Quantifying the Impacts of Grain Plantation Decline on Domestic Grain Supply in China During the Past Two Decades
Abstract
:1. Introduction
2. Technical Contents
2.1. Study Area and Definition of Grain Plantation Decline
2.2. Technical Routine
2.3. Data and Methodologies
2.3.1. Data
2.3.2. Mann–Kendall Method
- (1)
- Calculate the expected meanalculate the expected mean () and variance () of the data sequence. is the count of the data sequence.
- (2)
- Work out the rank sequence () as well as its expected mean and variance, and then derive the trend statistics ().
- (3)
- Derive the of the inverse data sequence (), that is, repeat the steps (1)–(2) for the inverse data sequence.
- (4)
- Determine the critical values at a given significance level (usually 0.05; the corresponding critical values are ±1.96); the mutation points are verified by comparing and with the critical values.
2.3.3. Logarithmic Mean Divisia Index
3. Results
3.1. A Phase-Specific and Moderate Decline in Grain Plantation in China: Negative but Limited Impact on Domestic Grain Supply
3.2. Continuous Retreat of Grains in 2/5 Provinces: The Rich Get Richer, While the Poor Get Poorer
3.3. Provinces with Grain Plantation Decline Do Not Always Experience Intra Supply Shrinkage
3.4. The Contraction of Plantation Does Not Always Dominate the Variation in Grain Supply: A Battle with Sustained Crop Yield in Alliance with Population Influx
4. Discussions and Conclusions
4.1. Conclusions
4.2. Future Issues
4.3. Comparisons and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.Q.; Zhao, W.W.; Liu, Y.X.; Francesco, C.; Fu, B.J.; Paulo, P. Prioritizing sustainable development goals and linking them to ecosystem services: A global expert’s knowledge evaluation. Geogr. Sustain. 2020, 4, 321–330. [Google Scholar] [CrossRef]
- Chen, Y.f.; Wang, J.Y.; Zhang, F.R.; Liu, Y.S.; Cheng, S.K.; Zhu, J.; Si, W.; Fan, S.G.; Gu, S.S.; Hu, B.C.; et al. New patterns of globalization and food security. J. Nat. Resour. 2021, 36, 1362–1380. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World Report 2020. Available online: https://www.unicef.cn/en/reports/brief-state-food-security-and-nutrition-world-2020 (accessed on 13 July 2020).
- Transforming Food and Agriculture to Achieve the SDGs; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018.
- Urfels, A.; Mausch, K.; Harris, D.; McDonald, A.J.; Kishore, A.; Balwinder, S.; van Halsema, G.; Struik, P.C.; Craufurd, P.; Foster, T.; et al. Farm size limits agriculture’s poverty reduction potential in eastern India even with irrigation-led intensification. Agric. Syst. 2023, 207, 103618. [Google Scholar] [CrossRef]
- Cui, Z.L.; Zhang, H.Y.; Chen, X.P.; Zhang, C.C.; Ma, W.Q.; Huang, C.D.; Zhang, W.F.; Mi, G.H.; Miao, Y.X.; Li, X.L.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Bentley, A.R.; Donovan, J.; Sonder, K.; Baudron, F.; Lewis, M.J.; Voss, R.; Rutsaert, P.; Poole, N.; Kamoun, S.; Saunders, G.O.D. Near- to long-term measures to stabilize global wheat supplies and food security. Nat. Food 2022, 3, 483–486. [Google Scholar] [CrossRef]
- Jarzebski, M.P.; Ahmed, A.; Boafo, Y.A.; Balde, B.S.; Chinangwa, L.; Saito, O.; von Maltitz, G.; Gasparatos, A. Food security impacts of industrial crop production in sub-Saharan Africa: A systematic review of the impact mechanisms. Food Secur. 2020, 12, 105–135. [Google Scholar] [CrossRef]
- Chiarelli, D.D.; Rosa, L.; Rulli, M.C.; D’Odorico, P. The water-land-food nexus of natural rubber production. J. Clean. Prod. 2018, 172, 1739–1747. [Google Scholar] [CrossRef]
- Cheng, X.; Tao, Y.; Huang, C.; Yi, J.; Yi, D.; Wang, F.; Tao, Q.; Xi, H.; Ou, W. Unraveling the causal mechanisms for non-grain production of cultivated land: An analysis framework applied in Liyang, China. Land 2022, 11, 1888. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Wu, W.B.; Long, Y.Q.; Yu, Q.Y.; Song, Q.; Lu, M.; Yang, P. Coupling characteristics between cropland intensification and large-scale utilization in China. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 12–19. [Google Scholar]
