Strategies for Efficient Utilization of Corn Distillers Dried Grains with Solubles in Diets of Pigs: A Review
Simple Summary
Abstract
1. Introduction
2. Nutrient Composition, and Feeding Value
2.1. Carbohydrates
2.2. Crude Protein and Amino Acid Content
2.3. Ether Extract and Fatty Acid Composition
2.4. Energy
Item | Corn | DDGS | |||
---|---|---|---|---|---|
Mean | SEM | Max | Min | ||
GE, kcal/kg | 4511 | 4527.8 | 215.48 | 5330 | 4142 |
DE, kcal/kg | 3963 | 3556.5 | 113.87 | 3896 | 3408 |
ME, kcal/kg | 3852 | 3406.5 | 131.76 | 3705 | 3157 |
NE, kcal/kg | 3053 | 2292.2 | 156.43 | 2748 | 1924 |
2.5. Amino Acid Digestibility
2.6. Carcass Characteristics
Item | n | Response to Dietary Corn DDGS, No. of Experiments | ||
---|---|---|---|---|
Increased | Reduced | Not Changed | ||
Hot carcass weight | 21 | 10 | 11 | |
Chilled carcass | 1 | 1 | ||
Chilling loss | 2 | 2 | ||
Dressing | 15 | 4 | 11 | |
Lean meat | 8 | 1 | 7 | |
LM area | 7 | 7 | ||
Loin eye area | 4 | 4 | ||
LM depth | 1 | 1 | ||
Backfat depth | 11 | 11 | ||
Iodine value | 12 | 9 | 3 |
3. Strategies for the Efficient Utilization of Corn DDGS in Pig Diets
3.1. Exogenous Enzymes
Animal | Improvement Mode | DDGS Levels | Experiment Duration | Main Effects | Reference |
---|---|---|---|---|---|
Pigs 22.4 ± 0.7 kg | 4000 U/kg xylanase and 300 U/kg β-glucanase mixture | 30% | 21-day feeding | Increased MCT1 mRNA expression in the ileum of the pigs relative to feeding DDGS alone | [16] |
Pigs 30 kg | 0.2 g/kg compound enzymes | 10, 15% | Final BW 100 kg | Increased C18:2 and C20:4 in the longissimus muscle of the pigs | [117] |
Pigs 34.2 ± 2.1 kg | 200 mg/kg protease | 30% | 28-day feeding | Increased growth performance and AID of the GE in the pigs | [111] |
Pigs 34.2 ± 2.1 kg | 200 mg/kg xylanase | 30% | 28-day feeding | Decreased odor from the manure emissions of the pigs | [111] |
Pigs 34.2 ± 2.1 kg | 200 mg/kg protease and 200 mg/kg xylanase | 30% | 28-day feeding | No beneficial effects on the pigs | [111] |
Pigs 63.92 ± 1.50 kg | 0.14% enzyme premix (mannanase + phytase) | 10, 20% | Final BW 107 ± 4 kg | Increased feed conversion ratio | [116] |
Pigs 10.7 ± 1.2 kg | 1500 EPU/kg xylanase | 30% | 21-day feeding | Increased BW, ADG, AID of GE, and NDF of the pigs Decreased viscosity of jejunal digesta, TNF-α, and PYY in the plasma of the pigs | [112] |
Barrows 30.4 ± 2.20 kg | 600 FTU/kg phytase | 10% | 28-day feeding | Increased ADG of the pigs | [118] |
Barrows 30.4 ± 2.20 kg | 0.5 g/kg multi-carbohydrase | 10% | 28-day feeding | Increased ADG and ADFI of the pigs | [118] |
Barrows 22.4 ± 1.40 kg | 600 FTU/kg phytase | 10% | 28-day feeding | Increased ASH, P, and Ca in total tract digestibility of nutrients, urinary P, and P retained in the pigs Decreased fecal P and total P of the pigs | [118] |
Barrows 22.4 ± 1.40 kg | 0.5 g/kg multi-carbohydrase | 10% | 28-day feeding | Increased ASH, P, and Ca in total tract digestibility of nutrients, urinary P, and P retained in the pigs Decreased Fecal P and Total P of the pigs | [118] |
Pigs 57.6 kg | 200, 400, 600 U/kg mannanase | 10% | 28-day feeding | Increased ADG, blood glucose, ATTD of DM, and CP of the pigs | [114] |
Pigs 92.7 kg | 200, 400, 600 U/kg mannanase | 10% | 28-day feeding | Increased ADG, blood glucose, ATTD of DM, GE, and CP of the pigs | [114] |
Pigs 60.5 kg | 400 U/kg mannanase | 15% | 23-day feeding | Increased ADG and blood glucose in the pigs | [114] |
Pigs 86.5 kg | 400 U/kg mannanase | 15% | 29-day feeding | Increased ADG and blood glucose, ATTD of DM, GE, and CP of the pigs | [114] |
3.2. Pretreatment
Animal | Fermented Study | Feeding Study | Reference | |||
---|---|---|---|---|---|---|
Enzyme | Treatment Conditions | DDGS Levels | Experiment Duration | Main Effects | ||
Pigs 25 ± 1.0 kg | β-glucanase and xylanases | 3–10 d at 40 °C | 30% | 42-day feeding | Increased feed efficiency in the first three weeks of feeding and ATTD of DM, CP, GE, and crypt depth of the pigs | [17] |
Barrows 35.1 ± 1.8 kg | mixture of xylanase and glucanase | 6 d at 20 °C | 60% | 4 × 14-day feeding | Increased ATTD of DM, CP, P, total NSPs, AID of total NSP, and digestibility of DDGS in the pigs Decreased ileal butyric acid levels of the pigs | [121] |
Barrows 35.1 ± 1.8 kg | mixture of cellulase and xylanase | 6 d at 20 °C; | 60% | 4 × 14-day feeding | Increased ileal LAB levels, ATTD of DM, CP, P, total NSPs, AID of total NSPs of the pigs Decreased ileal butyric acid levels in the pigs | [121] |
Pigs 20 kg | Fiber-degrading enzymes | 24 h at 40 °C | 65% | 3 × 11-day feeding | Increased ATTD of CF in the pigs | [122] |
Pigs 5.9 ± 0.6 | β-glucanase and xylanase | 5–12 d at 40 °C | 7.5, 25% | 34-day feeding | Increased growth performance of the pigs | [123] |
Pigs 5.9 ± 0.6 | silage inoculant biotal plus | 1–7 d at 40 °C | 7.5, 16.5, 25% | 34-day feeding | Increased ADG, and BW of the pigs and favors the growth of the low-weight weaned piglets during extended nursery period | [123] |
Pigs 25.87 ± 0.38 kg | xylanase | 24 h at 22 °C | 30% | 16-day feeding | Increased ATTD of GE and jejunal crypt depth of the pigs | [124] |
Pigs 25.87 ± 0.38 kg | xylanase | 24 h at 22 °C | 30% | 16-day feeding | Increased AID of NDF, N, jejunal villus height, and crypt depth of the pigs | [124] |
Animal | Pretreatment Method | DDGS Levels | Experiment Duration | Main Effects | Reference |
---|---|---|---|---|---|
Pigs 36.0 ± 1.8 kg | Extrusion | 29.07% | 12-day feeding | Increased DE, ME, ATTD of the GE, DM, and NDF of the pigs A tendency to increase ATTD of CP and ADF of the pigs | [18] |
Pigs 20.3 ± 1.8 kg | Extrusion | 29.07% | 21-day feeding | Increased AID of total indispensable amino acids of the pigs | [18] |
Barrows 23.0 kg ± 2.8 kg | Sieving and elutriating | 40% | 14-day feeding | Increased DE of the pigs | [19] |
Barrows 73.0 ± 1.8 kg | Sieving and elutriating | 40% | 14-day feeding | Increased DE and ME of the pigs | [19] |
Pigs 25.75 ± 2.29 kg | Pelleting | 30% | 91-day feeding | Increased growth performance, HCW, carcass fat, and slaughter of the pigs | [20] |
Pigs 11.77 ± 0.12 kg | Pelleting | 30% | 21-day feeding | Increased ATTD of DM, OM, energy, CP, fat, NDF, and ADF in the pigs | [127] |
Pigs 18.40 ± 0.18 kg | Pelleting | 30% | 14-day feeding | Increased ADG and G:F of the pigs | [127] |
Pigs 54.7 ± 0.9 kg | Hammermill or roller mill | 45% | 11-day feeding | Increased the ATTD of DM, GE, and AEE of the pigs A tendency to increase the ATTD of N of the pigs | [21] |
Barrows 55.2 ± 3.6 kg | Cold fermented | 50% | 7-day feeding | Increased SID of amino acids in the pigs | [70] |
3.3. Metabolic Regulation
Animal | Improvement Mode | DDGS Levels | Experiment Duration | Main Effects | Reference |
---|---|---|---|---|---|
Barrows 100.4 ± 3.7 kg | 0.6% CLA | 20% | 27-day feeding | Increased the ADG, G:F, carcass gain, lean muscle, and SFAs of the pigs Decreased the carcass dressing, C18:1n9, MUFAs, and IV of the pigs | [92] |
Barrows 96 ± 1.38 kg | 0.6% CLA | 20, 40% | Final BW 105 ± 1.75 kg | Decreased the ∆9 desaturase index in adipose tissue and outer layer backfat IV of the pigs | [130] |
Barrows 60 ± 2 kg | 10 g/kg CLA | 30% | 42-day feeding | Increased the proportions of C18:0 and SFAs for back fat and C14:0, C16:0, and SFAs for belly fat of the pigs Decreased the proportions of C18:2, C18:3, C20:1, C20:3, PUFAs, and IV for backfat and C18:2, PUFAs, and IV for belly fat of the pigs | [131] |
Barrows 60 ± 2 kg | 1 g/kg betaine | 30% | 42-day feeding | Increased the proportions of C16:0, C18:0, C22:0, and SFAs for backfat and C14:0, C16:0, and SFAs for belly fat of the pigs Decreased the proportions of C18:2, PUFAs, and IV for backfat and C18:2, PUFAs, and IV for belly fat of the pigs | [131] |
