Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders
Abstract
1. Introduction
2. Disorders Related to Components of Cereals Containing Gluten
2.1. Celiac Disease
2.2. Gluten Intolerance
2.3. Non-Celiac Gluten Sensitivity
2.4. Irritable Bowel Syndrome (IBS)
2.5. Grain Components That Trigger Adverse Reactions
3. Sourdough as an Alternative for Improving Gut Health
3.1. Microorganisms and Fermentation in Sourdough
3.2. Enzymatic Proteolysis of Grain Proteins
3.3. Protein Hydrolysis Through Lactic Acid Fermentation
3.4. Changes in Non-Protein Components (FODMAPs), Phytate, and Antinutritional Compounds
3.5. Impact of Sourdough Products on Gluten Intolerance, Non-Celiac Gluten Sensitivity, and IBS
4. Technological and Processing Considerations
5. Challenges and Limitations
6. Final Comments and Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkay, Z.; Falah, F.; Cankurt, H.; Dertli, E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024, 13, 1732. [Google Scholar] [CrossRef] [PubMed]
- Serena, G.; D’Avino, P.; Fasano, A. Celiac Disease and Non-Celiac Wheat Sensitivity: State of Art of Non-Dietary Therapies. Front. Nutr. 2020, 7, 152. [Google Scholar] [CrossRef]
- Skovbjerg, H.; Koch, C.; Anthonsen, D.; Sjöström, H. Deamidation and Cross-Linking of Gliadin Peptides by Transglutaminases and the Relation to Celiac Disease. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2004, 1690, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of Gluten-Related Disorders: Consensus on New Nomenclature and Classification. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Muskovics, G.; Farkas, A.; Bugyi, Z.; Tömösközi, S. Changes of Gluten Protein Composition during Sourdough Fermentation in Rye Flour. Cereal Chem. 2024, 101, 1354–1363. [Google Scholar] [CrossRef]
- Barre, A.; Benoist, H.; Rougé, P. Impacts of Sourdough Technology on the Availability of Celiac Peptides from Wheat α- and γ-Gliadins: In Silico Approach. Allergies 2023, 3, 39–57. [Google Scholar] [CrossRef]
- De Angelis, M.; Cassone, A.; Rizzello, C.G.; Gagliardi, F.; Minervini, F.; Calasso, M.; Di Cagno, R.; Francavilla, R.; Gobbetti, M. Mechanism of Degradation of Immunogenic Gluten Epitopes from Triticum Turgidum L. Var. Durum by Sourdough Lactobacilli and Fungal Proteases. Appl. Environ. Microbiol. 2010, 76, 508–518. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; Auricchio, S.; Greco, L.; Clarke, C.; De Vincenzi, M.; Giovannini, C.; D’Archivio, M.; Landolfo, F.; Parrilli, G.; et al. Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients. Appl. Environ. Microbiol. 2004, 70, 1088–1096. [Google Scholar] [CrossRef]
- Greco, L.; Gobbetti, M.; Auricchio, R.; Di Mase, R.; Landolfo, F.; Paparo, F.; Di Cagno, R.; De Angelis, M.; Rizzello, C.G.; Cassone, A.; et al. Safety for Patients With Celiac Disease of Baked Goods Made of Wheat Flour Hydrolyzed During Food Processing. Clin. Gastroenterol. Hepatol. 2011, 9, 24–29. [Google Scholar] [CrossRef]
- Cristofori, F.; Francavilla, R.; Capobianco, D.; Dargenio, V.N.; Filardo, S.; Mastromarino, P. Bacterial-Based Strategies to Hydrolyze Gluten Peptides and Protect Intestinal Mucosa. Front. Immunol. 2020, 11, 567801. [Google Scholar] [CrossRef]
- D’Amico, V.; Gänzle, M.; Call, L.; Zwirzitz, B.; Grausgruber, H.; D’Amico, S.; Brouns, F. Does Sourdough Bread Provide Clinically Relevant Health Benefits? Front. Nutr. 2023, 10, 1230043. [Google Scholar] [CrossRef]
- Graça, C.; Lima, A.; Raymundo, A.; Sousa, I. Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. Fermentation 2021, 7, 246. [Google Scholar] [CrossRef]
- Loponen, J.; Gänzle, M.G. Use of Sourdough in Low FODMAP Baking. Foods 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Scherf, K.A.; Wieser, H.; Koehler, P. Novel Approaches for Enzymatic Gluten Degradation to Create High-Quality Gluten-Free Products. Food Res. Int. 2018, 110, 62–72. [Google Scholar] [CrossRef]