- Shen, G.; Yu, Q.Y.; Zhou, Q.B.; Wang, C.; Wu, W.B. From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity. Agr. Syst. 2023, 204, 103535. [Google Scholar] [CrossRef]
- Gao, C.X. Genome engineering for crop improvement and future agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef]
- Fan, S.G.; Gao, H.X. Rethinking the global food system under COVID-19. J. Huazhong Agric. Univ. Soc. Sci. Ed. 2020, 1–8, 168. [Google Scholar]
- Yao, G.L.; Zhang, X.; Davidson, E.A.; Taheripour, F. The increasing global environmental consequences of a weakening US–China crop trade relationship. Nat. Food 2021, 2, 578–586. [Google Scholar] [CrossRef]
- Cheng, S.K.; Huang, X.S.; Hu, D.S.; Shi, Z.Y.; Luo, Z.J. Several issues on scientific legislation for prohibiting food waste: Some personal reflections. J. Nat. Resour. 2020, 35, 2821–2830. [Google Scholar] [CrossRef]
- Ye, S.J.; Song, C.Q.; Cheng, C.X.; Gao, P.C.; Shen, S.; Mu, W.S. Five issues and countermeasures of China cropland resource use. Bull. Chin. Acad. Sci. 2023, 38, 1962–1976. [Google Scholar]
- Xu, X.L.; Wang, L.; Cai, H.Y.; Wang, L.Y.; Liu, L.; Wang, H.Z. The influences of spatiotemporal change of cultivated land on food crop production potential in China. Food Secur. 2017, 9, 485–495. [Google Scholar] [CrossRef]
- Food Security in China White Paper; The State Council Information Office of the People’s Republic of China: Beijing, China, 2019. Available online: https://www.gov.cn/zhengce/2019-10/14/content_5439410.htm (accessed on 21 April 2025).
- Wei, Y.J.; Dan, F.; Wei, X.K.; Ye, Z.H. Assessing the equilibrium of food supply and demand in China’s food security framework: A comprehensive evaluation, 1980–2017. Front. Sustain. Food Syst. 2024, 8, 1326839. [Google Scholar] [CrossRef]
- FAO. Crop Prospect and Food Situation. 2024. Available online: https://openknowledge.fao.org/items/b42fe73a-d371-4e59-afa3-96b8409e4fcf (accessed on 1 April 2025).
- van Wesenbeeck, C.F.A.; Keyzer, M.A.; van Veen, W.C.M.; Qiu, H. Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes? Agr. Syst. 2021, 190, 103093. [Google Scholar] [CrossRef]
- Yang, M.Z.; Pei, Y.S.; Li, X.D. Study on grain self-sufficiency rate in China: An analysis of grain, cereal grain and edible grain. J. Nat. Resour. 2019, 34, 881–889. [Google Scholar] [CrossRef]
- Kuang, W.H.; Zhang, S.W.; Du, G.M.; Yan, C.Z.; Wu, S.X.; Li, R.D.; Lu, D.S.; Pan, T.; Ning, J.; Guo, C.Q.; et al. Remotely sensed mapping and analysis of spatio-temporal patterns of land use change across China in 2015–2020. Acta Geogr. Sin. 2022, 77, 1056–1071. [Google Scholar]
- Ning, J.; Liu, J.Y.; Kuang, W.H.; Xu, X.L.; Zhang, S.W.; Yan, C.Z.; Li, R.D.; Wu, S.X.; Hu, Y.F.; Du, G.M.; et al. Spatio-temporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Meng, L.H. Research on the shifting trend and optimization of grain production gravity in China. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 23–29. [Google Scholar]
- Chen, S.C.; Zhang, Y.N.; Zhu, Y.L.; Ma, L.; Zhao, J.H. The battle of crops: Unveiling the shift from grain to non-grain use of farmland in China? Int. J. Agr. Sustain. 2023, 21, 2262752. [Google Scholar] [CrossRef]
- Cheng, X.B.; Liu, Q.; Tao, Y.; Liu, J.J.; Wang, F.; Tao, Q.; Ou, W.X. Non-grain production characteristics of cultivated land in rapidly urbanized regions and their mechanisms. China Popul. Resour. Environ. 2022, 32, 172–182. [Google Scholar]
- Opinions on Preventing the Conversion of Farmland to Non-Food Crops and Stabilizing Food Production; General Office of the State Council of the People’s Republic of China: Beijing, China, 2020. Available online: https://www.gov.cn/gongbao/content/2020/content_5565816.htm (accessed on 21 May 2025).