Barrows 100.4 ± 3.7 kg | 7.4 mg/kg ractopamine | 20% | 27-day feeding | Increased the ADG, G:F, HCW, carcass dressing, carcass gain, carcass G:F, loin depth, lean muscle, C16:1, C18:2n6, MUFAs, PUFAs, total omega-6 and IV of the pigs Decreased ADFI, back fat depth, and SFAs of the pigs | [92] |
Pigs 58 ± 2 kg | 10, 210 IU/kg vitamin E | 15, 30% | 42-day feeding | Increased a-tocopherol concentrations in the plasma, liver, muscle, and adipose tissue of the pigs Decreased shear and drip losses and the proportion of SFAs in abdominal fat, subcutaneous fat, and intramuscular fat of the pigs | [68] |
Barrows 7 ± 0.3 kg | 11, 110 IU/kg vitamin E | 30% | Final BW 50 kg | Increased the liver GSH concentration and serum GPx activity of the pigs | [138] |
Pigs 6.6 ± 0.4 kg | 0.032, 0.32% vitamin E | 30% | Final BW 107 kg | No beneficial effects on the pigs | [139] |
Barrows 45±1.7kg | 50 mg/kg L-carnitine | 80% | 80-day feeding | Increased a* of pork and CPT1A, HSL, FABP4, CRAT of the pigs Decreased the backfat thickness and FAS of the pigs | [54] |
Barrows 36 ± 1 kg | 50, 100 mg/kg L-carnitine | 20, 30% | 109-day feeding | Increased the HCW, greater carcass yields, greater fat depths, purge loss, and fresh LM color scores of the pigs Decreased the C18:2n-6 and C20:2 contents of the pigs | [27] |
3.4. Oils
Animal | Improvement Mode | DDGS Levels | Experiment Duration | Main Effects | Reference |
---|---|---|---|---|---|
Pigs 25 kg | 5%, 10% tallow | 30% | 10-day feeding | Increased AID of SFAs, ileal digestibility of C16:0, C18:0, C18:1, and SFAs, and ATTD of MUFAs in the pigs Decreased AID of C18:0 and SFAs and ATTD of C16:0 of the pigs | [140] |
Pigs 32.4 ± 1.9 kg | 5% tallow | 30% | Final BW 113 kg | Increased G:F and carcass yield of the pigs Decreased IV of belly fat and ADFI of the pigs | [67] |
Pigs 105.8 ± 0.1 kg | 5% tallow | 30% | 20-day feeding | Increased ADG and G:F of the pigs | [141] |
Barrows 31.0 ± 1.1 kg | 2.5%, 5% crude glycerol | 20% | 97-day feeding | Increased myristic acid and MUFAs in the jowl fat and backfat of the pigs | [26] |
Pigs 36.5 ± 0.5 kg | 10% crude glycerin | 15%, 25% | 84-day feeding | Increased MUFAs and C18:1 of the pigs Decreased PUFAs and C18:2 of the pigs | [152] |
Pigs 24 ± 4 kg | 5% minimally refined cottonseed oil or 8% crude glycerol | 40% | Final BW 115 ± 8 kg | Increased ADG, G:F, final BW, HCW, and melting point of the belly fat in the pigs | [144] |
Pigs 33.8 ± 2.2 kg | 2%, 6% SBO | 20%, 40% | 52-day feeding | Increased AID and ATTD of AEE of the pigs Decreased AID and ATTD of NDF of the pigs | [69] |
3.5. Optimal Amino Acid Content
Animal | Improvement Mode | DDGS Levels | Experiment Duration | Main Effects | Reference |
---|---|---|---|---|---|
Pigs 35.1 ± 0.5 kg | SID Thr:Lys Formulated in four phases 61, 62, 63, 65% vs. 67, 68, 69, 72% | 40% | 112-day feeding | No beneficial effects on the pigs | [165] |
Pigs 39.4 kg | SID Val:Lys 60%, 65%, 70%, 75%, 80% | 30% | 28-day feeding | Increased growth performance of the pigs | [156] |
Pigs 82.3 ± 0.39 kg | SID Ile:Lys 55%, 60%, 65%, 70%, 75% | 20% | 56-day feeding | Increased loin depth and tendency to increase the lean muscle percentage of the pigs Decreased back fat of the pigs | [153] |
Pigs 36.3 kg | SID Trp:Lys 14.0, 15.0, 16.5, 18.0% | 40% | 105-day feeding | Increased final BW, ADG, G:F, and HCW of the pigs | [161] |
Pigs 66.3 kg | SID Trp:Lys 15.0, 16.5, 18.0, 19.5% | 40% | 73-day feeding | Increased final BW, ADG, G:F, and HCW of the pigs Decreased FFLI of the pigs with added crystalline Trp | [161] |
Pigs 38.6 ± 0.2 kg | SID Trp:Lys 15, 18, 21, 24% | 30% | 98-day feeding | Increased ADG, ADFI, final BW, and carcass hot weight of the pigs | [28] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, X.H.; Guo, S.R.; Duan, H.Y.; Duan, Z.Y.; Gao, C.; Chen, W. Carbon-Emission Characteristics and Influencing Factors in Growing and Shrinking Cities: Evidence from 280 Chinese Cities. Int. J. Environ. Res. Public Health 2022, 19, 2120. [Google Scholar] [CrossRef] [PubMed]
- Stanek, W.; Czarnowska, L.; Pikon, K.; Bogacka, M. Thermo-ecological cost of hard coal with inclusion of the whole life cycle chain. Energy 2015, 92, 341–348. [Google Scholar] [CrossRef]
- Andelkovic, D.; Antic, B.; Vujanic, M.; Subotic, M.; Radovanovic, L.J. The perspectives of applying ethanol as an alternate fuel. Energy Sources Part B-Econ. Plan. Policy 2017, 12, 749–758. [Google Scholar] [CrossRef]
- Naydenova, G.; Popova-Krumova, P.; Danova, S.; Yankov, D. Lactic Acid Production from Distiller’s Dried Grains Dilute Acid Hydrolysates. Fermentation 2024, 10, 581. [Google Scholar] [CrossRef]
- Garbossa, P.L.M.; Poleti, M.D.; Garbossa, C.A.P.; Alves, L.K.S.; Chaves, R.F.; Cantarelli, V.D.; Ferraz, J.B.S. A case study on the cost-benefit perspective on the influence of high-protein Distiller’s Dried Grains with Solubles (HP-DDGS) pricing and inclusion levels on economic sustainability in pig production. Livest. Sci. 2025, 292, 105632. [Google Scholar] [CrossRef]
- Wang, K.; Ou, L.; Brown, T.; Brown, R.C. Beyond ethanol: A techno-economic analysis of an integrated corn biorefinery for the production of hydrocarbon fuels and chemicals. Biofuels Bioprod. Biorefin. 2014, 9, 190–200. [Google Scholar] [CrossRef]
- Buenavista, R.M.E.; Siliveru, K.; Zheng, Y. Utilization of Distiller’s dried grains with solubles: A review. J. Agric. Food Res. 2021, 5, 100195. [Google Scholar] [CrossRef]
- Fan, W.W.; Sun, X.; Cui, G.N.; Li, Q.L.; Xu, Y.P.; Wang, L.L.; Li, X.Y.; Hu, B.; Chi, Z.Y. A strategy of co-fermentation of distillers dried grains with solubles (DDGS) and lignocellulosic feedstocks as swine feed. Crit. Rev. Biotechnol. 2023, 43, 212–226. [Google Scholar] [CrossRef]
- Pancini, S.; Simeone, A.; Bentancur, O.; Beretta, V. Evaluation of sorghum dried distillers’ grains plus solubles as a replacement of a portion of sorghum grain and soybean meal in growing diets for steers. Livest. Sci. 2021, 250, 104564. [Google Scholar] [CrossRef]
- Balastreri, C.; Baretta, D.; Paulino, A.T. Near-Infrared Spectroscopy and Multivariate Analysis for the Determination of Nutritional Value of Soybean Meal and Maize Bran. Anal. Lett. 2016, 49, 1548–1563. [Google Scholar] [CrossRef]
- Abelilla, J.J.; Stein, H.H. Degradation of dietary fiber in the stomach, small intestine, and large intestine of growing pigs fed corn- or wheat-based diets without or with microbial xylanase. J. Anim. Sci. 2019, 97, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, L.; Qin, L.; Wang, Y.; Chen, F.; Qu, C.; Miao, J. Physicochemical Properties of the Soluble Dietary Fiber from Laminaria japonica and Its Role in the Regulation of Type 2 Diabetes Mice. Nutrients 2022, 14, 329. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Swiatkiewicz, M.; Arczewska-Wlosek, A.; Jozefiak, D. Efficacy of feed enzymes in pig and poultry diets containing distillers dried grains with solubles: A review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 15–26. [Google Scholar] [CrossRef]
- Choct, M.; Annison, G. The inhibition of nutrient digestion by wheat pentosans. Br. J. Nutr. 1992, 67, 123–132. [Google Scholar] [CrossRef]
- Bloxham, D.J.; Dove, C.R.; Azain, M. Effect of wheat as a feedstuff in starter diets on nursery pig growth performance and digestibility. Livest. Sci. 2018, 207, 98–104. [Google Scholar] [CrossRef]
- Agyekum, A.K.; Sands, J.S.; Regassa, A.; Kiarie, E.; Weihrauch, D.; Kim, W.K.; Nyachoti, C.M. Effect of supplementing a fibrous diet with a xylanase and β-glucanase blend on growth performance, intestinal glucose uptake, and transport-associated gene expression in growing pigs. J. Anim. Sci. 2015, 93, 3483–3493. [Google Scholar] [CrossRef] [PubMed]