- Gobbetti, M.; Pontonio, E.; Filannino, P.; Rizzello, C.G.; De Angelis, M.; Di Cagno, R. How to Improve the Gluten-Free Diet: The State of the Art from a Food Science Perspective. Food Res. Int. 2018, 110, 22–32. [Google Scholar] [CrossRef]
- Catassi, C.; Elli, L.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; Cellier, C.; Cristofori, F.; De Magistris, L.; Dolinsek, J.; et al. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients 2015, 7, 4966–4977. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Figueroa, R.H.; Mani-López, E.; Palou, E.; López-Malo, A. Sourdoughs as Natural Enhancers of Bread Quality and Shelf Life: A Review. Fermentation 2023, 10, 7. [Google Scholar] [CrossRef]
- Staudacher, H.M.; Whelan, K. The Low FODMAP Diet: Recent Advances in Understanding Its Mechanisms and Efficacy in IBS. Gut 2017, 66, 1517–1527. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; Minervini, F.; Filannino, P.; Sardaro, M.L.S.; Gatti, M.; Lindner, J.D.D. Effects of Sourdough on FODMAPs in Bread and Potential Outcomes on Irritable Bowel Syndrome Patients and Healthy Subjects. Front. Microbiol. 2018, 9, 1972. [Google Scholar] [CrossRef]
- Albiac, M.A.; Di Cagno, R.; Filannino, P.; Cantatore, V.; Gobbetti, M. How Fructophilic Lactic Acid Bacteria May Reduce the FODMAPs Content in Wheat-Derived Baked Goods: A Proof of Concept. Microb. Cell Fact. 2020, 19, 182. [Google Scholar] [CrossRef]
- Boakye, P.G.; Kougblenou, I.; Murai, T.; Okyere, A.Y.; Anderson, J.; Bajgain, P.; Philipp, B.; LaPlante, B.; Schlecht, S.; Vogel, C.; et al. Impact of Sourdough Fermentation on FODMAPs and Amylase-Trypsin Inhibitor Levels in Wheat Dough. J. Cereal Sci. 2022, 108, 103574. [Google Scholar] [CrossRef]
- Geisslitz, S.; Scherf, K.A. Impact of Sourdough Microbiota on FODMAPs and ATI Content in Bakery Products. In Sourdough Microbiota and Starter Cultures for Industry; Ceresino, E.B., Juodeikiene, G., Schwenninger, S.M., da Rocha, J.M.F., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 425–459. ISBN 978-3-031-48603-6. [Google Scholar]
- Lamacchia, C.; Camarca, A.; Picascia, S.; Di Luccia, A.; Gianfrani, C. Cereal-Based Gluten-Free Food: How to Reconcile Nutritional and Technological Properties of Wheat Proteins with Safety for Celiac Disease Patients. Nutrients 2014, 6, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Schuppan, D.; Tovar, L.E.R.; Zevallos, V.F.; Loponen, J.; Gänzle, M. Sourdough Fermentation Degrades Wheat Alpha-Amylase/Trypsin Inhibitor (ATI) and Reduces Pro-Inflammatory Activity. Foods 2020, 9, 943. [Google Scholar] [CrossRef]
- Lindfors, K.; Ciacci, C.; Kurppa, K.; Lundin, K.E.A.; Makharia, G.K.; Mearin, M.L.; Murray, J.A.; Verdu, E.F.; Kaukinen, K. Coeliac Disease. Nat. Rev. Dis. Primers 2019, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Makharia, G.K.; Singh, P.; Catassi, C.; Sanders, D.S.; Leffler, D.; Ali, R.A.R.; Bai, J.C. The Global Burden of Coeliac Disease: Opportunities and Challenges. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 313–327. [Google Scholar] [CrossRef]
- Dunaevsky, Y.E.; Tereshchenkova, V.F.; Belozersky, M.A.; Filippova, I.Y.; Oppert, B.; Elpidina, E.N. Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics 2021, 13, 1603. [Google Scholar] [CrossRef]
- Brouns, F.; Van Rooy, G.; Shewry, P.; Rustgi, S.; Jonkers, D. Adverse Reactions to Wheat or Wheat Components. Comp. Rev. Food Sci. Food Saf. 2019, 18, 1437–1452. [Google Scholar] [CrossRef]
- Lebwohl, B.; Sanders, D.S.; Green, P.H.R. Coeliac Disease. Lancet 2018, 391, 70–81. [Google Scholar] [CrossRef]
- Dale, H.F.; Biesiekierski, J.R.; Lied, G.A. Non-Coeliac Gluten Sensitivity and the Spectrum of Gluten-Related Disorders: An Updated Overview. Nutr. Res. Rev. 2019, 32, 28–37. [Google Scholar] [CrossRef]
