Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = non-fermenter bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1033 KiB  
Systematic Review
Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review
by Matthew E. Falagas, Laura T. Romanos, Dimitrios S. Kontogiannis, Katerina Tsiara and Stylianos A. Kakoullis
Pathogens 2025, 14(8), 777; https://doi.org/10.3390/pathogens14080777 - 6 Aug 2025
Abstract
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four [...] Read more.
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four databases (Embase, PubMed, Scopus, and Web of Science), as well as backward citation searching, to identify studies containing data on resistance to cefepime-enmetazobactam. The data were extracted and analyzed according to the breakpoints established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Food and Drug Administration (FDA), or the specific breakpoints reported by the authors of the respective studies. Analysis based on the type of lactamases produced by the isolates was also performed. Ten studies reported in vitro susceptibility testing and mechanisms of antimicrobial resistance. The total number of isolates was 15,408. The activity of cefepime-enmetazobactam against β-lactamase-producing isolates was variable. The resistance of the studied extended-spectrum β-lactamase (ESBL)-producing and ampicillin C β-lactamase (AmpC)-producing isolates was low (0–2.8% and 0%, respectively). The resistance was higher among oxacillinase-48 β-lactamase (OXA-48)-producing and Klebsiella pneumoniae carbapenemase (KPC)-producing isolates (3.4–13.2% and 36.7–57.8%, respectively). High resistance was noted among metallo-β-lactamase (MBL)-producing isolates (reaching 87.5% in one study), especially those producing New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase (VIM), which had the highest rates of resistance. The high activity of cefepime-enmetazobactam against Enterobacterales and selected lactose non-fermenting Gram-negative pathogens, including ESBL-producing and AmpC-producing isolates, makes it a potential carbapenem-sparing agent. The drug should be used after in vitro antimicrobial susceptibility testing in patients with infections caused by OXA-48, KPC, and MBL-producing isolates. Full article
Show Figures

Figure 1

15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 - 4 Aug 2025
Viewed by 189
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

13 pages, 717 KiB  
Article
In Vitro Activity of Cefiderocol and Aztreonam/Avibactam Against Gram-Negative Non-Fermenting Bacteria: A New Strategy Against Highly Antibiotic-Resistant Infectious Agents
by Jan Závora, Václava Adámková, Alžběta Studená and Gabriela Kroneislová
Antibiotics 2025, 14(8), 762; https://doi.org/10.3390/antibiotics14080762 - 29 Jul 2025
Viewed by 250
Abstract
Background/Objectives: Non-fermenting Gram-negative bacilli (NFGNB) represent a significant clinical challenge due to their intrinsic and acquired resistance, particularly in immunocompromised patients. Infections cause by NFGNB are associated with high morbidity and mortality, especially among patients with cystic fibrosis and hematologic malignancies. This study [...] Read more.
Background/Objectives: Non-fermenting Gram-negative bacilli (NFGNB) represent a significant clinical challenge due to their intrinsic and acquired resistance, particularly in immunocompromised patients. Infections cause by NFGNB are associated with high morbidity and mortality, especially among patients with cystic fibrosis and hematologic malignancies. This study aimed to assess the in vitro susceptibility of clinically relevant NFGNB isolates to two newer antibiotics, cefiderocol and aztreonam/avibactam, and an established antibiotic, trimethoprim/sulfamethoxazole. Methods: This retrospective, monocentric study analysed 94 NFGNB isolates (30 Pseudomonas aeruginosa, 30 Acinetobacter sp., 24 Stenotrophomonas maltophilia, and 10 Burkholderia cepacia complex). Susceptibility testing for cefiderocol, aztreonam/avibactam, and trimethoprim/sulfamethoxazole was conducted using gradient strip method. MIC values were interpreted using EUCAST breakpoints, ECOFFs, or alternative criteria when necessary. Results: All S. maltophilia isolates were susceptible to cefiderocol (FCR) and aztreonam/avibactam (A/A) based on ECOFFs, with one strain resistant to trimethoprim–sulfamethoxazole (COT). Burkholderia cepacia complex strains also showed high susceptibility to FCR, with only one isolate exceeding the ECOFF for A/A, and 20% resistant to COT. All Acinetobacter sp. isolates were susceptible to FCR; however, most MIC values clustered at or just below the ECOFF value. In P. aeruginosa, one isolate was resistant to FCR, and three isolates (10%) were resistant to A/A. Interestingly, confirmed carbapenemase producers remained susceptible to both FCR and A/A. Most A/A MIC values for P. aeruginosa were just below the ECOFF. Conclusions: Cefiderocol and aztreonam/avibactam demonstrated promising in vitro activity against clinically relevant NFGNB, including carbapenem-resistant strains. These findings support their potential role as therapeutic options for difficult-to-treat infections, particularly in immunocompromised patients. Full article
Show Figures

