent grain (BSG), the most abundant by-product from breweries, is mainly discarded or used as animal feed. However, to increase the brewing sustainability, biotechnological utilization of BSG is a much preferred solution. This study examined the fermentation of BSG, composed of old wheat bread and barley malt, by metabolic activity of Saccharomyces cerevisiae on both hydrolyzed and non-hydrolyzed media. Enzymatic hydrolysis with Viscozyme® W FG for 6 h was selected as the most effective and was used in the further research step to prepare the hydrolyzed BSG-based medium. Both media supported almost uniform yeast growth (numbers of S. cerevisiae cells was about 8 log10 CFU/g) in an acidic environment (pH value was about 5), but fermentation of hydrolyzed BSG resulted in 20% higher sugar consumption and 10% higher total titratable acidity. These findings underscore the potential of enzymatic pretreatment to improve fermentation performance. The adaptability of S. cerevisiae and the fermentability of both substrates suggest promising potential for scalable BSG valorization strategies in circular food systems. Full article
(This article belongs to the Special Issue Wine and Beer Fermentation, 2nd Edition)
Show Figures

Figure 1

20 pages, 3868 KiB  
Article
Engineering High-Amylose and High-Dietary-Fibre Barley Grains Through Multiplex Genome Editing of Four Starch-Synthetic Genes
by Qiang Yang, Jean-Philippe Ral, Qiantao Jiang and Zhongyi Li
Foods 2025, 14(13), 2319; https://doi.org/10.3390/foods14132319 - 30 Jun 2025
Viewed by 307
Abstract
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes [...] Read more.
Barley, rich in beneficial ingredients, has been recognised as a healthy food and is widely used in the production of healthy foods for humans. The current study identified a new barley mutant with the SSIIa, SSIIIa, SBEIIa, and SBEIIb genes inactivated in the genome-edited offspring of targeted mutagenesis of starch synthetic genes using multiplex genome editing. The grain compositions and starch properties of the ssIIa/ssIIIa/sbeIIa/sbeIIb mutant were analysed and compared with the corresponding parameters of ssIIa, ssIIIa, sbeIIa/sbeIIb, ssIIa/sbeIIa/sbeIIb, and non-genome-edited lines (NE), respectively. ssIIa/ssIIIa/sbeIIa/sbeIIb exhibited the highest contents of β-glucan and amylose content among all mutants and NE, but not the most prominent in resistant starch, fructan, and fibre contents. The loss of SSIIa, SSIIIa, SBEIIa, and SBEIIb genes also resulted in significant changes in starch properties. This study enriched the genotypes of healthy barley and provided a theoretical basis for improving barley quality. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

21 pages, 18928 KiB  
Article
Optimizing the Food–Energy–Water Nexus: A Multi-Objective Spatial Configuration Framework for High-Density Communities
by Jie Zheng, Hengyu Li, Lulu Sun, Mingxuan Li and Yukun Zhang
Buildings 2025, 15(13), 2196; https://doi.org/10.3390/buildings15132196 - 23 Jun 2025
Viewed by 314
Abstract
Global urbanization and climate change are intensifying challenges in the sustainable management of the Food–Energy–Water (FEW) system. This study introduces a multi-objective optimization framework that redefines urban spaces through a dual rooftop-ground hierarchy, interlinkage nodes for mapping material and energy flows, and the [...] Read more.
Global urbanization and climate change are intensifying challenges in the sustainable management of the Food–Energy–Water (FEW) system. This study introduces a multi-objective optimization framework that redefines urban spaces through a dual rooftop-ground hierarchy, interlinkage nodes for mapping material and energy flows, and the application of NSGA-II optimization to balance food production, energy output, and costs. The framework was applied to a case study area, generating non-dominated solutions with diverse resource-cost configurations. The findings revealed that optimal scenarios could meet 40.6% of local energy demands and exceed 102.9% of local grain demands, while maintaining economic viability. This approach bridges resource systems theory and spatial planning practice, providing economically viable pathways for high-density cities to transform into hybrid production-consumption spaces, effectively addressing the dual pressures of urbanization and climate change. Full article
Show Figures