- Rho, Y.; Wey, D.; Zhu, C.L.; Kiarie, E.; Moran, K.; van Heugten, E.; de Lange, C.F.M. Growth performance, gastrointestinal and digestibility responses in growing pigs when fed corn-soybean meal-based diets with corn DDGS treated with fiber degrading enzymes with or without liquid fermentation. J. Anim. Sci. 2018, 96, 5188–5197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Zhang, G.; Zhang, S.; Zhao, J.B. Effects of Extrusion on Energy Contents and Amino Acid Digestibility of Corn DDGS and Full-Fat Rice Bran in Growing Pigs. Animals 2022, 12, 579. [Google Scholar] [CrossRef]
- Soares, J.A.; Singh, V.; Stein, H.H.; Srinavasan, R.; Pettigrew, J.E. SHORT COMMUNICATION: Enhanced distillers dried grains with solubles (DOGS) has greater concentration of digestible and metabolizable energy than DDGS when fed to growing and finishing pigs. Can. J. Anim. Sci. 2011, 91, 663–667. [Google Scholar] [CrossRef]
- Overholt, M.F.; Lowell, J.E.; Arkfeld, E.K.; Grossman, I.M.; Stein, H.H.; Dilger, A.C.; Boler, D.D. Effects of pelleting diets without or with distillers’ dried grains with solubles on growth performance, carcass characteristics, and gastrointestinal weights of growing-finishing barrows and gilts. J. Anim. Sci. 2016, 94, 2172–2183. [Google Scholar] [CrossRef]
- Acosta, J.A.; Petry, A.L.; Gould, S.A.; Jones, C.K.; Stark, C.R.; Fahrenholz, A.C.; Patience, J.F. Can the digestibility of corn distillers dried grains with solubles fed to pigs at two stages of growth be enhanced through management of particle size using a hammermill or a roller mill? Transl. Anim. Sci. 2020, 4, txaa171. [Google Scholar] [CrossRef] [PubMed]
- Bou, R.; Codony, R.; Tres, A.; Decker, E.A.; Guardiola, F. Dietary Strategies to Improve Nutritional Value, Oxidative Stability, and Sensory Properties of Poultry Products. Crit. Rev. Food Sci. Nutr. 2009, 49, 800–822. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Whitney, M.H.; Shurson, G.C.; Johnston, L.J.; Wulf, D.M.; Shanks, B.C. Growth performance and carcass characteristics of grower-finisher pigs fed high-quality corn distillers dried grain with solubles originating from a modern Midwestern ethanol plant. J. Anim. Sci. 2006, 84, 3356–3363. [Google Scholar] [CrossRef]
- Widmer, M.R.; McGinnis, L.M.; Wulf, D.M.; Stein, H.H. Effects of feeding distillers dried grains with solubles, high-protein distillers dried grains, and corn germ to growing-finishing pigs on pig performance, carcass quality, and the palatability of pork. J. Anim. Sci. 2008, 86, 1819–1831. [Google Scholar] [CrossRef]
- Duttlinger, A.J.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; Nelssen, J.L.; Houser, T.A.; Sulabo, R.C. Effects of increasing crude glycerol and dried distillers grains with solubles on growth performance, carcass characteristics, and carcass fat quality of finishing pigs. J. Anim. Sci. 2012, 90, 840–852. [Google Scholar] [CrossRef]
- Ying, W.; Tokach, M.D.; DeRouchey, J.M.; Houser, T.E.; Dritz, S.S.; Goodband, R.D.; Nelssen, J.L. Effects of dietary L-carnitine and dried distillers grains with solubles on growth, carcass characteristics, and loin and fat quality of growing-finishing pigs. J. Anim. Sci. 2013, 91, 3211–3219. [Google Scholar] [CrossRef]
- Clizer, D.A.; Tostenson, B.J.; Frederick, B.; Cline, P.M.; Samuel, R.S. Performance response of increasing the standardized ileal digestible tryptophan:lysine ratio in diets containing 40% dried distiller grains with solubles. J. Anim. Sci. 2023, 101, skad264. [Google Scholar] [CrossRef]
- Devi, V.; Sethi, M.; Singh, A.; Chaudhary, D.P. Unraveling the role of δ-zeins in methionine bio-fortification of maize. Cereal Chem. 2024, 101, 583–593. [Google Scholar] [CrossRef]
- Harris, R.A.; Joshi, M.; Jeoung, N.H.; Obayashi, M. Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J. Nutr. 2005, 135, 1527S–1530S. [Google Scholar] [CrossRef]
- Sperringer, J.E.; Addington, A.; Hutson, S.M. Branched-Chain Amino Acids and Brain Metabolism. Neurochem. Res. 2017, 42, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-C.; Zeng, Z.; Urriola, P.E.; Shurson, G.C. PSVI-5 Effects of Feeding Corn Distillers Dried Grains with Solubles (cDDGS) Diets with and Without Supplemental Enzymes on Growth Performance of Pigs: A Meta-analysis. J. Anim. Sci. 2021, 99, 221. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Lærke, H.N.; Knudsen, K.E.B.; Stein, H.H. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. 2015, 93, 1103–1113. [Google Scholar] [CrossRef]
- Rausch, K.D.; Belyea, R.L. The future of coproducts from corn processing. Appl. Biochem. Biotech. 2006, 128, 47–86. [Google Scholar] [CrossRef] [PubMed]
- Ortín, W.G.N.; Yu, P.Q. Nutrient variation and availability of wheat DDGS, corn DDGS and blend DDGS from bioethanol plants. J. Sci. Food Agric. 2009, 89, 1754–1761. [Google Scholar] [CrossRef]
- Martinez-Amezcua, C.; Parsons, C.M.; Singh, V.; Srinivasan, R.; Murthy, G.S. Nutritional characteristics of corn distillers dried grains with solubles as affected by the amounts of grains versus solubles and different processing techniques. Poult. Sci. 2007, 86, 2624–2630. [Google Scholar] [CrossRef] [PubMed]
- Salim, H.M.; Kruk, Z.A.; Lee, B.D. Nutritive value of corn distillers dried grains with solubles as an ingredient of poultry diets: A review. Worlds Poult. Sci. J. 2010, 66, 411–431. [Google Scholar] [CrossRef]
- Srinivasan, R.; Moreau, R.A.; Parsons, C.; Lane, J.D.; Singh, V. Separation of fiber from distillers dried grains (DDG) using sieving and elutriation. Biomass Bioenerg. 2008, 32, 468–472. [Google Scholar] [CrossRef]
- Cromwell, G.L.; Herkelman, K.L.; Stahly, T.S. Physical, chemical, and nutritional characteristics of distillers dried grains with solubles for chicks and pigs. J. Anim. Sci. 1993, 71, 679–686. [Google Scholar] [CrossRef]
- Zhao, J.K.; Wang, D.H.; Li, Y.H. Proteins in dried distillers’ grains with solubles: A review of animal feed value and potential non-food uses. J. Am. Oil Chem. Soc. 2021, 98, 957–968. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Adebiyi, A.O. Chemical composition and prediction of amino acid content of maize- and wheat-Distillers’ Dried Grains with Soluble. Anim. Feed Sci. Technol. 2013, 185, 182–189. [Google Scholar] [CrossRef]
- Belyea, R.L.; Rausch, K.D.; Tumbleson, M.E. Composition of corn and distillers dried grains with solubles from dry grind ethanol processing. Bioresour. Technol. 2004, 94, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Spiehs, M.J.; Whitney, M.H.; Shurson, G.C. Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 2002, 80, 2639–2645. [Google Scholar] [CrossRef]
- Gupta, J.; Wilson, B.W.; Vadlani, P.V. Evaluation of green solvents for a sustainable zein extraction from ethanol industry DDGS. Biomass Bioenerg. 2016, 85, 313–319. [Google Scholar] [CrossRef]
- Wu, F.; Johnston, L.J.; Urriola, P.E.; Hilbrands, A.M.; Shurson, G.C. Evaluation of NE predictions and the impact of feeding maize distillers dried grains with solubles (DDGS) with variable NE content on growth performance and carcass characteristics of growing-finishing pigs. Anim. Feed Sci. Technol. 2016, 215, 105–116. [Google Scholar] [CrossRef]
- Fries-Craft, K.; Bobeck, E.A. Evaluation of a high-protein DDGS product in broiler chickens: Performance, nitrogen-corrected apparent metabolisable energy, and standardised ileal amino acid digestibility. Br. Poult. Sci. 2019, 60, 749–756. [Google Scholar] [CrossRef]
- Adebiyi, A.O.; Ragland, D.; Adeola, O.; Olukosi, O.A. Apparent or Standardized Ileal Digestibility of Amino Acids of Diets Containing Different Protein Feedstuffs Fed at Two Crude Protein Levels for Growing Pigs. Asian Australas. J. Anim. Sci. 2015, 28, 1327–1334. [Google Scholar] [CrossRef]