Figure 1

17 pages, 798 KiB  
Review
Beyond the Usual Suspects: Weeksella virosa as a Potential Human and Animal Pathogen
by Ioana Alina Colosi, Dan Alexandru Toc, Vlad Sever Neculicioiu, Paul-Ștefan Panaitescu, Pavel Șchiopu, Adrian-Gabriel Pană, Razvan Vlad Opris, Alina Mihaela Baciu, George Berar, Alexandru Botan and Carmen Costache
Trop. Med. Infect. Dis. 2025, 10(8), 210; https://doi.org/10.3390/tropicalmed10080210 - 26 Jul 2025
Viewed by 347
Abstract
Weeksella virosa (W. virosa) is a rare, non-saccharolytic Gram-negative bacterium initially described in the 1970s, later proposed as a distinct genus in 1986. The genus Weeksella currently contains two species, namely W. virosa and W. massiliensis. Although primarily considered non-pathogenic, recent [...] Read more.
Weeksella virosa (W. virosa) is a rare, non-saccharolytic Gram-negative bacterium initially described in the 1970s, later proposed as a distinct genus in 1986. The genus Weeksella currently contains two species, namely W. virosa and W. massiliensis. Although primarily considered non-pathogenic, recent evidence has linked W. virosa to a limited number of clinical infections, mostly in immunocompromised patients. This review aims to consolidate the current body of knowledge on W. virosa, encompassing its microbiological and biochemical characteristics, involvement in human and animal infections, antimicrobial susceptibility profiles, and a critical evaluation of existing diagnostic methodologies. This review includes 13 case reports detailing 16 human cases retrieved from multiple databases, highlighting diagnostic inconsistencies and a lack of standardized antimicrobial susceptibility testing. Although W. virosa is generally susceptible to most antibiotics with the exception of aminoglycosides, recent reports seem to suggest a possible emerging resistance trend. The presence of this organism in hospital environments raises concerns about its potential transmission within healthcare settings. While biochemical testing appears to offer reasonably accurate identification of W. virosa, molecular confirmation may be warranted in some cases mainly due to the organism’s rarity. The reliability of MALDI-TOF MS for the identification of W. virosa remains currently uncertain. Further studies, including electron microscopy and genome-wide analysis, are urgently needed to clarify the pathogenic potential of this bacterium and guide clinical management. This review underscores the necessity for awareness among clinicians and microbiologists regarding this underrecognized pathogen. Full article
Show Figures

