Biotechnological Valorization of Brewer’s Spent Grain from Old Bread and Barley Malt: Fermentative Potential of Saccharomyces cerevisiae
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Raw Materials and Processing
2.2. Microorganism and Culture Media
2.3. Enzymatic Hydrolysis and Fermentation of BSG
2.4. Microbiological Analyses
2.5. pH Value and Total Titratable Acidity Analysis
2.6. Determination of Reduced Sugar Content
2.7. Statistical Analysis
3. Results
3.1. BSG Enzymatic Hydrolysis
3.2. BSG Fermentation
4. Discussion
4.1. Success of BSG Enzymatic Hydrolysis
4.2. Number of Yeast Cells in Fermented Media
4.3. pH Value of Fermented Media
4.4. Reducing Sugars Content in Fermented Media
4.5. Total Titratable Acidity of Fermented Media
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BSG | Brewer’s Spent Grain |
RS | Reducing Sugar |
TTA | Total Titratable Acidity |
References
- Jurić, A.; Ćorić, N.; Odak, A.; Herceg, Z.; Tišma, M. Analysis of total polyphenols, bitterness and haze in pale and dark lager beers produced under different mashing and boiling conditions. J. Inst. Brew. 2015, 121, 430–436. [Google Scholar] [CrossRef]
- Njegović, Z.B.; Živković, J.S.; Cvetković, B.R. Possibilities of Utilization of Leftover Bread in Food Processing. J. Inst. Food Technol. 2010, 38, 39–45. [Google Scholar] [CrossRef]
- Martin-Lobera, C.; Aranda, F.; Lozano-Martinez, P.; Caballero, I.; Blanco, C.A. Bread as a Valuable Raw Material in Craft Ale Beer Brewing. Foods 2022, 11, 3013. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, S.I. Biotechnological Potential of Brewing Industry By-Products. In Biotechnology for Agro-Industrial Residues Utilisation; Singh nee’ Nigam, P., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 313–326. [Google Scholar] [CrossRef]
- Pejin, J.; Radosavljević, M.; Kocić-Tanackov, S.; Marković, R.; Djukić-Vuković, A.; Mojović, L. Use of spent brewer’s yeast in L-(+) lactic acid fermentation. J. Inst. Brew. 2019, 125, 357–363. [Google Scholar] [CrossRef]
- Mitri, S.; Salameh, S.-J.; Khelfa, A.; Leonard, E.; Maroun, R.G.; Louka, N.; Koubaa, M. Valorization of Brewers’ Spent Grains: Pretreatments and Fermentation, a Review. Fermentation 2022, 8, 50. [Google Scholar] [CrossRef]
- Atere, V.A. Citric acid production from brewers spent grain by Aspergillus niger and Saccharomyces cerevisiae. Int. J. Res. Biosci. 2013, 2, 30–36. [Google Scholar]
- Tišma, M.; Jurić, A.; Bucić-Kojić, A.; Panjičko, M.; Planinić, M. Biovalorization of brewers’ spent grain for the production of laccase and polyphenols. Biotechnol. J. 2023, 18, 479. [Google Scholar] [CrossRef]
- Lalić, A.; Jagelavičiūtė, J.; Rezić, T.; Trivunović, Z.; Žadeikė, D.; Bašinskienė, L. From Bakery Leftovers to Brewing Sustainability: Fermentation of Spent Grain with Yarrowia lipolytica and Lactobacillus acidophilus. Sustainability 2025, 17, 782. [Google Scholar] [CrossRef]
- Souza, A.; Arias, E.; Arellano, V.; Macarin, G.; Vargha, S.; Raggio, L.M. Revaluation of a beer industry by-product towards the development of a sustainable product: Beer by-product pasta. Front. Food Sci. Technol. 2025, 5, 1491253. [Google Scholar] [CrossRef]
- Karlovic, A.; Juric, A.; Coric, N.; Habschied, K.; Krstanovic, V.; Mastanjevic, K. By-Products in the Malting and Brewing, Industries—Re-Usage Possibilities. Fermentation 2020, 6, 82. [Google Scholar] [CrossRef]
- Petit, G.; Korbel, E.; Jury, V.; Aider, M.; Rousselière, S.; Audebrand, L.K.; Turgeon, S.L.; Mikhaylin, S. Environmental Evaluation of New Brewer’s Spent Grain Preservation Pathways for Further Valorization in Human Nutrition. ACS Sustain. Chem. Eng. 2020, 8, 17335–17344. [Google Scholar] [CrossRef]
- Colpo, I.; Rabenschlag, D.R.; de Lima, M.S.; Martins, M.E.S.; Sellitto, M.A. Economic and financial feasibility of a biorefinery for conversion of brewers’ spent grain into a special flour. J. Open Innov. Technol. Mark. Complex. 2022, 8, 79. [Google Scholar] [CrossRef]
- Murphy, L.; O’Connell, D.J. The Role of Yeast in the Valorisation of Food Waste. Fermentation 2024, 10, 583. [Google Scholar] [CrossRef]
- Kashyap, A. Bioethanol Production from Organic Kitchen Waste Using Saccharomyces Cerevisiae. Helix 2022, 12, 28–33. Available online: https://helixscientific.pub/index.php/home/article/view/398 (accessed on 10 March 2025).