- Notice on Strict Control of Farmland Use Issues; Ministry of Natural Resources of the People’s Republic of China: Beijing, China; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China; National Forestry and Grassland Administration: Beijing, China, 2021. Available online: https://www.gov.cn/zhengce/zhengceku/2021-12/26/content_5664643.htm (accessed on 21 May 2025).
- Liu, Z.J.; Zhong, H.M.; Li, Y.R.; Wen, Q.; Liu, X.Q.; Jian, Y.Q. Change in grain production in China and its impacts on spatial supply and demand distributions in recent two decades. J. Nat. Resour. 2021, 36, 1413–1425. Available online: https://www.jnr.ac.cn/CN/10.31497/zrzyxb.20210605 (accessed on 21 April 2025). [CrossRef]
- Preventing the Trend of ‘Non-Grain’ in Land Transfer; People’s Daily: Beijing, China, 2008. Available online: https://www.chinacoop.gov.cn/HTML/2008/12/18/19809.html (accessed on 21 April 2025).
- Ma, L.B.; Yang, B.Y.; Zhang, H.J.; Jiang, W.B.; Ju, L.Y. Evolution of the spatiotemporal pattern of China’s grain production in the past 20 and its driving mechanism. PLoS ONE 2024, 19, e0303258. [Google Scholar] [CrossRef]
- Zhang, X.X.; Li, C.; John, G. China’s City size distribution: Diverging in terms of people and converging in terms of urbanized area. Lett. Spat. Resour. Sci. 2025, 18, 6. [Google Scholar] [CrossRef]
- Fan, T.L.; Lv, Y.C.; Yang, T.Y.; Wang, S.Y.; Wang, J.; Li, S.Z.; Zhao, G.; Li, X.M. Analysis of grain production and strategic conception of productivity improvement in Gansu Province. Agric. Res. Aird Areas 2023, 41, 1–8. [Google Scholar]
- The Promotion of 20 High-Yield and High-Efficiency Technologies for Major Crops such as Grain and Oil in the National Agricultural Reclamation Sector, Aiming to Significantly Increase Yields over Large Areas; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2023. Available online: http://www.moa.gov.cn/xw/zwdt/202307/t20230726_6433003.htm (accessed on 21 May 2025).
- Approval of the National High-Standard Farmland Construction Plan (2021–2030); General Office of the State Council of the People’s Republic of China: Beijing, China, 2021. Available online: https://www.gov.cn/zhengce/zhengceku/2021-09/16/content_5637565.htm (accessed on 21 May 2025).