Figure 1

19 pages, 890 KiB  
Article
Characterization of SCOBY and Lactiplantibacillus plantarum ELB90 Fermented Coffee Kombucha from Different Coffee Sources
by Oznur Saroglu, Yagmur Gulce Irmak, Rusen Metin Yildirim and Ayse Karadag
Fermentation 2025, 11(8), 428; https://doi.org/10.3390/fermentation11080428 - 25 Jul 2025
Viewed by 442
Abstract
Coffee kombucha beverages were developed by fermenting various coffee substrates, including instant coffee (I), coffee brews of ground coffee beans (G), and additional spent coffee added ground coffee (GSC) using either SCOBY (S) or Lactiplantibacillus plantarum ELB90 (L), or a combination of both [...] Read more.
Coffee kombucha beverages were developed by fermenting various coffee substrates, including instant coffee (I), coffee brews of ground coffee beans (G), and additional spent coffee added ground coffee (GSC) using either SCOBY (S) or Lactiplantibacillus plantarum ELB90 (L), or a combination of both (SL). The combined SL inoculation did not synergistically enhance the growth of acetic and lactic acid bacteria, nor did it increase the acetic and lactic acid concentrations or improve retention of caffeoylquinic acids (CQA) compared to non-fermented controls stored for the incubation period (7 days). Samples fermented with L better preserved the total CQAs during incubation, notably increasing 3-CQA and 4-CQA in L-fermented G and GSC samples by up to 40%, whereas 5-CQA showed a slight decrease (up to 8%) in L-fermented G and GSC samples. After one week, all fermented samples maintained stable levels of 3-CQA compared to the non-fermented SCG control, with significantly elevated 4-CQA. Caffeic acid was detected only in the bound fraction of beans, exhibiting similar concentrations in both fermented and non-fermented samples. SL-fermented coffees showed significant reductions in caffeine contents, except for I coffee substrate, and spent coffee grounds (SCG) filtered from the SL-fermented sample also had significantly lower caffeine content. Panelists preferred coffee kombucha beverages inoculated with S over those fermented with L, which were rated least appealing. The study concludes that fermentation with specific inoculation cultures could mitigate the degradation of coffee phenolic compounds during storage and facilitate the production of beverages with lower caffeine content, potentially enhancing both functional properties and consumer acceptability. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

29 pages, 2022 KiB  
Article
The Natural Fermentation of Greek Tsounati Olives: Microbiome Analysis
by Marina Georgalaki, Ilario Ferrocino, Davide Buzzanca, Rania Anastasiou, Georgia Zoumpopoulou, Despoina Giabasakou, Danai Ziova, Alexandra Kokkali, George Paraskevakos and Effie Tsakalidou
Foods 2025, 14(15), 2568; https://doi.org/10.3390/foods14152568 - 22 Jul 2025
Viewed by 415
Abstract
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of [...] Read more.
The comprehensive analysis of microbial communities reveals the unique microbial identity of different olive varieties, paving the way for new strategies in their development and commercial exploitation. In this context, the present study aimed to explore the microbial diversity and functional characteristics of Tsounati variety olives from the Monemvasia region of Peloponnese, Greece, that were naturally fermented for three months. The bacterial and fungal microbiota of both olives and brines were fingerprinted throughout the fermentation through classical microbiological analysis combined with molecular techniques. Among the 148 isolated bacteria, 85 were lactic acid bacteria (LAB), and 63 belonged to the Enterobacteriaceae family, while the 178 fungal isolates comprised 136 yeasts and 42 non-yeast or yeast-like fungi. Metataxonomic analysis confirmed the dominance of the bacterial genera Lactiplantibacillus, Leuconostoc, along with the Enterobacteriaceae family, and it revealed the presence of Coleofasciculaceae cyanobacteria mostly in olives. The dominant fungal genera were yeasts, namely Saccharomyces, Nakazawaea, and Cyberlindnera. Using the Folin–Ciocalteu assay, the average total polyphenol content of Tsounati fermented olive samples was 761.80 ± 128.87 mg gallic acid equivalents kg−1 after 90 days of fermentation. The concentrations of the triterpenic, maslinic, and oleanolic acids, as determined by HPLC, remained stable throughout fermentation, with average values of 4764 and 1807 mg kg−1, respectively. Finally, sensory analysis revealed the rich aromatic character of Tsounati variety, highlighting its potential to be used for Greek-style table olive production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