- Ahmad, A.; Naqvi, S.A.; Jaskani, M.J.; Waseem, M.; Ali, E.; Khan, I.A.; Manzoor, M.F.; Siddeeg, A.; Aadil, R.M. Efficient utilization of date palm waste for the bioethanol production through Saccharomyces cerevisiae strain Food Sci. Nutr. 2021, 9, 2066–2074. [Google Scholar] [CrossRef]
- Salafia, F.; Ferracane, A.; Tropea, A. Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production. Fermentation 2022, 8, 100. [Google Scholar] [CrossRef]
- Jahanbakhshi, A.; Salehi, R. Processing watermelon waste using Saccharomyces cerevisiae yeast and the fermentation method for bioethanol production. J. Food Process Eng. 2019, 42, 7. [Google Scholar] [CrossRef]
- Abdullahi, U.B.; Ekperi, N.I.; Ikenyiri, P.N. Fermentation of Potato Peels Using Saccharomyces cerevisiae as a Fermenting Yeas. J. Catal. Catal. 2022, 9, 1. Available online: https://engineeringjournals.stmjournals.in/index.php/JoCC/article/view/6286 (accessed on 19 March 2025.).
- Núñez Caraballo, A.; Ilina, A.; Ramos González, R.; Aguilar, C.N.; Álvarez, G.M.; Flores Gallegos, A.C.; Sandoval-Cortés, J.; Aguilar-Gonzalez, M.A.; Soto-Cruz, N.O.; García García, J.D.; et al. Sustainable Ethanol Production From Sugarcane Molasses by Saccharomyces cerevisiae Immobilized on Chitosan-Coated Manganese Ferrite. Front. Sustain. Food Syst. 2021, 5, 683170. [Google Scholar] [CrossRef]
- Mokomele, T.; Brandt, B.A.; Görgens, J.F. Effective Fermentation of Sugarcane Bagasse Whole Slurries Using Robust Xylose-Capable Saccharomyces cerevisiae. Bioenerg. Res. 2023, 16, 2297–2313. [Google Scholar] [CrossRef]
- Altınışık, S.; Nigiz, F.U.; Gürdal, S.; Yılmaz, K.; Tuncel, N.B.; Koyuncu, S. Optimization of bioethanol production from sugar beet processing by-product molasses using response surface methodology. Biomass Conv. Bioref. 2025, 15, 9875–9888. [Google Scholar] [CrossRef]
- Grahovac, J.; Dodić, J.; Rončević, Z.; Dodić, S.; Vučurović, D. Distillate composition of fermented media based on by-products of sugar beet processing. Rom. Biotechnol. Lett. 2019, 24, 50–56. [Google Scholar] [CrossRef]
- Rončević, Z.; Bajić, B.; Dodić, S.; Grahovac, J.; Pajović-Šćepanović, R.; Dodić, J. Optimization of bioethanol production from soybean molasses using different strains of Saccharomyces cerevisiae. Hem. Ind. 2019, 73, 1–12. [Google Scholar] [CrossRef]
- Bioethanol Production from Industrial Paper NINGTHOUJAM AND DHINGRA. 2021. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20210261808 (accessed on 8 April 2025).