- Liang, X.Y.; Jin, X.B.; Liu, J.; Yin, Y.X.; Gu, Z.M.; Zhang, J.Y.; Zhou, Y.K. Formation mechanism and sustainable productivity impacts of non-grain croplands: Evidence from Sichuan Province, China. Land Degrad. Dev. 2023, 34, 1120–1132. [Google Scholar] [CrossRef]
- Lai, Z.H.; Chen, M.Q.; Liu, T.J. Changes in and prospects for cultivated land use since the reform and opening up in China. Land Use Policy 2020, 97, 104781. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Dai, Z.Z.; Li, S.L.; Feng, Y.Z. Spatiotemporal evolution of non-grain production of cultivated land and its underlying factors in China. Int. J. Environ. Res. Public Health 2022, 19, 8210. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, J.N.; Chang, Y.Y.; Zhang, Q.; Yu, H.C.; Zhang, S.L. Spatial pattern differentiation of non-grain cultivated land and its driving factors in China. China Land Sci. 2021, 35, 33–43. [Google Scholar]
- Qiu, B.W.; Jian, Z.Y.; Yang, P.; Tang, Z.H.; Zhu, X.L.; Duan, M.J.; Yu, Q.Y.; Chen, X.H.; Zhang, M.; Tu, P.; et al. Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification. Agr. Syst. 2024, 216, 103878. [Google Scholar] [CrossRef]
- Feng, Y.B.; Ke, M.Y.; Zhou, T. Spatio-temporal dynamics of non-grain production of cultivated land in China. Sustainability 2022, 14, 14286. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M.Y. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Shen, G.; He, T.T. Cropping and Transformation Features of Non-Grain Cropland in Mainland China and Policy Implications. Land 2025, 14, 561. [Google Scholar] [CrossRef]
- Zhong, W.Y.; Guo, Y.Z. Spatio-temporal Pattern of Interprovincial Migration of Rural Population in China and Its Influencing Factors. Appl. Sci. 2025, 15, 3029. [Google Scholar] [CrossRef]
- Du, R.; Liu, S.W.; Cai, R. The Characteristics and Driving Mechanism of China’s Grain Spatial Production Pattern Evolution. Econ. Probl. 2023, 8, 92–102. [Google Scholar]
- Cheng, C.G.; Zhou, Q.; Huang, Z.D.; Xue, S.; Fang, Z.; van Riper, C.; He, W.; Li, X.; Zhang, F.; Wang, T.; et al. Ensuring China’s food security in a geographical shift of its grain production: Driving factors, threats and solutions. Resour. Conserv. Recy. 2024, 210, 107845. [Google Scholar]
- Zhang, J.; Fang, Y.; Zheng, H.; Fan, S.G.; Du, T.S. The Spatio-Temporal Evolution of Food Production and Self-Sufficiency in China from 1978 to 2020: From the Perspective of Calories. Foods 2023, 12, 956. [Google Scholar] [CrossRef] [PubMed]
- China Statistical Book 2020; National Bureau of Statistics of China: Beijing, China; China Statistics Press: Beijing, China, 2021.
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.Y.; Khan, A.; Stolle, F.; et al. The global 2000–2020 land cover and land use change dataset derived from the Landsat archive: First results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Liu, B.; Song, W. Mapping abandoned cropland using Within-Year Sentinel-2 time series. Catena 2023, 223, 106924. [Google Scholar] [CrossRef]
- Ye, S.C.; Cao, P.Y.; Lu, C.Q. 2024, Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): Cropping diversity changes during 1850–2021. Earth Syst. Sci. Data 2024, 16, 3453–3470. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, M.Y. Degree of non-grain production of cultivated land and its impact on grain production in China: Analysis of 2481 county-level units. Land Use Policy 2025, 155, 107586. [Google Scholar] [CrossRef]
- The State of Food Security and Nutrition in the World 2024; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; Available online: https://www.fao.org/publications/sofi (accessed on 21 April 2025).