23 pages, 752 KiB  
Review
Antibiotic Therapy Duration for Multidrug-Resistant Gram-Negative Bacterial Infections: An Evidence-Based Review
by Andrea Marino, Egle Augello, Carlo Maria Bellanca, Federica Cosentino, Stefano Stracquadanio, Luigi La Via, Antonino Maniaci, Serena Spampinato, Paola Fadda, Giuseppina Cantarella, Renato Bernardini, Bruno Cacopardo and Giuseppe Nunnari
Int. J. Mol. Sci. 2025, 26(14), 6905; https://doi.org/10.3390/ijms26146905 - 18 Jul 2025
Viewed by 677
Abstract
Determining the optimal duration of antibiotic therapy for infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) is a critical challenge in clinical medicine, balancing therapeutic efficacy against the risks of adverse effects and antimicrobial resistance. This narrative review synthesises current evidence and guidelines regarding [...] Read more.
Determining the optimal duration of antibiotic therapy for infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) is a critical challenge in clinical medicine, balancing therapeutic efficacy against the risks of adverse effects and antimicrobial resistance. This narrative review synthesises current evidence and guidelines regarding antibiotic duration for MDR-GNB infections, emphasising bloodstream infections (BSI), hospital-acquired and ventilator-associated pneumonia (HAP/VAP), complicated urinary tract infections (cUTIs), and intra-abdominal infections (IAIs). Despite robust evidence supporting shorter courses (3–7 days) in uncomplicated infections caused by more susceptible pathogens, data guiding optimal therapy duration for MDR-GNB remain limited, particularly concerning carbapenem-resistant Enterobacterales (CRE), difficult-to-treat Pseudomonas aeruginosa (DTR-Pa), and carbapenem-resistant Acinetobacter baumannii (CRAB). Current guidelines from major societies, including IDSA and ESCMID, provide explicit antimicrobial selection advice but notably lack detailed recommendations on the duration of therapy. Existing studies demonstrate non-inferiority of shorter versus longer antibiotic courses in specific clinical contexts but frequently exclude critically ill patients or those infected with non-fermenting MDR pathogens. Individualised duration decisions must integrate clinical response, patient immunologic status, infection severity, source control adequacy, and pharmacologic considerations. Significant knowledge gaps persist, underscoring the urgent need for targeted research, particularly randomised controlled trials assessing optimal antibiotic duration for the most challenging MDR-GNB infections. Clinicians must navigate considerable uncertainty, relying on nuanced judgement and close monitoring to achieve successful outcomes while advancing antimicrobial stewardship goals. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

27 pages, 3370 KiB  
Review
Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo and Emma Mani-López
Microbiol. Res. 2025, 16(7), 161; https://doi.org/10.3390/microbiolres16070161 - 17 Jul 2025
Viewed by 623
Abstract
Sourdough fermentation has emerged as a promising biotechnological approach to reducing gluten content and modifying gluten proteins in wheat-based products. This review assesses the current scientific literature on the enzymatic degradation and hydrolysis of gluten during lactic acid bacteria (LAB) sourdough fermentation. It [...] Read more.
Sourdough fermentation has emerged as a promising biotechnological approach to reducing gluten content and modifying gluten proteins in wheat-based products. This review assesses the current scientific literature on the enzymatic degradation and hydrolysis of gluten during lactic acid bacteria (LAB) sourdough fermentation. It explores implications for individuals with gluten-related disorders, including celiac disease, non-celiac gluten sensitivity and intolerance, as well as irritable bowel syndrome (IBS). In addition, LAB sourdough effect on fermentable oligo-, di-, monosaccharides and polyols (FODMAPs), amylase-trypsin inhibitors (ATIs), and phytate are revised. Selected homo- and heterofermentative LAB are capable of degrading gluten proteins, especially the polypeptides derived from the action of native cereal proteases. Mixed cultures of LAB degrade gluten peptides more effectively than monocultures. However, LAB sourdough is not sufficient to remove the toxic peptides to the minimal level (<20 ppm). This goal is achieved only if sourdough is combined with fungal proteases during sourdough fermentation. LAB sourdough directly contributes to lower FODMAPs but not ATIs and phytate. Phytate is reduced by the endogenous cereal phytases activated at acidic pHs (pH < 5.0), conditions generated during sourdough fermentation. ATIs are also lowered by endogenous cereal proteases instead of LAB proteases/peptidases. Despite LAB sourdough not fully degrading the gluten or directly reducing the ATIs and phytate, it participates through peptidases activity and acidic pH that trigger the action of endogenous cereal proteases and phytases. Full article
Show Figures