- Kim, Y.; Mosier, N.S.; Hendrickson, R.; Ezeji, T.; Blaschek, H.; Dien, B.; Cotta, M.; Dale, B.; Ladisch, M.R. Composition of corn dry-grind ethanol by-products: DDGS, wet cake, and thin stillage. Bioresour. Technol. 2008, 99, 5165–5176. [Google Scholar] [CrossRef]
- Ramchandran, D.; Moose, S.P.; Low, K.; Arp, J.; Parsons, C.M.; Singh, V. Ethanol yields and elevated amino acids in distillers dried grains with solubles from maize grain with higher concentrations of essential amino acids. Ind. Crops Prod. 2017, 103, 244–250. [Google Scholar] [CrossRef]
- Han, J.C.; Liu, K.S. Changes in Composition and Amino Acid Profile during Dry Grind Ethanol Processing from Corn and Estimation of Yeast Contribution toward DDGS Proteins. J. Agric. Food Chem. 2010, 58, 3430–3437. [Google Scholar] [CrossRef]
- Mjoun, K.; Kalscheur, K.F.; Hippen, A.R.; Schingoethe, D.J. Performance and amino acid utilization of early lactation dairy cows fed regular or reduced-fat dried distillers grains with solubles. J. Dairy Sci. 2010, 93, 3176–3191. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Johnston, L.J.; Urriola, P.E.; Shurson, G.C. Pork fat quality of pigs fed distillers dried grains with solubles with variable oil content and evaluation of iodine value prediction equations. J. Anim. Sci. 2016, 94, 1041–1052. [Google Scholar] [CrossRef]
- Ma, Z.Z.; Wang, C.S.; Wang, B.; Yao, L.F.; Kong, B.H.; Shan, A.S.; Li, J.P.; Meng, Q.W. Effects of Feeding Corn Distillers Dried Grains with Solubles on Muscle Quality Traits and Lipidomics Profiling of Finishing Pigs. Animals 2023, 13, 3848. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.W.; Sun, S.S.; Sun, Y.C.; Li, J.A.; Wu, D.; Shan, A.S.; Shi, B.M.; Cheng, B.J. Effects of dietary lecithin and L-camitine on fatty acid composition and lipid metabolic genes expression in subcutaneous fat and longissimus thoracis of growing-finishing pigs. Meat Sci. 2018, 136, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.W.; Wang, L.S.; Sun, S.S.; Shi, Z.; Su, B.C.; Qu, Z.; Shi, B.M.; Shan, A.S. The influence of dietary corn distillers dried grains with solubles during gestation of sows on fatty acid composition of colostrum and offspring. Can. J. Anim. Sci. 2019, 99, 812–819. [Google Scholar] [CrossRef]
- Berschauer, F.; Rupp, J.; Ehrensvard, U. Nutritional-physiological effects of dietary fats in rations for growing pigs. 4. Effects of sunflower oil and coconut oil on protein and fat retention, fatty acid pattern of back fat and blood parameters in piglets. Arch. Tierernahr. 1984, 34, 19–33. [Google Scholar] [CrossRef]
- Person, R.C.; McKenna, D.R.; Ellebracht, J.W.; Griffin, D.B.; McKeith, F.K.; Scanga, J.A.; Belk, K.E.; Smith, G.C.; Savell, J.W. Benchmarking value in the pork supply chain: Processing and consumer characteristics of hams manufactured from different quality raw materials. Meat Sci. 2005, 70, 91–97. [Google Scholar] [CrossRef]
- Shurson, G.C.; Hung, Y.T.; Jang, J.C.; Urriola, P.E. Measures Matter-Determining the True Nutri-Physiological Value of Feed Ingredients for Swine. Animals 2021, 11, 1259. [Google Scholar] [CrossRef]
- Owens, F.N.; Zinn, R. Metabolizable energy content of feeds: Errors that need attention. J. Anim. Sci. 2019, 97, 157–158. [Google Scholar] [CrossRef]
- Noblet, J.; van Milgen, J. Energy value of pig feeds: Effect of pig body weight and energy evaluation system. J. Anim. Sci. 2004, 82, E229–E238. [Google Scholar]
- Stein, H.H.; Shurson, G.C. The use and application of distillers dried grains with solubles in swine diets. J. Anim. Sci. 2009, 87, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Noblet, J.; Fortune, H.; Shi, X.S.; Dubois, S. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci. 1994, 72, 344–354. [Google Scholar] [CrossRef]
- Kim, J.W.; Koo, B.; Nyachoti, C.M. Digestible, metabolizable, and net energy of camelina cake fed to growing pigs and additivity of energy in mixed diets. J. Anim. Sci. 2017, 95, 4037–4044. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, N.A.; Kil, D.Y.; Liu, Y.H.; Pettigrew, J.E.; Stein, H.H. Effects of co-products from the corn-ethanol industry on body composition, retention of protein, lipids and energy, and on the net energy of diets fed to growing or finishing pigs. J. Sci. Food Agric. 2014, 94, 3008–3016. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.C.; Li, P.; Liu, D.W.; Li, D.F.; Wang, F.L.; Su, Y.B.; Zhu, Z.P.; Piao, X.S. Determination of the energy value of corn distillers dried grains with solubles containing different oil levels when fed to growing pigs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 339–348. [Google Scholar] [CrossRef]
- Avelar, E.; Jha, R.; Beltranena, E.; Cervantes, M.; Morales, A.; Zijlstra, R.T. The effect of feeding wheat distillers dried grain with solubles on growth performance and nutrient digestibility in weaned pigs. Anim. Feed Sci. Technol. 2010, 160, 73–77. [Google Scholar] [CrossRef]
- Davis, J.M.; Urriola, P.E.; Shurson, G.C.; Baidoo, S.K.; Johnston, L.J. Effects of adding supplemental tallow to diets containing 30% distillers dried grains with solubles on growth performance, carcass characteristics, and pork fat quality in growing-finishing pigs. J. Anim. Sci. 2015, 93, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.-S.; Shi, B.-M.; Shan, A.-S. Effects of dietary corn dried distillers grains with solubles and vitamin E on growth performance, meat quality, fatty acid profiles, and pork shelf life of finishing pigs. Livest. Sci. 2012, 149, 155–166. [Google Scholar] [CrossRef]
- Gutierrez, N.A.; Serao, N.V.L.; Patience, J.F. Effects of distillers’ dried grains with solubles and soybean oil on dietary lipid, fiber, and amino acid digestibility in corn-based diets fed to growing pigs. J. Anim. Sci. 2016, 94, 1508–1519. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Lee, S.A.; Stein, H.H. Digestibility of amino acids, but not fiber, fat, or energy, is greater in cold-fermented, low-oil distillers dried grains with solubles (DDGS) compared with conventional DDGS fed to growing pigs. J. Anim. Sci. 2020, 98, skaa297. [Google Scholar] [CrossRef]
- Jacela, J.Y.; DeRouchey, J.M.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Nelssen, J.L.; Sulabo, R.C.; Thaler, R.C.; Brandts, L.; Little, D.E.; et al. Amino acid digestibility and energy content of deoiled (solvent-extracted) corn distillers dried grains with solubles for swine and effects on growth performance and carcass characteristics. J. Anim. Sci. 2011, 89, 1817–1829. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.H.; Gibson, M.L.; Pedersen, C.; Boersma, M.G. Amino acid and energy digestibility in ten samples of distillers dried grain with solubles fed to growing pigs. J. Anim. Sci. 2006, 84, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Curry, S.M.; Navarro, D.; Almeida, F.N.; Almeida, J.A.S.; Stein, H.H. Amino acid digestibility in low-fat distillers dried grains with solubles fed to growing pigs. J. Anim. Sci. Biotechnol. 2014, 5, 27. [Google Scholar] [CrossRef]
- Stein, H.H.; Lagos, L.V.; Casas, G.A. Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed Sci. Technol. 2016, 218, 33–69. [Google Scholar] [CrossRef]
- Adesehinwa, A.O.K. Energy and protein requirements of pigs and the utilization of fibrous feedstuffs in Nigeria: A review. Afr. J. Biotechnol. 2008, 7, 4798–4806. [Google Scholar]
- Schoknecht, P.A. Swine nutrition: Nutrient usage during pregnancy and early postnatal growth, an introduction. J. Anim. Sci. 1997, 75, 2705–2707. [Google Scholar] [CrossRef]