- Sun, H.W.; Ma, J.H.; Li, W. Changes in per capita wheat production in China in the context of climate change and population growth. Food Secur. 2023, 15, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Su, H.Z.; Liu, F.G.; Zhang, H.F.; Ma, X.F.; Sun, A.L. Progress and prospects of non-grain production of cultivated land in China. Sustainability 2024, 16, 3517. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, W.F.; Ma, L.; Wu, L.; Shen, J.B.; Davies, W.J.; Oenema, O.; Zhang, F.S.; Dou, Z.X. An analysis of China’s grain production: Looking back and looking forward. Food Energy Secur. 2014, 3, 19–32. [Google Scholar] [CrossRef]
- Khaled, H.H.; Ramachandra, R.A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar]
- Zhang, D.W.; Cong, Z.T.; Ni, G.H. Comparison of three Mann-Kendall methods based on the China’s meteorological data. Adv. Water Sci. 2013, 24, 490–496. [Google Scholar]
- Hu, Z.C.; Liu, S.G.; Zhong, G.H.; Lin, H.J.; Zhou, Z.Z. 2019, Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrolog. Sci. J. 2019, 65, 2419–2438. [Google Scholar] [CrossRef]
- Wang, J.S. Determining the most accurate program for the Mann-Kendall method in detecting climate mutation. Theor. Appl. Climatol. 2020, 142, 847–854. [Google Scholar] [CrossRef]
- Yang, H.H.; Yu, J.; Xu, W.Z.; Wu, Y.; Lei, X.Y.; Ye, J.N.; Geng, J.W.; Zheng, D. Long-time series ecological environment quality monitoring and cause analysis in the Dianchi Lake Basin, China. Ecol. Indic. 2023, 148, 110084. [Google Scholar] [CrossRef]
- Guo, M.; Li, J.; He, H.S.; Xu, J.W.; Jin, Y.H. Detecting global vegetation changed using Mann-Kendall (MK) trend test for 1982–2015 time period. Chin. Geogr. Sci. 2018, 28, 907–919. [Google Scholar] [CrossRef]
- Xu, J.H. Mathematical Methods in Contemporary Geography; Higher Education Press: Beijing, China, 2017. [Google Scholar]
- Wei, F.Y. Modern Climate Statistical Diagnosis and Forecasting Techniques; China Meteorological Press: Beijing, China, 2021.
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energ. Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Wang, L.; Zhang, Z.H.; Lyu, D. Spatio-temporal variation and drivers of land-use net carbon emissions in Chengyu urban agglomeration, China. Land 2024, 13, 2160. [Google Scholar] [CrossRef]
- Li, Y.B.; Han, Y.H.; Li, H.X.; Feng, K. Understanding agricultural water consumption trends in Henan Province: A spatio-temporal and determinant analysis using geospatial models. Agriculture 2024, 14, 2253. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.S.; Yu, P.J.; Yang, L. The application and evaluation of the LMDI method in building carbon emissions analysis: A comprehensive review. Buildings 2024, 14, 2820. [Google Scholar] [CrossRef]
- Xu, J.L.; Zha, T.J. Provincial food security from the perspective of urbanization in Jiangsu province. Resour. Sci. 2014, 36, 2353–2360. [Google Scholar]
- Qi, X.X.; Liu, L.M.; Liu, Y.B. Risk assessment for regional food security based on models of food supply-demand gap. Trans. Chin. Soc. Agric. Eng. 2013, 29, 1–9. [Google Scholar]
- The Food Problem in China; Information Office of the State Council of the People’s Republic of China: Beijing, China, 2005. Available online: https://www.gov.cn/zhengce/2005-05/25/content_2615740.htm (accessed on 21 April 2025).
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 2918. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.Y.; Meng, F.; Chen, H.; Tan, Y.Z. Provincial fallow scale and fallow spatial layout of cultivated land in China from the “Trinity” protection perspective. Trans. Chin. Soc. Agric. Eng. 2024, 40, 240–250. [Google Scholar]