Figure 1

20 pages, 1065 KiB  
Review
Microbial Genome Editing with CRISPR–Cas9: Recent Advances and Emerging Applications Across Sectors
by Chhavi Dudeja, Amish Mishra, Ansha Ali, Prem Pratap Singh and Atul Kumar Jaiswal
Fermentation 2025, 11(7), 410; https://doi.org/10.3390/fermentation11070410 - 16 Jul 2025
Viewed by 1005
Abstract
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. [...] Read more.
CRISPR technology, which is derived from the bacterial adaptive immune system, has transformed traditional genetic engineering techniques, made strain engineering significantly easier, and become a very versatile genome editing system that allows for precise, programmable modifications to a wide range of microbial genomes. The economies of fermentation-based manufacturing are changing because of its quick acceptance in both academic and industry labs. CRISPR processes have been used to modify industrially significant bacteria, including the lactic acid producers, Clostridium spp., Escherichia coli, and Corynebacterium glutamicum, in order to increase the yields of bioethanol, butanol, succinic acid, acetone, and polyhydroxyalkanoate precursors. CRISPR-mediated promoter engineering and single-step multiplex editing have improved inhibitor tolerance, raised ethanol titers, and allowed for the de novo synthesis of terpenoids, flavonoids, and recombinant vaccines in yeasts, especially Saccharomyces cerevisiae and emerging non-conventional species. While enzyme and biopharmaceutical manufacturing use CRISPR for quick strain optimization and glyco-engineering, food and beverage fermentations benefit from starter-culture customization for aroma, texture, and probiotic functionality. Off-target effects, cytotoxicity linked to Cas9, inefficient delivery in specific microorganisms, and regulatory ambiguities in commercial fermentation settings are some of the main challenges. This review provides an industry-specific summary of CRISPR–Cas9 applications in microbial fermentation and highlights technical developments, persisting challenges, and industrial advancements. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