- Almeida, F.N.; Htoo, J.K.; Thomson, J.; Stein, H.H. Amino acid digestibility of heat damaged distillers dried grains with solubles fed to pigs. J. Anim. Sci. Biotechnol. 2013, 4, 44. [Google Scholar] [CrossRef] [PubMed]
- Cristobal, M.; Acosta, J.P.; Lee, S.A.; Stein, H.H. A new source of high-protein distillers dried grains with solubles (DDGS) has greater digestibility of amino acids and energy, but less digestibility of phosphorus, than de-oiled DDGS when fed to growing pigs. J. Anim. Sci. 2020, 98, skaa200. [Google Scholar] [CrossRef]
- Urriola, P.E.; Hoehler, D.; Pedersen, C.; Stein, H.H.; Shurson, G.C. Amino acid digestibility of distillers dried grains with solubles, produced from sorghum, a sorghum-corn blend, and corn fed to growing pigs. J. Anim. Sci. 2009, 87, 2574–2580. [Google Scholar] [CrossRef]
- Ren, P.; Zhu, Z.P.; Dong, B.; Zang, J.J.; Gong, L.M. Determination of energy and amino acid digestibility in growing pigs fed corn distillers’ dried grains with solubles containing different lipid levels. Arch. Anim. Nutr. 2011, 65, 303–319. [Google Scholar] [CrossRef]
- Park, C.S.; Ragland, D.; Adeola, O. Digestibility of amino acids in pigs fed distillers dried grains with solubles derived from corn, sorghum, and triticale. Can. J. Anim. Sci. 2021, 101, 224–233. [Google Scholar] [CrossRef]
- Espinosa, C.D.; Fry, R.S.; Kocher, M.E.; Stein, H.H. Effects of copper hydroxychloride and distillers dried grains with solubles on intestinal microbial concentration and apparent ileal and total tract digestibility of energy and nutrients by growing pigs. J. Anim. Sci. 2019, 97, 4904–4911. [Google Scholar] [CrossRef]
- Graham, A.B.; Goodband, R.D.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Nitikanchana, S.; Updike, J.J. The effects of low-, medium-, and high-oil distillers dried grains with solubles on growth performance, nutrient digestibility, and fat quality in finishing pigs. J. Anim. Sci. 2014, 92, 3610–3623. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.B.; Goodband, R.D.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M.; Nitikanchana, S. The effects of medium-oil dried distillers grains with solubles on growth performance, carcass traits, and nutrient digestibility in growing-finishing pigs. J. Anim. Sci. 2014, 92, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; McKeith, F.K.; Stein, H.H. Up to 30% corn germ may be included in diets fed to growing-finishing pigs without affecting pig growth performance, carcass composition, or pork fat quality. J. Anim. Sci. 2012, 90, 4933–4942. [Google Scholar] [CrossRef]
- Agyekum, A.K.; Slominski, B.A.; Nyachoti, C.M. Organ weight, intestinal morphology, and fasting whole-body oxygen consumption in growing pigs fed diets containing distillers dried grains with solubles alone or in combination with a multienzyme supplement. J. Anim. Sci. 2012, 90, 3032–3040. [Google Scholar] [CrossRef]
- Benz, J.M.; Linneen, S.K.; Tokach, M.D.; Dritz, S.S.; Nelssen, J.L.; DeRouchey, J.M.; Goodband, R.D.; Sulabo, R.C.; Prusa, K.J. Effects of dried distillers grains with solubles on carcass fat quality of finishing pigs. J. Anim. Sci. 2010, 88, 3666–3682. [Google Scholar] [CrossRef]
- Harris, E.K.; Mellencamp, M.A.; Johnston, L.J.; Cox, R.B.; Shurson, G.C. Effect of time interval between the second Improvest® dose and slaughter and corn dried distillers grains with solubles feeding strategies on carcass composition, primal cutout, and pork quality of immunologically castrated pigs. Meat Sci. 2017, 127, 13–20. [Google Scholar] [CrossRef]
- Swiatkiewicz, M.; Olszewska, A.; Grela, E.R.; Tyra, M. The Effect of Replacement of Soybean Meal with Corn Dried Distillers Grains with Solubles (cDDGS) and Differentiation of Dietary Fat Sources on Pig Meat Quality and Fatty Acid Profile. Animals 2021, 11, 1277. [Google Scholar] [CrossRef]
- Xu, G.; Baidoo, S.K.; Johnston, L.J.; Bibus, D.; Cannon, J.E.; Shurson, G.C. Effects of feeding diets containing increasing content of corn distillers dried grains with solubles to grower- finisher pigs on growth performance, carcass composition, and pork fat quality. J. Anim. Sci. 2010, 88, 1398–1410. [Google Scholar] [CrossRef]
- Swiatkiewicz, M.; Hanczakowska, E.; Olszewska, A. EFFECT OF CORN DISTILLERS DRIED GRAINS WITH SOLUBLES (DDGS) IN DIETS WITH NSP-HYDROLYZING ENZYMES ON GROWTH PERFORMANCE, CARCASS TRAITS AND MEAT QUALITY OF PIGS. Ann. Anim. Sci. 2013, 13, 313–326. [Google Scholar] [CrossRef]
- Pompeu, D.; Wiegand, B.R.; Evans, H.L.; Rickard, J.W.; Gerlemann, G.D.; Hinson, R.B.; Carr, S.N.; Ritter, M.J.; Boyd, R.D.; Allee, G.L. Effect of corn dried distillers grains with solubles, conjugated linoleic acid, and ractopamine (Paylean) on growth performance and fat characteristics of late finishing pigs. J. Anim. Sci. 2013, 91, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Kil, D.Y.; Mahan, D.C.; Hill, G.M.; Stein, H.H. Effects of dietary sulfur and distillers dried grains with solubles on carcass characteristics, loin quality, and tissue concentrations of sulfur, selenium, and copper in growing-finishing pigs. J. Anim. Sci. 2014, 92, 4486–4493. [Google Scholar] [CrossRef] [PubMed]
- Hilbrands, A.M.; Johnston, L.J.; McClelland, K.M.; Cox, R.B.; Baidoo, S.K.; Souza, L.W.O.; Shurson, G.C. Effects of abrupt introduction and removal of high and low digestibility corn distillers dried grains with solubles from the diet on growth performance and carcass characteristics of growing-finishing pigs. J. Anim. Sci. 2012, 91, 248–258. [Google Scholar] [CrossRef]
- Lee, J.W.; Kil, D.Y.; Keever, B.D.; Killefer, J.; McKeith, F.K.; Sulabo, R.C.; Stein, H.H. Carcass fat quality of pigs is not improved by adding corn germ, beef tallow, palm kernel oil, or glycerol to finishing diets containing distillers dried grains with solubles. J. Anim. Sci. 2013, 91, 2426–2437. [Google Scholar] [CrossRef]
- Xu, G.; Baidoo, S.K.; Johnston, L.J.; Bibus, D.; Cannon, J.E.; Shurson, G.C. The effects of feeding diets containing corn distillers dried grains with solubles, and withdrawal period of distillers dried grains with solubles, on growth performance and pork quality in grower-finisher pigs. J. Anim. Sci. 2010, 88, 1388–1397. [Google Scholar] [CrossRef]
- Dahlen, R.B.A.; Baidoo, S.K.; Shurson, G.C.; Anderson, J.E.; Dahlen, C.R.; Johnston, L.J. Assessment of energy content of low-solubles corn distillers dried grains and effects on growth performance, carcass characteristics, and pork fat quality in growing-finishing pigs. J. Anim. Sci. 2011, 89, 3140–3152. [Google Scholar] [CrossRef]
- Schwarz, T.; Przybylo, M.; Zapletal, P.; Turek, A.; Pabianczyk, M.; Bartlewski, P.M. Effects of Using Corn Dried Distillers’ Grains with Solubles (cDDGS) as a Partial Replacement for Soybean Meal on the Outcomes of Pig Fattening, Pork Slaughter Value and Quality. Animals 2021, 11, 2956. [Google Scholar] [CrossRef]
- Nemechek, J.E.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; DeRouchey, J.M.; Woodworth, J.C. Effects of diet form and type on growth performance, carcass yield, and iodine value of finishing pigs. J. Anim. Sci. 2015, 93, 4486–4499. [Google Scholar] [CrossRef]
- Asmus, M.D.; Tavarez, M.A.; Tokach, M.D.; Dritz, S.S.; Schroeder, A.L.; Nelssen, J.L.; Goodband, R.D.; DeRouchey, J.M. The effects of immunological castration and corn dried distillers grains with solubles withdrawal on growth performance, carcass characteristics, fatty acid analysis, and iodine value of pork fat depots. J. Anim. Sci. 2014, 92, 2116–2132. [Google Scholar] [CrossRef]
- Effects of liquid feeding of corn condensed distiller’s solubles and whole stillage on growth performance, carcass characteristics, and sensory traits of pigs. J. Anim. Sci. Biotechnol. 2017, 8, 467–477.