Figure 1

16 pages, 746 KiB  
Article
Analyzing Determinants of Farmers’ Participation in Agricultural Non-Point Source Pollution Control: An Application of the Theory of Planned Behavior
by Xiangyuan Zhang, Yong Wu, Ling Li, Chi Sun, Shuhan Yang, Jie Lu and Wenzhen Wang
Sustainability 2025, 17(13), 5746; https://doi.org/10.3390/su17135746 - 22 Jun 2025
Viewed by 441
Abstract
Agricultural producers play a crucial role in combating agricultural non-point source pollution, so improving their production behaviors and practices will be key to alleviating such pollution. This study employs the Theory of Planned Behavior and focuses on Huaxian County, a major grain-producing county [...] Read more.
Agricultural producers play a crucial role in combating agricultural non-point source pollution, so improving their production behaviors and practices will be key to alleviating such pollution. This study employs the Theory of Planned Behavior and focuses on Huaxian County, a major grain-producing county in Anyang City, Henan Province. The study focuses on randomly selected sample farming households in townships within Hua County’s agricultural intensification zone. Through structural equation modeling, it has analyzed the impact of farmers’ individual characteristics, behavioral attitudes, subjective norms, and perceived behavioral control on their willingness to engage in pollution management, as well as the influence of such willingness on actual management behaviors. Research indicates that behavioral attitudes, subjective norms, and perceived behavioral control significantly and positively influence governance intention, and governance intention significantly and positively influences governance behavior. Behavioral attitude is the key latent variable (behavioral attitude > perceived behavioral control > subjective norm). That is, the economic benefits derived from agricultural non-point source pollution governance constitute the most critical factor influencing farmers’ willingness to participate in pollution governance. Furthermore, farmers’ willingness to participate in pollution control bridges the gap between their attitudinal inclination and actual behavioral implementation. Accordingly, this study can provide a theoretical basis and reference for the governance of non-point source pollution in county-level regions of Henan Province and similar major grain-producing areas and offer theoretical support for the sustainable development of agriculture. Full article
Show Figures

Figure 1

28 pages, 9743 KiB  
Article
Direct Reuse of Spent Nd–Fe–B Permanent Magnets
by Zara Cherkezova-Zheleva, Daniela Paneva, Sabina Andreea Fironda, Iskra Piroeva, Marian Burada, Maria Sabeva, Anna Vasileva, Kaloyan Ivanov, Bogdan Ranguelov and Radu Robert Piticescu
Materials 2025, 18(13), 2946; https://doi.org/10.3390/ma18132946 - 21 Jun 2025
Viewed by 1697
Abstract
Nd–Fe–B permanent magnets are vital for numerous key technologies in strategic sectors such as renewable energy production, e-mobility, defense, and aerospace. Accordingly, the demand for rare earth elements (REEs) enormously increases in parallel to a significant uncertainty in their supply. Thus, research and [...] Read more.
Nd–Fe–B permanent magnets are vital for numerous key technologies in strategic sectors such as renewable energy production, e-mobility, defense, and aerospace. Accordingly, the demand for rare earth elements (REEs) enormously increases in parallel to a significant uncertainty in their supply. Thus, research and innovative studies are focus on the investigation of sustainable solutions to the problem and a closed-loop value chain. The present study is based on two benign-by-design approaches aimed at decreasing the recycling loop span by preparing standardized batches of EoL Nd–Fe–B materials to be treated separately depending on their properties, as well as using mechanochemical method for waste processing. The previously reported benefits of both direct recycling and mechanochemistry include significant improvements in processing metrics, such as energy use, ecological impact, technology simplification, and cost reduction. Waste-sintered Nd–Fe–B magnets from motorbikes were collected, precisely sorted, selected, and pre-treated. The study presents a protocol of resource-efficient recycling through mechanochemical processing of non-oxidized sintered EoL magnets, involving the extraction of Nd2Fe14B magnetic grains and refining the material’s microstructure and particle size after 120 min of high-energy ball milling in a zirconia reactor. The recycled material preserves the main Nd2Fe14B magnetic phase, while an anisotropic particle shape and formation of a thin Nd/REE-rich layer on the grain surface were achieved. Full article
(This article belongs to the Special Issue Progress and Challenges of Advanced Metallic Materials and Composites)
Show Figures