18 pages, 1381 KiB  
Article
Enhancing the Quality of Traditional Indonesian Shrimp Paste (Terasi) Through Tetragenococcus halophilus 54M106-3 Inoculation: Physicochemical, Sensory, and Bioactivity Insights
by Muhammad Alfid Kurnianto, Safrina Isnaini Adirama, Wenxi Xu, Sri Winarti and Dina Mustika Rini
Foods 2025, 14(14), 2419; https://doi.org/10.3390/foods14142419 - 9 Jul 2025
Viewed by 345
Abstract
Terasi is a traditional Indonesian fermented condiment made from rebon shrimp and salt. This study investigated the effects of Tetragenococcus halophilus inoculation and varying salt concentrations (6%, 12%, and 18%) on the physicochemical and sensory properties of terasi, compared to a non-inoculated [...] Read more.
Terasi is a traditional Indonesian fermented condiment made from rebon shrimp and salt. This study investigated the effects of Tetragenococcus halophilus inoculation and varying salt concentrations (6%, 12%, and 18%) on the physicochemical and sensory properties of terasi, compared to a non-inoculated control (25% salt), after 7, 14, and 21 days of fermentation. Inoculation decreased pH, soluble protein, and texture while increasing N-amino acid content, moisture, lactic acid bacteria (LAB), and color darkening. Higher salt levels raised pH, soluble protein, and texture but reduced N-amino acids, moisture, and LAB, resulting in a lighter color. LAB activity peaked on day 7, with moisture and texture increasing over time. Sensory analysis favored inoculated samples, and TOPSIS identified terasi with T. halophilus, 6% salt, and 7 days of fermentation as optimal in quality and preference. This formulation also demonstrated strong bioactivity, including antioxidant activity (3.90 mg AEAC/g sample by DPPH assay and 8.76 ± 0.22 mg AEAC/g sample by FRAP assay), antidiabetic potential via α-amylase and α-glucosidase inhibition (IC50 of 1.95 and 7.24 mg/mL), and antimicrobial effects against E. coli (32.78 mm) and S. aureus (30.85 mm). These results suggest that T. halophilus-inoculated terasi offers enhanced quality and functional properties, supporting its potential as a health-promoting fermented food product. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 2956 KiB  
Article
Selection of Fructophilic Yeast from Sun-Dried Pedro Ximénez Grape Must for the Development of New Vinegars Containing Gluconic Acid
by Juan Carbonero-Pacheco, Álvaro García-Jiménez, Juan C. Mauricio, Juan C. García-García, Juan J. Román-Camacho, Elena García-Muñoz, Inés M. Santos-Dueñas, Teresa García-Martínez and Isidoro García-García
Foods 2025, 14(14), 2410; https://doi.org/10.3390/foods14142410 - 8 Jul 2025
Viewed by 419
Abstract
Wine vinegar and wine are traditional Spanish products, obtained from grape must by alcoholic fermentation (wine) and subsequent acetification (vinegar). Although these are established products, there is great interest in the development of new products, particularly new vinegars, and among these, the possibility [...] Read more.
Wine vinegar and wine are traditional Spanish products, obtained from grape must by alcoholic fermentation (wine) and subsequent acetification (vinegar). Although these are established products, there is great interest in the development of new products, particularly new vinegars, and among these, the possibility of vinegars containing gluconic acid stands out. Gluconic acid in vinegar, mainly produced by acetic acid bacteria (AAB), is positively valued by consumers. Its content depends on the availability of glucose in the base wine; however, this hexose is preferentially consumed by the indigenous yeast population which conducts the previous alcoholic fermentation. For this reason, the use of non-conventional fructophilic yeasts, which consume fructose rather than glucose, is required. In this work, we isolated, screened, and identified osmophilic and fructophilic non-Saccharomyces yeasts from sun-dried grape must and tested them under different fermentation conditions in synthetic and natural grape musts, in order to obtain a base wine with ethanol and glucose content for the development of new vinegars containing gluconic acid. The isolate of the species Starmerella lactis-condensi was found to be an ideal candidate due to its fructophilic and osmophilic features, which allowed for the production of a base wine with high ethanol (11% v/v) and glucose (up to 200 g/L) content from a natural concentrated must. In fresh must, inoculation with Starmerella lactis-condensi resulted in faster and preferential fructose consumption over glucose compared to the control. However, both sugars were completely consumed at the end of the alcoholic fermentation; therefore, new fermentation strategies should be tested in this type of must. Furthermore, this strain could be of interest in oenology due to its high glycerol yield and low volatile acid production during alcoholic fermentation. The use of this strain could allow for the production of new wines with unique metabolic profiles suitable for further vinegar production. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 811 KiB  
Article
A Novel GABA-Producing Levilactobacillus brevis Strain Isolated from Organic Tomato as a Promising Probiotic
by Asia Pizzi, Carola Parolin, Davide Gottardi, Arianna Ricci, Giuseppina Paola Parpinello, Rosalba Lanciotti, Francesca Patrignani and Beatrice Vitali
Biomolecules 2025, 15(7), 979; https://doi.org/10.3390/biom15070979 - 8 Jul 2025
Viewed by 538
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid playing a significant role in the central nervous system and the gut–brain axis. This study investigated the potential to produce GABA by lactic acid bacteria (LAB) isolated from different varieties of organic tomatoes. The isolated [...] Read more.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid playing a significant role in the central nervous system and the gut–brain axis. This study investigated the potential to produce GABA by lactic acid bacteria (LAB) isolated from different varieties of organic tomatoes. The isolated LAB were taxonomically identified by 16S rRNA gene sequencing, the presence of the gadB gene (glutamate decarboxylase) was detected, and GABA production was quantified using HPLC. Levilactobacillus brevis CRAI showed the highest GABA production under optimised fermentation conditions with 4% monosodium glutamate (MSG). The genome sequencing of L. brevis CRAI revealed the presence of gadA and gadB isoforms and assessed the strain’s safety profile. The gene expression analysis revealed that the gadA and gadB genes were upregulated in the presence of 4% MSG. The probiotic potential of L. brevis CRAI was also assessed by functional assays. The strain showed strong antimicrobial activity against representative enteropathogens, i.e., Escherichia coli ETEC, Salmonella choleraesuis, and Yersinia enterocolitica, and anti-inflammatory effect, reducing nitric oxide production in LPS-stimulated RAW264.7 macrophages. In addition, its ability to adhere to intestinal epithelial Caco-2 cells was demonstrated. These results highlight L. brevis CRAI as a promising candidate for the development of GABA-enriched functional foods or probiotic supplements with the perspective to modulate the gut-brain axis. Full article
(This article belongs to the Special Issue Probiotics and Their Metabolites, 2nd Edition)
Show Figures