- McClelland, K.M.; Rentfrow, G.; Cromwell, G.L.; Lindemann, M.D.; Azain, M.J. Effects of corn distillers dried grains with solubles on quality traits of pork. J. Anim. Sci. 2012, 90, 4148–4156. [Google Scholar] [CrossRef]
- Corassa, A.; Lautert, I.; Ton, A.P.S.; Kiefer, C.; Brito, C.O.; Sbardella, M.; Souza, H.C. Viability of Brazilian distillers dried grains with solubles for pigs. Semin.-Cienc. Agrar. 2021, 42, 1159–1174. [Google Scholar] [CrossRef]
- Uyar, G.; Yildiran, H. A nutritional approach to microbiota in Parkinson’s disease. Biosci. Microbiota Food Health 2019, 38, 115–127. [Google Scholar] [CrossRef]
- Varel, V.H.; Yen, J.T. Microbial perspective on fiber utilization by swine. J. Anim. Sci. 1997, 75, 2715–2722. [Google Scholar] [CrossRef]
- Weber, E.K.; Stalder, K.J.; Patience, J.F. Wean-to-finish feeder space availability effects on nursery and finishing pig performance and total tract digestibility in a commercial setting when feeding dried distillers grains with solubles. J. Anim. Sci. 2015, 93, 1905–1915. [Google Scholar] [CrossRef]
- Pettey, L.A.; Carter, S.D.; Senne, B.W.; Shriver, J.A. Effects of beta-mannanase addition to corn-soybean meal diets on growth performance, carcass traits, and nutrient digestibility of weanling and growing-finishing pigs. J. Anim. Sci. 2002, 80, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Bakker, G.C.; Dekker, R.A.; Jongbloed, R.; Jongbloed, A.W. Non-starch polysaccharides in pig feeding. Vet. Q. 1998, 20 (Suppl. S3), S59–S64. [Google Scholar] [CrossRef]
- Alvarez-Cervantes, J.; Domínguez-Hernández, E.M.; Mercado-Flores, Y.; O’Donovan, A.; Díaz-Godínez, G. Mycosphere Essay 10: Properties and characteristics of microbial xylanases. Mycosphere 2016, 7, 1600–1619. [Google Scholar] [CrossRef]
- Aachary, A.A.; Prapulla, S.G. Xylooligosaccharides (XOS) as an Emerging Prebiotic: Microbial Synthesis, Utilization, Structural Characterization, Bioactive Properties, and Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 2–16. [Google Scholar] [CrossRef]
- O’Shea, C.J.; Mc Alpine, P.O.; Solan, P.; Curran, T.; Varley, P.F.; Walsh, A.M.; Doherty, J.V.O. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower-finisher pigs. Anim. Feed Sci. Technol. 2014, 189, 88–97. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zhang, S.H.; Kim, S.W. Effects of supplemental xylanase on health of the small intestine in nursery pigs fed diets with corn distillers’ dried grains with solubles. J. Anim. Sci. 2020, 98, skaa185. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R.; Schulze, H. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 1998, 11, 91–114. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y.; Yang, Y.X.; Shinde, P.L.; Choi, J.Y.; Kim, J.S.; Kim, Y.W.; Yun, K.; Jo, J.K.; Lee, J.H.; Ohh, S.J.; et al. Effects of mannanase and distillers dried grain with solubles on growth performance, nutrient digestibility, and carcass characteristics of grower-finisher pigs. J. Anim. Sci. 2010, 88, 181–191. [Google Scholar] [CrossRef]
- Paik, I.K. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian Australas. J. Anim. 2003, 16, 124–135. [Google Scholar] [CrossRef]
- Lee, S.D.; Jung, H.J.; Cho, K.H.; Park, J.C.; Kim, I.C.; Seong, P.N.; Song, Y.M. Effects of corn dried distiller’s grains with solubles and enzyme premix supplements on growth performance, carcass characteristics and meat quality parameters in finishing pigs. Anim. Sci. J. 2011, 82, 461–467. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Lin, M.; Lu, Z.; Yao, W. Effects of corn DDGS in combination with compound enzymes on growth performance, carcass fat quality, and plasma and tissue redox homeostasis of growing-finishing pigs. Livest. Sci. 2012, 149, 46–52. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Ige, D.V.; Akinremi, O.O.; Nyachoti, C.M. Performance and nutrient digestibility in growing pigs fed wheat dried distillers’ grain with solubles-containing diets supplemented with phytase and multi-carbohydrase. Anim. Sci. J. 2016, 87, 570–577. [Google Scholar] [CrossRef]
- Medellin, J.P.A.; Espinosa, C.D.; Jaworski, N.; Stein, H.H. A Corn Protein Product Has Greater Concentration of Digestible Amino Acids and Energy Than Low-oil Distillers Dried Grains with Solubles When Fed to Pigs and May Be Used in Diets for Weanling Pigs. J. Anim. Sci. 2021, 99, 85–86. [Google Scholar] [CrossRef]
- Yu, C.Y.; Zhang, S.H.; Yang, Q.; Peng, Q.; Zhu, J.L.; Zeng, X.F.; Qiao, S.Y. Effect of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets. Arch. Anim. Nutr. 2016, 70, 263–277. [Google Scholar] [CrossRef]
- Jakobsen, G.V.; Jensen, B.B.; Knudsen, K.E.B.; Canibe, N. Impact of fermentation and addition of non-starch polysaccharide-degrading enzymes on microbial population and on digestibility of dried distillers grains with solubles in pigs. Livest. Sci. 2015, 178, 216–227. [Google Scholar] [CrossRef]
- Rho, Y.; Kiarie, E.; de Lange, C.F.M. Nutritive value of corn distiller’s dried grains with solubles steeped without or with exogenous feed enzymes for 24 h and fed to growing pigs. J. Anim. Sci. 2018, 96, 2352–2360. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, M.; McBride, B.; Li, J.; Wey, D.; Zhu, J.; de Lange, C.F.M. Effects of steeped or fermented distillers dried grains with solubles on growth performance in weanling pigs. J. Anim. Sci. 2017, 95, 3563–3578. [Google Scholar] [CrossRef]
- Moran, K.; de Lange, C.F.M.; Ferket, P.; Fellner, V.; Wilcock, P.; van Heugten, E. Enzyme supplementation to improve the nutritional value of fibrous feed ingredients in swine diets fed in dry or liquid form. J. Anim. Sci. 2016, 94, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Patience, J.F.; Rossoni-Serao, M.C.; Gutiérrez, N.A. A review of feed efficiency in swine: Biology and application. J. Anim. Sci. Biotechnol. 2015, 6, 33. [Google Scholar] [CrossRef]
- Rojas, O.J.; Stein, H.H. Processing of ingredients and diets and effects on nutritional value for pigs. J. Anim. Sci. Biotechnol. 2017, 8, 48. [Google Scholar] [CrossRef]
- Zhu, Z.P.; Hinson, R.B.; Ma, L.; Li, D.F.; Allee, G.L. Growth Performance of Nursery Pigs Fed 30% Distillers Dried Grain with Solubles (DDGS) and the Effects of Pelleting on Performance and Nutrient Digestibility. Asian Australas. J. Anim. Sci. 2010, 23, 792–798. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Srinivasan, R.; Moreau, R.A.; Rausch, K.D.; Belyea, R.L.; Tumbleson, M.E.; Singh, V. Separation of fiber from distillers dried grains with solubles (DDGS) using sieving and elutriation. Cereal Chem. 2005, 82, 528–533. [Google Scholar] [CrossRef]