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Ursachi, V.; Gutt, G. Production of cellulosic ethanol from enzymatically hydrolyzed wheat straws. Appl. Sci. 2020, 10, 7638. [Google Scholar] [CrossRef]
- Montemurro, M.; Casertano, M.; Vilas-Franquesa, A.; Rizzello, C.G.; Fogliano, V. Exploitation of spent coffee ground (SCG) as a source of functional compounds and growth substrate for probiotic lactic acid bacteria. LWT 2024, 198, 115974. [Google Scholar] [CrossRef]
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less Than or Equal to 0.95. International Organization for Standardization: Geneva, Switzerland, 2008.
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Brewer’s Spent Grains: Possibilities of Valorization, a Review. Appl. Sci. 2020, 10, 5619. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Wagner, E.; EugeniaPería, M.; Ortiz, G.; Rojas, L.; Ghiringhelli, P.D.; Elwakil, B.H. Valorization of brewer’s spent grain by different strategies of structural destabilization and enzymatic saccharification. Ind. Crops. Prod. 2021, 163, 113329. [Google Scholar] [CrossRef]
- Nyhan, L.; Sahin, A.W.; Schmitz, H.H.; Siegel, J.B.; Arendt, E.K. Brewers’ Spent Grain: An Unprecedented Opportunity to Develop Sustainable Plant-Based Nutrition Ingredients Addressing Global Malnutrition Challenges. J. Agric. Food Chem. 2023, 71, 10543–10564. [Google Scholar] [CrossRef]
- Leijdekkers, A.G.; Bink, J.P.; Geutjes, S.; Schols, H.A.; Gruppen, H. Enzymatic saccharification of sugar beet pulp for the production of galacturonic acid and arabinose; a study on the impact of the formation of recalcitrant oligosaccharides. Bioresour. Technol. 2013, 128, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Jagelaviciute, J.; Basinskiene, L.; Cizeikiene, D.; Syrpas, M. Technological Properties and Composition of Enzymatically Modified Cranberry Pomace. Foods 2022, 11, 2321. [Google Scholar] [CrossRef] [PubMed]
- Plaza, P.E.; Coca, M.; Yagüe, S.L.; Fernández-Delgado, M.; López-Linares, J.C.; García-Cubero, M.T. Exploring the use of high solid loadings in enzymatic hydrolysis to improve biobutanol production from brewers’ spent grains. Can. J. Chem. Eng. 2021, 99, 2607–2618. [Google Scholar] [CrossRef]
- Bakari, H.; Djomdi; Ruben, Z.F.; Roger, D.D.; Cedric, D.; Guillaume, P.; Pascal, D.; Philippe, M.; Gwendoline, C. Optimization of Bioethanol Production after Enzymatic Treatment of Sweet Sorghum Stalks. Waste Biomass Valorization 2023, 14, 2531–2545. [Google Scholar] [CrossRef]
- Zaman, S.; Lippman, S.I.; Zhao, X.; Broach, J.R. How Saccharomyces responds to nutrients. Annu. Rev. Genet. 2008, 42, 27–81. [Google Scholar] [CrossRef]
- Correa, S.S.; Schultz, J.; Lauersen, K.J.; Soares Rosado, A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J. Adv. Res. 2023, 47, 75–92. [Google Scholar] [CrossRef]
- Timmermans, E.; Bautil, A.; Brijs, K.; Scheirlinck, I.; Van der Meulen, R.; Courtin, C.M. Sugar Levels Determine Fermentation Dynamics during Yeast Pastry Making and Its Impact on Dough and Product Characteristics. Foods 2022, 11, 1388. [Google Scholar] [CrossRef]
- Chu, H.-Y.I.; Miri, T.; Onyeaka, H. Valorization of Bioactive Compounds Extracted from Brewer’s Spent Grain (BSG) for Sustainable Food Waste Recycling. Sustainability 2025, 17, 2477. [Google Scholar] [CrossRef]