Graphical abstract

11 pages, 4880 KiB  
Communication
The Nosocomial Transmission of Carbapenem-Resistant Gram-Negative Bacteria in a Hospital in Baoding City, China
by Shengnan Liao, Wei Su, Tianjiao Li, Zeyang Li, Zihan Pei, Jie Zhang and Wenjuan Yin
Microbiol. Res. 2025, 16(7), 147; https://doi.org/10.3390/microbiolres16070147 - 2 Jul 2025
Viewed by 309
Abstract
Background: The global rise of multidrug-resistant Gram-negative bacteria, particularly non-fermenting species and carbapenemase-producing Enterobacteriaceae, poses a significant challenge to hospital infection control. Methods: In this study, a total of 89 Acinetobacter spp. isolates, 14 Pseudomonas aeruginosa, and 14 carbapenem-resistant Enterobacteriaceae isolates were [...] Read more.
Background: The global rise of multidrug-resistant Gram-negative bacteria, particularly non-fermenting species and carbapenemase-producing Enterobacteriaceae, poses a significant challenge to hospital infection control. Methods: In this study, a total of 89 Acinetobacter spp. isolates, 14 Pseudomonas aeruginosa, and 14 carbapenem-resistant Enterobacteriaceae isolates were collected from patients in a tertiary hospital. Whole-genome sequencing and antimicrobial susceptibility testing were conducted. Resistance mechanisms and evolutionary relationships were analyzed using phylogenetic analysis and genetic context mapping. Results: Among the non-fermenting isolates, A. baumannii exhibited high resistance to carbapenems, clustering into distinct clonal groups enriched with genes associated with biofilm formation and virulence genes. P. aeruginosa isolates harbored fewer resistance genes but carried notable mutations in the efflux pump systems and the oprD gene. In Enterobacteriaceae, four blaNDM alleles were identified within a conservative structural sequence, while blaKPC-2 was located in a non-Tn4401 structure flanked by IS481- and IS1182-like insertion sequences. Phylogenetic analysis revealed that blaNDM-positive E. coli strains were closely related to susceptible lineages, indicating horizontal gene transfer. Conversely, K. pneumoniae isolates harboring blaKPC-2 formed a tight clonal cluster, suggesting clonal expansion. Conclusions: The study reveals distinct transmission patterns between resistance genes: horizontal dissemination of blaNDM and clonal expansion of blaKPC-2 in K. pneumoniae. These findings emphasize the need for resistance-gene-specific genomic surveillance and infection control strategies to prevent further nosocomial dissemination. Full article
Show Figures