- White, H.M.; Richert, B.T.; Radcliffe, J.S.; Schinckel, A.P.; Burgess, J.R.; Koser, S.L.; Donkin, S.S.; Latour, M.A. Feeding conjugated linoleic acid partially recovers carcass quality in pigs fed dried corn distillers grains with solubles. J. Anim. Sci. 2009, 87, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.S.; Shi, Z.; Gao, R.; Su, B.C.; Wang, H.; Shi, B.M.; Shan, A.S. Effects of conjugated linoleic acid or betaine on the growth performance and fatty acid composition in backfat and belly fat of finishing pigs fed dried distillers grains with solubles. Animal 2015, 9, 569–575. [Google Scholar] [CrossRef]
- Smith, S.B.; Hively, T.S.; Cortese, G.M.; Han, J.J.; Chung, K.Y.; Castenada, P.; Gilbert, C.D.; Adams, V.L.; Mersmann, H.J. Conjugated linoleic acid depresses the delta9 desaturase index and stearoyl coenzyme A desaturase enzyme activity in porcine subcutaneous adipose tissue. J. Anim. Sci. 2002, 80, 2110–2115. [Google Scholar] [PubMed]
- Xi, L.; Brown, K.; Woodworth, J.; Shim, K.; Johnson, B.; Odle, J. Maternal Dietary L-Carnitine Supplementation Influences Fetal Carnitine Status and Stimulates Carnitine Palmitoyltransferase and Pyruvate Dehydrogenase Complex Activities in Swine. J. Nutr. 2008, 138, 2356–2362. [Google Scholar] [CrossRef] [PubMed]
- Carr, S.N.; Hamilton, D.N.; Miller, K.D.; Schroeder, A.L.; Fernández-Dueñas, D.; Killefer, J.; Ellis, M.; McKeith, F.K. The effect of ractopamine hydrochloride (Paylean®) on lean carcass yields and pork quality characteristics of heavy pigs fed normal and amino acid fortified diets. Meat Sci. 2009, 81, 533–539. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Bekhit, A.; Waller, M.; Bailes, K.L.; Kerr, M.J.; Hopkins, D.L. The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef. Meat Sci. 2021, 179, 108551. [Google Scholar] [CrossRef]
- Dursun, A.; Güler, Z. Colour and pigment in raw ground meat incorporated crushed garlic during the refrigerated storage: Their relationship to lipolytic and volatilomic changes. Food Chem. 2023, 419, 136042. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Zhang, H.J.; Wu, S.G.; Yue, H.Y.; Wan, X.L.; Yang, H.M.; Wang, Z.Y.; Qi, G.H. Vitamin E Supplementation Enhances Lipid Oxidative Stability via Increasing Vitamin E Retention, Rather Than Gene Expression of MAPK-Nrf2 Signaling Pathway in Muscles of Broilers. Foods 2021, 10, 2555. [Google Scholar] [CrossRef]
- Song, R.; Chen, C.; Wang, L.; Johnston, L.J.; Kerr, B.J.; Weber, T.E.; Shurson, G.C. High sulfur content in corn dried distillers grains with solubles protects against oxidized lipids by increasing sulfur-containing antioxidants in nursery pigs. J. Anim. Sci. 2013, 91, 2715–2728. [Google Scholar] [CrossRef]
- Song, R.; Chen, C.; Johnston, L.J.; Kerr, B.J.; Weber, T.E.; Shurson, G.C. Effects of feeding diets containing highly peroxidized distillers dried grains with solubles and increasing vitamin E levels to wean-finish pigs on growth performance, carcass characteristics, and pork fat composition. J. Anim. Sci. 2014, 92, 198–210. [Google Scholar] [CrossRef]
- Davis, J.M.; Urriola, P.E.; Baidoo, S.K.; Johnston, L.J.; Shurson, G.C. Effects of adding supplemental tallow to diets containing distillers dried grains with solubles on fatty acid digestibility in growing pigs. J. Anim. Sci. 2015, 93, 258–265. [Google Scholar] [CrossRef]
- Coble, K.F.; DeRouchey, J.M.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; Woodworth, J.C. Effects of distillers dried grains with solubles and added fat fed immediately before slaughter on growth performance and carcass characteristics of finishing pigs. J. Anim. Sci. 2017, 95, 270–278. [Google Scholar] [CrossRef]
- Yang, A.; Qi, M.; Wang, X.; Wang, S.; Sun, H.; Qi, D.S.; Zhu, L.Y.; Duan, Y.Z.; Gao, X.; Rajput, S.A.; et al. Refined cottonseed oil as a replacement for soybean oil in broiler diet. Food Sci. Nutr. 2019, 7, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Nixon, J.E.; Eisele, T.A.; Hendricks, J.D.; Sinnhuber, R.O. Reproduction and lipid composition of rats fed cyclopropene fatty acids. J. Nutr. 1977, 107, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Villela, C.; Cox, R.B.; Shurson, G.C.; Compart, K.M.; Urriola, P.E.; Johnston, L.J. Effects of adding minimally refined cottonseed oil or crude glycerol to diets containing 40% corn distiller’s dried grains with solubles on growth performance, carcass characteristics, and pork fat firmness of growing-finishing pigs. J. Anim. Sci. 2017, 95, 3057–3067. [Google Scholar] [CrossRef]
- Quintana, J.; Barrot, M.; Fabrias, G.; Camps, F. A model study on the mechanism of inhibition of fatty acyl desaturases by cyclopropene fatty acids. Tetrahedron 1998, 54, 10187–10198. [Google Scholar] [CrossRef]
- Tavakoli, A.; Sahari, M.A.; Barzegar, M.; Gavlighi, H.A.; Marzocchi, S.; Marziali, S.; Caboni, M.F. The effect of refining process on the volatile compounds, oxidation stability and fatty acids profile of soybean oil using an electrostatic field. J. Food Process. Preserv. 2022, 46, e16160. [Google Scholar] [CrossRef]
- Kim, B.G.; Kil, D.Y.; Stein, H.H. In growing pigs, the true ileal and total tract digestibility of acid hydrolyzed ether extract in extracted corn oil is greater than in intact sources of corn oil or soybean oil. J. Anim. Sci. 2013, 91, 755–763. [Google Scholar] [CrossRef]
- Kumar, L.R.; Yellapu, S.K.; Tyagi, R.D.; Zhang, X.L. A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production. Bioresour. Technol. 2019, 293, 122155. [Google Scholar] [CrossRef]
- Lammers, P.J.; Kerr, B.J.; Weber, T.E.; Dozier, W.A.; Kidd, M.T.; Bregendahl, K.; Honeyman, M.S. Digestible and metabolizable energy of crude glycerol for growing pigs. J. Anim. Sci. 2008, 86, 602–608. [Google Scholar] [CrossRef]
- Bansal, N.; Dasgupta, D.; Hazra, S.; Bhaskar, T.; Ray, A.; Ghosh, D. Effect of utilization of crude glycerol as substrate on fatty acid composition of an oleaginous yeast Rhodotorula mucilagenosa IIPL32: Assessment of nutritional indices (vol 309, 123330, 2020). Bioresour. Technol. 2022, 359, 127509. [Google Scholar] [CrossRef]
- Yang, F.X.; Hanna, M.A.; Sun, R.C. Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol. Biofuels 2012, 5, 13. [Google Scholar] [CrossRef]
- Lammers, P.J.; Kerr, B.J.; Honeyman, M.S. Biofuel co-products as swine feed ingredients: Combining corn distillers dried grains with solubles (DDGS) and crude glycerin. Anim. Feed Sci. Technol. 2015, 201, 110–114. [Google Scholar] [CrossRef]
- Clizer, D.A.; Tostenson, B.J.; Tauer, S.K.; Samuel, R.S.; Cline, P.M. The effect of standardized ileal digestible isoleucine:lysine in diets containing 20% dried distillers grains with solubles on finishing pig performance and carcass characteristics. J. Anim. Sci. 2022, 100, skac234. [Google Scholar] [CrossRef]
- Gaines, A.M.; Kendall, D.C.; Allee, G.L.; Usry, J.L.; Kerr, B.J. Estimation of the standardized ileal digestible valine-to-lysine ratio in 13- to 32-kilogram pigs. J. Anim. Sci. 2011, 89, 736–742. [Google Scholar] [CrossRef]