Graphical abstract

20 pages, 2119 KiB  
Article
Quantifying the Impacts of Grain Plantation Decline on Domestic Grain Supply in China During the Past Two Decades
by Yizhu Liu, Jing Zhu, Tingting He and Hang Liu
Land 2025, 14(6), 1283; https://doi.org/10.3390/land14061283 - 16 Jun 2025
Viewed by 527
Abstract
An adequate food supply is a core issue for sustainable development worldwide. Amid greater instability in the food supply triggered by more armed conflicts, trade disputes, and climate change, a decline in grain cultivation area still plagues many regions. China, a major food [...] Read more.
An adequate food supply is a core issue for sustainable development worldwide. Amid greater instability in the food supply triggered by more armed conflicts, trade disputes, and climate change, a decline in grain cultivation area still plagues many regions. China, a major food producer globally, is a case in point. The truth is that at the moment, the formulation and implementation of policies as well as academic discussions regarding this issue are predominantly based on the sown area of grains, overlooking the fundamental role co-played by population, yield efficiency, and sown area in determining food supply. Furthermore, the commonly used indicator, the non-grain cultivation rate, fails to directly reflect the impact of the phenomenon on the grain supply. To address these gaps, this study introduces trend-change detection and factor-contribution analysis, uses long-term grain sown area data to identify regions with significant grain retreat, and quantifies the relative influence of population shifts, crop yield improvements, and sown area changes on food supply. Key findings include the following: China’s total grain production maintained steady growth from 2003 to 2023, far exceeding conventional food security thresholds. Temporary reductions in grain sown area (2015–2019, 2021–2022) were offset by rising yields, with no substantial decline in supply. Twelve provinces/municipalities, Beijing, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Guizhou, Shaanxi, Ningxia, Sichuan, Chongqing, and Hainan, exhibited substantial declines in grain plantation. However, Sichuan and Shaanxi achieved counter-trend growth in food supply, while Ningxia and Guizhou experienced frequent fluctuations. The sown area was not always the dominant factor in per capita grain availability. Yield increases neutralized cropland reduction in Sichuan, Shaanxi, Guizhou, and Ningxia, whereas population inflows outweighed the sown area effect in the other eight provinces. The study concludes that China’s grain cropland reduction has not yet posed a threat to national food security. That said, the spatial concentration of these affected regions and their ongoing output reductions may raise domestic grain redistribution costs and intensify inter-regional conflicts over cropland protection. Meanwhile, population influx plays a similarly important role to that of grain plantation decline in the grain supply. Considering that, we believe that more moderate measures should be adopted to address the shrinkage of grain planting areas, with pre-set food self-sufficiency standards. These measures include, but are not limited to, improving productivity and adopting integrated farming. Methodologically, this work lowers distortions from normal annual cropland fluctuations, enabling more precise identification of non-grain production zones. By quantifying the separate impacts of population, crop yield, and sown area changes, it supplements existing observations on grain cropland decline and provides better targeted suggestions on policy formulation and coordination. Full article
Show Figures

Figure 1

15 pages, 658 KiB  
Article
The Potential of Plant Growth-Promoting Fungi Enhances the Growth, Yield, and Phytochemical Compounds of Oryza sativa L. (Maled Phai Cultivar) Under Field Conditions
by Wasan Seemakram, Sabaiporn Nacoon, Jindarat Ekprasert, Piyada Theerakulpisut, Jirawat Sanitchon and Sophon Boonlue
Plants 2025, 14(12), 1839; https://doi.org/10.3390/plants14121839 - 15 Jun 2025
Viewed by 517
Abstract
Excessive application of a chemical fertilizer during rice cultivation leads to soil infertility and increases production costs. An alternative way to reduce over-fertilization is to partially or fully replace the fertilizer with microbes that promote the growth and production of plants. This study [...] Read more.
Excessive application of a chemical fertilizer during rice cultivation leads to soil infertility and increases production costs. An alternative way to reduce over-fertilization is to partially or fully replace the fertilizer with microbes that promote the growth and production of plants. This study aimed to investigate the Maled Phai rice cultivar (Oryza sativa L.) in a field experiment with two fungi strains. Rhizophagus variabilis KS-02 and Trichoderma zelobreve PBMP16 were selected as inocula and compared with non-R. variabilis KS-02 and non-T. zelobreve PBMP16, acting as controls, one without synthetic fertilizer and one with synthetic NPK fertilizer. The field experiment was conducted in a Randomized Complete Block design with four replications. Growth and yield parameters were determined in the plant tissues and roots, and bioactive compounds were determined in the rice seeds. The results show the presence of T. zelobreve PBMP16 and R. variabilis KS-02 colonization in the plant roots at the harvest stage. A single inoculum of both R. variabilis KS-02 and T. zelobreve PBMP16 significantly increased most of the plant growth performance and yield parameters, as well as the concentrations of bioactive compounds. Remarkably, such effects were more apparent than those observed with the use of a chemical fertilizer. Thus, a single inoculum of R. variabilis KS-02 or T. zelobreve PBMP16 and the co-inoculation of both have the potential to increase the grain yield and bioactive compounds of Maled Phai under field conditions. Full article
Show Figures