Figure 1

17 pages, 4201 KiB  
Article
Comparative Effects of the Single and Binary Fermentations of Latilactobacillus sakei and Staphylococcus carnosus on the Growth and Metabolomic Profiles of Fermented Beef Sausages
by Xuan Li, Yangyi Zheng, Wenming Cui, Xueyuan Bai, Chaozhi Zhu and Gaiming Zhao
Microorganisms 2025, 13(7), 1523; https://doi.org/10.3390/microorganisms13071523 - 29 Jun 2025
Viewed by 311
Abstract
Latilactobacillus sakei (L. sakei) and Staphylococcus carnosus (S. carnosus) are common starters for fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study compared the changes in metabolomics following [...] Read more.
Latilactobacillus sakei (L. sakei) and Staphylococcus carnosus (S. carnosus) are common starters for fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study compared the changes in metabolomics following fermentation by L. sakei and S. carnosus individually and in combination. After two days of fermentation, the pH values of the LS (Latilactobacillus Single), SC (Staphylococcus Single), and LSSC (Latilactobacillus-Staphylococcus Combined) groups were 4.59, 5.19, and 4.86. By comparing the common differential metabolites among the three groups, it was found that the content of N2-acetyl-L-ornithine decreased after single fermentation with L. sakei, while the content of N2-acetyl-L-ornithine increased after single fermentation with S. carnosus and combined fermentation with L. sakei. Additionally, KEGG pathway analysis identified eight key metabolic pathways, including purine metabolism, starch and sucrose metabolism. In addition, it was found that L. sakei produced D-Galactose during fermentation, which could be utilized by S. carnosus. The co-fermentation of L. sakei and S. carnosus promoted the production of D-sorbitol. Our results suggest that the metabolic interactions between L. sakei and S. carnosus increase the number of functional metabolites in co-fermented sausages. These findings provide valuable insights and new research directions for the study of LAB and CNS interactions, as well as for the development of fermentation agents. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 5045 KiB  
Article
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum
by Ilona Jonuškienė, Erika Davicijonaitė, Monika Vaškevičiūtė, Ihsan Kala, Rima Stankevičienė, Kristina Kantminienė and Ingrida Tumosienė
Molecules 2025, 30(13), 2734; https://doi.org/10.3390/molecules30132734 - 25 Jun 2025
Viewed by 500
Abstract
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, [...] Read more.
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, stabilizing, and emulsifying agent. It has unique properties for use in many industries (food, biotechnology, petrochemicals, agricultural, cosmetics, wastewater treatment) and medical applications. It is tasteless, environmentally safe, non-toxic, and biodegradable. The biotechnological production of xanthan gum depends on several factors: bacterial strain development, culture medium preparation, carbon sources, fermentation parameters and modes, pH, temperature, recovery, purification, and quality control regulations. Bio-innovative strategies have been developed to optimize the production of xanthan gum. A variety of carbon and nitrogen sources, as well as alternative renewable sources, have been used in the production of xanthan gum. The aim of the present study was to optimize the xanthan gum yield using Xanthomonas campestris bacteria and different carbon (D-glucose, D-sorbitol, lactose, sucrose, D-mannitol, D-fructose, erythritol, coconut palm sugar, L-arabinose, unrefined cane sugar), various nitrogen (bacterial peptone, casein peptone, L-glutamic acid, L-arginine, L-methionine, L-tryptophan, malt extract, meat extract, L-phenylalanine, soy peptone) and alternative carbon (orange peels, tangerine peels, lemon peels, avocado peels, melon peels, apple peels, cellulose, xylose, xylitol) sources. The xanthan gum samples were analyzed using antioxidant methods. Our study showed that using L-glutamic acid as the carbon source for 72 h of bacterial fermentation of Xanthomonas campestris resulted in the highest xanthan gum yield: 32.34 g/L. However, using renewable resources, we achieved a very high concentration of xanthan gum in just 24 h of fermentation. According to the reducing power and DPPH methods, the highest antioxidant activities were measured for xanthan gum whose biosynthesis was based on renewable resources. Xanthan gum structures have been verified by FT-IR and 1H NMR analysis. The sustainable biotechnology study has the advantage of increasing the sustainable production of xanthan gum by using renewable alternative resources compared to other production processes. Xanthan gum continues to be a valuable biopolymer with a wide range of industrial applications while promoting environmentally friendly production practices. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

Back to TopTop