- Guo, A.D.; Yue, W.Z.; Yang, J.; Xue, B.; Xiao, W.; Li, M.M.; He, T.T.; Zhang, M.X.; Jin, X.; Zhou, Q.S. Cropland abandonment in China: Patterns, drivers, and implications for food security. J. Clean. Prod. 2023, 418, 138154. [Google Scholar] [CrossRef]
- Han, Y. The policy evolution, vision goal and realization path of China’s cultivated land protection and utilization. J. Manag. World 2022, 38, 121–131. [Google Scholar]
- Zuo, L.J.; Zhang, Z.X.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.C.; Zhang, W.; Zhang, H.Y.; Wu, W.B.; Zhao, X.L. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Pu, N.P.; Zhao, J.; Zhang, Y.; Zhang, B.B.; Lei, M.; Kong, X.B. Construction of Collaborative Governance System of Cultivated Land Protection under the Overall Panning of big food concept. J. Southwest Univ. (Nat. Sci. Ed.) 2024, 46, 46–58. [Google Scholar]
- Du, Y.; Zhang, X.Q.; Liang, T.J. National food security and the construction of new agricultural development paradigm. Issues Agric. Econ. 2022, 09, 4–10. [Google Scholar]
- Bu, H.F.; Liang, Y.G.; Fang, B.H. Main Models and Research Progress of Planting-Breeding Ecosystem in Rice Field. Hybrid Rice 2023, 38, 10–19. [Google Scholar]
- Huang, Z.H.; Li, Y.Y.; Mao, X.H. The current situation and countermeasures of the “non-agriculturalization” and “non-food” of cultivated land in our country. Jiang-Huai Tribune 2022, 4, 13–21. [Google Scholar]
- Xin, X.F.; Wang, J.M. Great attention must be paid to the excessive concentration of net grain exporting provinces in China. Macroecon. Manag. 2016, 10, 53–55, 60. [Google Scholar]
- Wang, Y.P. Research on Support Policies for Grain Marketing in China; Beijing Forestry University: Beijing, China, 2011. [Google Scholar]
- Pu, M.Z.; Zhou, L.; Zhong, Y.; Chen, M.S. Setting bottom lines for grain self-sufficiency in the grain production-and-consuming-balancing areas and major grain-consuming areas in China. Issues Agric. Econ. 2022, 07, 113–123. [Google Scholar]
- Song, W.; Prishchepov, A.V.; Song, W. Mapping the spatial and temporal patterns of fallow land in mountainous regions of China. Int. J. Digit. Earth 2022, 15, 2148765. [Google Scholar] [CrossRef]
- Chen, Q.T.; Lin, J.Y.; Zhao, X.Y.; Wang, F. Delineation of Fallow Priority Areas Under Food Security Constraints Using the MARXAN. Land Degrad. Dev. 2025, 5622. [Google Scholar] [CrossRef]
- Song, G.; Zhang, H.M. Spatial reconstruction of farmland rotation and fallow in the typical black soil region of Northeast China. J. Nat. Resour. 2022, 37, 2231–2246. [Google Scholar] [CrossRef]
- Chu, X.T.; Wang, Y.P.; Zhou, J. Effects of spatiotemporal variations in visible and invisible non-grain production cultivated land on grain yield in the Guanzhong Region of Shaanxi in China. Trans. Chin. Soc. Agric. Eng. 2023, 39, 241–249. [Google Scholar]
- Liang, S.F.; Wu, W.B.; Sun, J.; Li, Z.P.; Sun, X.; Chen, H.; Chen, S.; Fan, L.L.; You, L.Z.; Yang, P. Climate-mediated dynamics of the northern limit of paddy rice in China. Environ. Res. Lett. 2021, 16, 064008. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wang, J.Y.; Guo, L.Y. The spatial-temporal changes of grain production and arable land in China. Sci. Agric. Sin. 2009, 42, 4269–4274. [Google Scholar]
- Zeng, Y.M.; Zhong, Z.K.; Liu, H.L. The pattern and dynamics of county-level population flow in China: Simulation and projection using the cauchy distribution. Chin. J. Popul. Sci. 2024, 38, 113–128. [Google Scholar]
- China Population Mobility Forecast Report: Where Will China’s Population Flow in the Next 20 Years? YuWa Population research: Beijing, China, 2022; Available online: https://news.qq.com/rain/a/20220130A0017R00 (accessed on 21 April 2025).