Figure 1

18 pages, 6276 KiB  
Article
Geochemical Survey of Stream Sediments and Stream Water for Ion-Adsorption Type Rare Earth Deposits (IAREDs): A Pilot Study in Jiaping IARED, Guangxi, South China
by Junhong Liu, Zhixuan Han, Chunfang Dong, Xiaocheng Wei and Yingnan Chen
Minerals 2025, 15(6), 642; https://doi.org/10.3390/min15060642 - 13 Jun 2025
Viewed by 426
Abstract
Rare earth elements (REEs) are critical mineral resources that play a pivotal role in modern technology and industry. Currently, the global supply of light rare earth elements (LREEs) remains adequate. However, the supply of heavy rare earth elements (HREEs) is associated with substantial [...] Read more.
Rare earth elements (REEs) are critical mineral resources that play a pivotal role in modern technology and industry. Currently, the global supply of light rare earth elements (LREEs) remains adequate. However, the supply of heavy rare earth elements (HREEs) is associated with substantial risks due to their limited availability. Ion-adsorption type rare earth deposits (IAREDs), which represent the predominant source of HREEs, have become a focal point for exploration activities, with a notable increase in global interest in recent years. This study systematically collected stream sediments and stream water samples from the Jiaping IARED in Guangxi, as well as from adjacent granitic and carbonate background areas, to investigate the exploration significance of geochemical surveys for IAREDs. Additionally, mineralized soil layers, non-mineralized soil layers, and bedrock samples from the weathering crust of the Jiaping deposit were analyzed. The results indicate that stream sediments originating from the Jiaping IARED and granite-hosted background regions display substantially elevated REE concentrations relative to those from carbonate-hosted background areas. Moreover, δEu values in stream sediments can serve as an effective indicator for differentiating weathering products derived from granitic and carbonate lithologies. Within the mining area, three coarse-grained fractions of stream sediments (i.e., +20 mesh, 20–60 mesh, and 60–150 mesh) exhibit REE concentrations comparable to those observed in both granite-hosted and carbonate-hosted background regions. However, the HREEs content in the finer -150-mesh stream sediments from Jiaping IARED is markedly higher than that in the two background regions. The (La/Sm)N versus (La/Yb)N ratios of -150-mesh stream sediments in the Jiaping IARED may reflect the mixing processes involving HREE-enriched ore layer, non-mineralized layer, and LREE-enriched ore layer. This observation implies that fine-grained (-150-mesh) stream sediments can partially inherit the REE characteristics of mineralized layers within IAREDs. Scanning electron microscopy (SEM) observations indicate that the enrichment of REEs in fine-grained stream sediments primarily originates from REE-rich accessory minerals derived from parent rocks and mineralized weathering crusts. A comparative analysis reveals that the concentrations of REEs in stream water collected during the rainy season are significantly higher than those collected during the dry season. Moreover, the levels of REEs, especially HREE, in stream water from the Jiaping IARED substantially exceed those in background areas. Collectively, these findings suggest that the geochemical signatures of REEs in rainy season stream water possess diagnostic potential for identifying IAREDs. In conclusion, the integrated application of geochemical surveys of stream water and -150-mesh stream sediments can effectively delineate exploration targets for IAREDs. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