- Kerkaert, H.R.; Cemin, H.S.; Woodworth, J.C.; Derouchey, J.M.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D.; Haydon, K.D.; Hastad, C.W.; Post, Z.B. Improving performance of finishing pigs with added Valine, Isoleucine, and Tryptophan: Validating a meta-analysis model. J. Anim. Sci. 2021, 99, skab006. [Google Scholar] [CrossRef]
- Clizer, D.A.; Tostenson, B.J.; Tauer, S.K.; Samuel, R.S.; Cline, P.M. Impact of Increasing Standardized Ileal Digestible Valine:Lysine in Diets Containing 30% Dried Distiller Grains with Solubles on Growing Pig Performance. J. Anim. Sci. 2022, 100, skac228. [Google Scholar] [CrossRef]
- Zhu, C.L.; Rademacher, M.; Lange, C.F.M.D. Increasing dietary pectin level reduces utilization of digestible threonine intake, but not lysine intake, for body protein deposition in growing pigs. J. Anim. Sci. 2005, 83, 1044–1053. [Google Scholar] [CrossRef]
- Kwon, W.B.; Touchette, K.J.; Simongiovanni, A.; Syriopoulos, K.; Wessels, A.; Stein, H.H. Excess dietary leucine in diets for growing pigs reduces growth performance, biological value of protein, protein retention, and serotonin synthesis. J. Anim. Sci. 2019, 97, 4282–4292. [Google Scholar] [CrossRef]
- Cota, D.; Proulx, K.; Smith, K.A.B.; Kozma, S.C.; Thomas, G.; Woods, S.C.; Seeley, R.J. Hypothalamic mTOR signaling regulates food intake. Science 2006, 312, 927–930. [Google Scholar] [CrossRef]
- PIC. Nutrient Specifications Manual; PIC Genus: Hendersonville, TN, USA, 2016. [Google Scholar]
- Salyer, J.A.; Tokach, M.D.; DeRouchey, J.M.; Dritz, S.S.; Goodband, R.D.; Nelssen, J.L. Effects of standardized ileal digestible tryptophan:lysine in diets containing 30% dried distillers grains with solubles on finishing pig performance and carcass traits. J. Anim. Sci. 2013, 91, 3244–3252. [Google Scholar] [CrossRef]
- Urriola, P.E.; Shurson, G.C.; Stein, H.H. Digestibility of dietary fiber in distillers coproducts fed to growing pigs. J. Anim. Sci. 2010, 88, 2373–2381. [Google Scholar] [CrossRef]
- Montagne, L.; Pluske, J.R.; Hampson, D.J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 2003, 108, 95–117. [Google Scholar] [CrossRef]
- Mathai, J.K.; Htoo, J.K.; Thomson, J.E.; Touchette, K.J.; Stein, H.H. Effects of dietary fiber on the ideal standardized ileal digestible threonine: Lysine ratio for twenty-five to fifty kilogram growing gilts. J. Anim. Sci. 2016, 94, 4217–4230. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, A.F.; Tokach, M.D.; Goodband, R.D.; Woodworth, J.C.; DeRouchey, J.M.; Gebhardt, J.T. Evaluation of increasing digestible threonine to lysine ratio in corn-soybean meal diets without and with distillers dried grains with solubles on growth performance of growing-finishing pigs. Transl. Anim. Sci. 2022, 6, txac058. [Google Scholar] [CrossRef] [PubMed]
Item | Olukosi and Adebiyi [41] | Cromwell et al. [39] | Spiehs et al. [43] | Belyea et al. [42] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | CV | Mean | Range | CV | Mean | Range | CV | Mean | Range | CV | |
DM, % | ND | ND | ND | 90.5 | 87.1–92.7 | 1.8 | 88.9 | 87.2–90.2 | 1.7 | ND | ND | ND |
Starch, % | ND | ND | ND | ND | ND | ND | ND | ND | ND | 5.3 | 4.7–5.9 | 9.7 |
Total carbohydrates, % | ND | ND | ND | 54.3 | ND | ND | 53.1 | ND | ND | 52.1 | ND | 5.2 |
CF, % | 7.4 | 6.2–11.3 | 15.1 | ND | ND | ND | 8.8 | 8.3–9.7 | 8.7 | 10.2 | 9.6–10.6 | 3.7 |
ADF, % | 13.6 | 8.6–18.5 | 24.2 | 15.9 | 11.4–20.8 | 21.1 | 16.2 | 13.8–18.5 | 28.4 | 16.8 | 15.4–19.3 | 9.3 |
NDF, % | 36.6 | 27.7–51.0 | 15.7 | 38.8 | 33.1–43.9 | 10.0 | 42.1 | 36.7–49.1 | ND | 14.3 | ND | ND |
Item | Mean | SEM | Wu et al. [52] | Ma et al. [53] | Meng et al. [54] | Meng et al. [55] |
---|---|---|---|---|---|---|
EE, % | 7.88 | 1.1678 | 10.7 | 6.73 | 5.36 | 8.74 |
C14:0, % | 0.20 | 0.0650 | 0.13 | 0.26 | ND | ND |
C16:0, % | 12.23 | 1.3855 | 15.70 | 8.99 | 11.63 | 12.60 |
C16:1, % | 0.16 | 0.0316 | 0.20 | 0.22 | 0.08 | 0.14 |
C18:0, % | 2.59 | 0.2370 | 2.19 | 3.03 | 2.97 | 2.17 |
C18:1n-9, % | 23.97 | 1.2465 | 24.27 | 21.51 | 22.78 | 27.30 |
C18:2n-6, % | 52.97 | 1.2590 | 53.53 | 49.88 | 55.96 | 52.50 |
C18:3n-3, % | 2.11 | 0.9633 | 1.80 | 0.37 | 4.85 | 1.40 |
Total SFAs, % | 15.99 | 1.0833 | 19.11 | 14.14 | 15.11 | 15.60 |
Total MUFAs, % | 24.77 | 0.9453 | 24.84 | 23.67 | 23.16 | 27.40 |
Total PUFAs, % | 55.66 | 2.0409 | 55.32 | 51.40 | 61.21 | 54.70 |
Item | DDGS | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SEM | Max | Min | Mean | SEM | Max | Min | ||
Indispensable AA AID | Indispensable AA SID | ||||||||
Arg, % | 79.28 | 1.67 | 85.00 | 68.80 | 84.79 | 1.6531 | 89.30 | 79.10 | |
His, % | 76.16 | 1.86 | 83.10 | 68.60 | 77.59 | 1.9077 | 85.70 | 71.90 | |
Ile, % | 75.43 | 1.62 | 82.50 | 70.20 | 77.37 | 1.4601 | 84.40 | 73.60 | |
Leu, % | 83.26 | 1.35 | 88.60 | 76.00 | 84.34 | 1.6249 | 90.80 | 77.30 | |
Lys, % | 62.50 | 6.40 | 85.20 | 27.60 | 63.94 | 4.4456 | 86.20 | 50.40 | |
Met, % | 82.68 | 1.78 | 90.00 | 74.90 | 82.80 | 1.5934 | 88.80 | 76.50 | |
Phe, % | 81.83 | 2.31 | 97.30 | 74.00 | 82.17 | 1.2972 | 87.50 | 76.90 | |
Thr, % | 67.29 | 1.89 | 75.40 | 60.20 | 72.34 | 1.6771 | 78.10 | 66.70 | |
Trp, % | 72.81 | 3.57 | 86.40 | 55.10 | 71.67 | 2.2305 | 78.00 | 62.40 | |
Val, % | 74.42 | 2.33 | 87.90 | 66.10 | 75.99 | 1.4255 | 82.30 | 70.50 | |
Dispensable AA AID | Dispensable AA SID | ||||||||
Ala, % | 74.72 | 1.55 | 87.90 | 66.10 | 80.91 | 1.6658 | 86.60 | 74.60 | |
Asp, % | 65.00 | 1.17 | 72.70 | 60.90 | 73.04 | 1.9196 | 78.78 | 65.40 | |
Cys, % | 64.67 | 2.74 | 75.30 | 46.90 | 73.86 | 1.9582 | 79.90 | 67.30 | |
Glu, % | 78.01 | 1.26 | 84.40 | 72.20 | 82.80 | 1.7456 | 88.28 | 76.50 | |
Gly, % | 47.24 | 3.65 | 68.10 | 34.67 | 71.10 | 2.8112 | 88.90 | 58.70 | |
Pro, % | 52.28 | 6.55 | 79.20 | 33.70 | 82.81 | 3.3131 | 95.90 | 71.60 | |
Ser, % | 72.29 | 1.40 | 79.00 | 68.00 | 79.73 | 2.0133 | 83.85 | 73.50 | |
Tyr, % | 82.35 | 1.88 | 92.60 | 75.60 | 88.01 | 1.7686 | 94.20 | 81.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Huang, X.; Liu, X.; Wang, R.; Li, J.; Meng, Q.; Shan, A. Strategies for Efficient Utilization of Corn Distillers Dried Grains with Solubles in Diets of Pigs: A Review. Animals 2025, 15, 1727. https://doi.org/10.3390/ani15121727
Wang C, Huang X, Liu X, Wang R, Li J, Meng Q, Shan A. Strategies for Efficient Utilization of Corn Distillers Dried Grains with Solubles in Diets of Pigs: A Review. Animals. 2025; 15(12):1727. https://doi.org/10.3390/ani15121727
Chicago/Turabian StyleWang, Chunsheng, Xinru Huang, Xue Liu, Ruixue Wang, Jianping Li, Qingwei Meng, and Anshan Shan. 2025. "Strategies for Efficient Utilization of Corn Distillers Dried Grains with Solubles in Diets of Pigs: A Review" Animals 15, no. 12: 1727. https://doi.org/10.3390/ani15121727
APA StyleWang, C., Huang, X., Liu, X., Wang, R., Li, J., Meng, Q., & Shan, A. (2025). Strategies for Efficient Utilization of Corn Distillers Dried Grains with Solubles in Diets of Pigs: A Review. Animals, 15(12), 1727. https://doi.org/10.3390/ani15121727