- Guo, W.H.; Chen, F.; Yang, B.; Jiang, F.F.; Ma, J.; Zhu, X.H. Spatial Relationship and Imbalanced Attribution of Cultivated Land Reclamation and Abandonment in China. China Land Sci. 2024, 38, 120–132. [Google Scholar]
- Tan, M.H.; Yan, Z.Y.; Li, X.B.; Xu, X.F.; Huang, Z.Y. Analysis of geographical dividing line of cropland changes in China: 40° N. Sci. Geogr. Sin. 2025, 45, 941–949. [Google Scholar]
- Zhi, J.J.; Cao, X.Y.; Zhang, Z.H.; Qin, T.T.; Qu, L.A.; Qi, L.Y.; Ge, L.W.; Guo, A.X.; Wang, X.T.; Da, C.W.; et al. Identifying the determinants of crop yields in China since 1952 and its policy implications. Agr. Forest Meteorol. 2022, 327, 109216. [Google Scholar] [CrossRef]
- Zou, J.L.; Liu, T.H.; Zhang, C.; Yao, G.R. Changes of cultivated land food production in China and the impact assessment of “Non-grain” use. China Land Sci. 2022, 36, 29–39. [Google Scholar]
Period | Annual Variation of Ga (Ga, %) | Contributions (%) | ||
---|---|---|---|---|
Grain Sown Area (Ag) | Population | Yield of Grains Per Unit (Yg) | ||
2015–2016 | −0.94 | −0.73 | −0.65 | 0.43 |
2016–2017 | −0.87 | −1.98 | −0.55 | 1.67 |
2017–2018 | −1.24 | −1.06 | −0.38 | 0.20 |
2018–2019 | 0.19 | −3.21 | −0.35 | 3.76 |
2021–2022 | 0.23 | −0.80 | 0.06 | 0.98 |
Regions | Stages | Ga (%) | Contributions (%) | ||
---|---|---|---|---|---|
Ag | Population | Yield | |||
Beijing | 2003~2014 | −18.95 | −0.18 | −36.03 | 17.26 |
2014~2016 | −18.77 | −30.29 | −0.99 | 12.51 | |
2016~2023 | −11.43 | 1.29 | 0.39 | −13.11 | |
Shanghai | 2003~2015 | −8.52 | 19.14 | −31.63 | 3.97 |
2015~2019 | −20.38 | −30.36 | −0.83 | 10.82 | |
2019~2023 | 5.05 | 7.35 | −0.25 | −2.05 | |
Chongqing | 2003~2023 | −15.63 | −28.27 | −11.92 | 24.56 |
Zhejiang | 2003~2008 | −11.38 | −12.61 | −6.64 | 7.87 |
2009~2023 | −30.50 | −11.16 | −19.11 | −0.23 | |
Fujian | 2003~2023 | −36.02 | −37.00 | −14.33 | 15.31 |
Hainan | 2003~2023 | −33.38 | −37.98 | −20.68 | 25.27 |
Guangxi | 2003~2016 | −1.60 | −16.99 | 0.00 | 15.39 |
2017~2023 | −1.06 | −0.59 | −2.40 | 1.93 | |
Guangdong | 2003~2010 | −22.65 | −8.71 | −13.46 | −0.48 |
2011~2023 | −13.54 | −3.72 | −15.51 | 5.68 | |
Sichuan | 2003~2023 | 15.04 | −5.26 | −2.49 | 22.79 |
Ningxia | 2005~2023 | 14.44 | −13.26 | −24.48 | 52.18 |
Shaanxi | ~2007 | 9.00 | 4.32 | −1.02 | 5.70 |
2008~2016 | 11.55 | −0.13 | −4.34 | 16.02 | |
2017~ | 7.33 | −0.31 | −1.27 | 8.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhu, J.; He, T.; Liu, H. Quantifying the Impacts of Grain Plantation Decline on Domestic Grain Supply in China During the Past Two Decades. Land 2025, 14, 1283. https://doi.org/10.3390/land14061283
Liu Y, Zhu J, He T, Liu H. Quantifying the Impacts of Grain Plantation Decline on Domestic Grain Supply in China During the Past Two Decades. Land. 2025; 14(6):1283. https://doi.org/10.3390/land14061283
Chicago/Turabian StyleLiu, Yizhu, Jing Zhu, Tingting He, and Hang Liu. 2025. "Quantifying the Impacts of Grain Plantation Decline on Domestic Grain Supply in China During the Past Two Decades" Land 14, no. 6: 1283. https://doi.org/10.3390/land14061283
APA StyleLiu, Y., Zhu, J., He, T., & Liu, H. (2025). Quantifying the Impacts of Grain Plantation Decline on Domestic Grain Supply in China During the Past Two Decades. Land, 14(6), 1283. https://doi.org/10.3390/land14061283