26 pages, 589 KiB  
Review
Strategies for Efficient Utilization of Corn Distillers Dried Grains with Solubles in Diets of Pigs: A Review
by Chunsheng Wang, Xinru Huang, Xue Liu, Ruixue Wang, Jianping Li, Qingwei Meng and Anshan Shan
Animals 2025, 15(12), 1727; https://doi.org/10.3390/ani15121727 - 11 Jun 2025
Viewed by 1726
Abstract
With the increasing demand for ethanol fuel, corn distillers dried grains with solubles (DDGS) production is increasing annually. Current global ethanol output is approximately 120–130 billion liters annually, of which bioethanol constitutes 90–95% of total production. Corn DDGS is widely used as a [...] Read more.
With the increasing demand for ethanol fuel, corn distillers dried grains with solubles (DDGS) production is increasing annually. Current global ethanol output is approximately 120–130 billion liters annually, of which bioethanol constitutes 90–95% of total production. Corn DDGS is widely used as a feed ingredient for pigs due to its low cost and crude protein content ranging from 19% to 34%. However, corn DDGS is not effectively utilized because of factors such as raw material sources and inadequate drying processes, and a large portion of it is wasted and lost. It has become a difficult challenge to use DDGS in pig diets because of its weaknesses, including being rich in fiber and polyunsaturated fatty acids, which can lead to decreases in growth performance, feed conversion, and the pork shelf life of pigs. In recent years, researchers focusing on ways to improve the effective utility of corn DDGS in pig diets have made some progress. In this study, we review the nutritional characteristics of corn DDGS; the limiting factors in pig production, such as the higher concentration of non-starch polysaccharides, linoleic acid, and zein in corn DDGS; and the current improvement measures being taken to provide a reference for the improved utilization of corn DDGS resources in the diets of pigs. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Graphical abstract

13 pages, 903 KiB  
Article
Optimizing Phosphorus Fertilization for Enhanced Yield and Nutrient Efficiency of Wheat (Triticum aestivum L.) on Saline–Alkali Soils in the Yellow River Delta, China
by Changjian Ma, Peng Song, Chang Liu, Lining Liu, Xuejun Wang, Zeqiang Sun, Yang Xiao, Xinhao Gao and Yan Li
Land 2025, 14(6), 1241; https://doi.org/10.3390/land14061241 - 9 Jun 2025
Viewed by 379
Abstract
As the global food crisis worsens, enhancing crop yields on saline–alkali soils has become a critical measure for ensuring global food security. Wheat (Triticum aestivum L.), one of the world’s most important staple crops, is particularly sensitive to phosphorus availability, making appropriate [...] Read more.
As the global food crisis worsens, enhancing crop yields on saline–alkali soils has become a critical measure for ensuring global food security. Wheat (Triticum aestivum L.), one of the world’s most important staple crops, is particularly sensitive to phosphorus availability, making appropriate phosphorus fertilization a key and manageable strategy to optimize yield. Although many studies have explored phosphorus fertilization strategies, most have focused on non-saline soils or generalized conditions, leaving a critical gap in understanding how phosphorus application affects wheat yield, soil nutrient dynamics, and nutrient uptake efficiency under saline–alkali stress. Therefore, further investigation is required to establish phosphorus management practices specifically adapted to saline–alkali environments for sustainable wheat production. To address this gap, the experiment was designed with varying phosphorus fertilizer application rates based on P2O5 content (0, 60 kg/hm2, 120 kg/hm2, 180 kg/hm2, and 240 kg/hm2), considering only the externally applied phosphorus without accounting for the inherent phosphorus content of the soil. The results indicated that as the phosphorus application rate increased, the wheat yield first increased and then decreased. The highest yield (6355 kg·hm−2) was achieved when the phosphorus application rate reached 120 kg/hm2, with an increase of 47.2–63.5% compared to the control (no fertilizer). Similarly, biomass, thousand-grain weight, and the absorption of nitrogen, phosphorus, and potassium in both straw and grains exhibited the same increasing-then-decreasing trend. Mechanistic analysis revealed that phosphorus fertilization enhanced soil alkali–hydrolyzable nitrogen, available phosphorus, and available potassium, thereby promoting nutrient uptake and ultimately improving grain yield. The innovations of this study lie in its focus on phosphorus management specifically under saline–alkali soil conditions, its integration of soil nutrient changes and plant physiological responses, and its identification of the optimal phosphorus application threshold for balancing yield improvement and nutrient efficiency. These findings provide a scientific basis for refining phosphorus fertilization strategies to sustainably boost wheat productivity in saline–alkali environments. Full article
Show Figures

Figure 1

Back to TopTop