- D’Amato, D.; Corbo, M.R.; Del Nobile, M.A.; Sinigaglia, M. Effects of Temperature, Ammonium and Glucose Concentrations on Yeast Growth in a Model Wine System. Int. J. Food Sci. Technol. 2006, 41, 1152–1157. [Google Scholar] [CrossRef]
- Arroyo-López, F.N.; Orlić, S.; Querol, A.; Barrio, E. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int. J. Food Microbiol. 2009, 131, 120–127. [Google Scholar] [CrossRef]
Enzyme | Hydrolysis Time (h) | Reducing Sugars Content (g/kg BSG) |
---|---|---|
Blank | 2 | 23.40 ± 0.45 |
Blank | 6 | 30.21 ± 1.36 |
Celluclast® 1.5 L | 2 | 22.03 ± 2.19 |
Celluclast® 1.5 L | 6 | 35.85 ± 0.26 |
Viscozyme® W FG | 2 | 24.92 ± 0.67 |
Viscozyme® W FG | 6 | 36.31 ± 1.49 |
Hydrolysis Success Indicator | Effect | SS | DF | MS | F-Ratio | p-Value |
---|---|---|---|---|---|---|
Reducing sugars content (g/kg BSG) | Enzyme | 43.710 | 2 | 21.855 | 13.680 | 0.000803 |
Hydrolysis time | 512.459 | 1 | 512.459 | 320.764 | <0.000001 | |
Enzyme and hydrolysis time | 38.037 | 2 | 19.019 | 11.904 | 0.001416 | |
Error | 19.171 | 12 | 1.598 | - | - |
Fermentation Success Indicator | Effect | SS | DF | MS | F-Ratio | p-Value |
---|---|---|---|---|---|---|
pH value (1) | BSG preparation | 0.056 | 1 | 0.056 | 34.327 | 0.004236 |
Error | 0.007 | 4 | 0.002 | - | - | |
Reducing sugars content (g/kg BSG) | BSG preparation | 46.351 | 1 | 46.351 | 223.314 | 0.000117 |
Error | 0.30 | 4 | 0.208 | - | - | |
Total titratable acidity (mL of 1 M NaOH) | BSG preparation | 0.042 | 1 | 0.042 | 10.000 | 0.034109 |
Error | 0.017 | 4 | 0.004 | - | - |
Fermentation Success Indicator | Effect | SS | DF | MS | F-Ratio | p-Value |
---|---|---|---|---|---|---|
Yeast cell number (log10 CFU/g) | BSG preparation | 0.013 | 1 | 0.013 | 3.940 | 0.118142 |
Error | 0.013 | 4 | 0.003 | - | - | |
pH value (1) | BSG preparation | 0.132 | 1 | 0.132 | 226.314 | 0.000114 |
Error | 0.002 | 4 | 0.001 | - | - | |
Reducing sugars content (g/kg BSG) | BSG preparation | 15.779 | 1 | 15.779 | 5601.947 | <0.000001 |
Error | 0.011 | 4 | 0.003 | - | - | |
Total titratable acidity (mL of 1 M NaOH) | BSG preparation | 0.427 | 1 | 0.427 | 9.143 | 0.039021 |
Error | 0.187 | 4 | 0.047 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lalić, A.; Jagelavičiūtė, J.; Trivunović, Z.; Marić, M.; Karlović, A.; Bašinskienė, L. Biotechnological Valorization of Brewer’s Spent Grain from Old Bread and Barley Malt: Fermentative Potential of Saccharomyces cerevisiae. Fermentation 2025, 11, 382. https://doi.org/10.3390/fermentation11070382
Lalić A, Jagelavičiūtė J, Trivunović Z, Marić M, Karlović A, Bašinskienė L. Biotechnological Valorization of Brewer’s Spent Grain from Old Bread and Barley Malt: Fermentative Potential of Saccharomyces cerevisiae. Fermentation. 2025; 11(7):382. https://doi.org/10.3390/fermentation11070382
Chicago/Turabian StyleLalić, Anita, Jolita Jagelavičiūtė, Zorana Trivunović, Marina Marić, Andrea Karlović, and Loreta Bašinskienė. 2025. "Biotechnological Valorization of Brewer’s Spent Grain from Old Bread and Barley Malt: Fermentative Potential of Saccharomyces cerevisiae" Fermentation 11, no. 7: 382. https://doi.org/10.3390/fermentation11070382
APA StyleLalić, A., Jagelavičiūtė, J., Trivunović, Z., Marić, M., Karlović, A., & Bašinskienė, L. (2025). Biotechnological Valorization of Brewer’s Spent Grain from Old Bread and Barley Malt: Fermentative Potential of Saccharomyces cerevisiae. Fermentation, 11(7), 382. https://doi.org/10.3390/fermentation11070382