- Roszkowska, A.; Pawlicka, M.; Mroczek, A.; Bałabuszek, K.; Nieradko-Iwanicka, B. Non-Celiac Gluten Sensitivity: A Review. Medicina 2019, 55, 222. [Google Scholar] [CrossRef]
- Volta, U.; Caio, G.; Giancola, F.; Rhoden, K.J.; Ruggeri, E.; Boschetti, E.; Stanghellini, V.; De Giorgio, R. Features and Progression of Potential Celiac Disease in Adults. Clin. Gastroenterol. Hepatol. 2016, 14, 686–693.e1. [Google Scholar] [CrossRef]
- Czaja-Bulsa, G. Non Coeliac Gluten Sensitivity—A New Disease with Gluten Intolerance. Clin. Nutr. 2015, 34, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Uhde, M.; Ajamian, M.; Caio, G.; De Giorgio, R.; Indart, A.; Green, P.H.; Verna, E.C.; Volta, U.; Alaedini, A. Intestinal Cell Damage and Systemic Immune Activation in Individuals Reporting Sensitivity to Wheat in the Absence of Coeliac Disease. Gut 2016, 65, 1930–1937. [Google Scholar] [CrossRef]
- De Graaf, M.C.; Timmers, E.; Bonekamp, B.; Van Rooy, G.; Witteman, B.J.; Shewry, P.R.; Lovegrove, A.; America, A.H.; Gilissen, L.J.; Keszthelyi, D.; et al. Two Randomized Crossover Multicenter Studies Investigating Gastrointestinal Symptoms after Bread Consumption in Individuals with Noncoeliac Wheat Sensitivity: Do Wheat Species and Fermentation Type Matter? Am. J. Clin. Nutr. 2024, 119, 896–907. [Google Scholar] [CrossRef]
- Biesiekierski, J.R.; Peters, S.L.; Newnham, E.D.; Rosella, O.; Muir, J.G.; Gibson, P.R. No Effects of Gluten in Patients With Self-Reported Non-Celiac Gluten Sensitivity After Dietary Reduction of Fermentable, Poorly Absorbed, Short-Chain Carbohydrates. Gastroenterology 2013, 145, 320–328.e3. [Google Scholar] [CrossRef]
- Herfindal, A.M.; Nilsen, M.; Aspholm, T.E.; Schultz, G.I.G.; Valeur, J.; Rudi, K.; Thoresen, M.; Lundin, K.E.A.; Henriksen, C.; Bøhn, S.K. Effects of Fructan and Gluten on Gut Microbiota in Individuals with Self-Reported Non-Celiac Gluten/Wheat Sensitivity—A Randomised Controlled Crossover Trial. BMC Med. 2024, 22, 358. [Google Scholar] [CrossRef] [PubMed]
- Black, C.J.; Ford, A.C. Global Burden of Irritable Bowel Syndrome: Trends, Predictions and Risk Factors. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Black, C.J.; Drossman, D.A.; Talley, N.J.; Ruddy, J.; Ford, A.C. Functional Gastrointestinal Disorders: Advances in Understanding and Management. Lancet 2020, 396, 1664–1674. [Google Scholar] [CrossRef]
- Usai-Satta, P.; Bassotti, G.; Bellini, M.; Oppia, F.; Lai, M.; Cabras, F. Irritable Bowel Syndrome and Gluten-Related Disorders. Nutrients 2020, 12, 1117. [Google Scholar] [CrossRef]
- Biesiekierski, J.R.; Newnham, E.D.; Irving, P.M.; Barrett, J.S.; Haines, M.; Doecke, J.D.; Shepherd, S.J.; Muir, J.G.; Gibson, P.R. Gluten Causes Gastrointestinal Symptoms in Subjects Without Celiac Disease: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Gastroenterol. 2011, 106, 508–514. [Google Scholar] [CrossRef]
- Wang, J.; Yang, P.; Zhang, L.; Hou, X. A Low-FODMAP Diet Improves the Global Symptoms and Bowel Habits of Adult IBS Patients: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 683191. [Google Scholar] [CrossRef]
- Spiller, R. Impact of Diet on Symptoms of the Irritable Bowel Syndrome. Nutrients 2021, 13, 575. [Google Scholar] [CrossRef] [PubMed]
- Roncoroni, L.; Bascuñán, K.A.; Doneda, L.; Scricciolo, A.; Lombardo, V.; Branchi, F.; Ferretti, F.; Dell’Osso, B.; Montanari, V.; Bardella, M.T.; et al. A Low FODMAP Gluten-Free Diet Improves Functional Gastrointestinal Disorders and Overall Mental Health of Celiac Disease Patients: A Randomized Controlled Trial. Nutrients 2018, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Sabença, C.; Ribeiro, M.; de Sousa, T.; Poeta, P.; Bagulho, A.S.; Igrejas, G. Wheat/Gluten-Related Disorders and Gluten-Free Diet Misconceptions: A Review. Foods 2021, 10, 1765. [Google Scholar] [CrossRef]
- Wieser, H.; Koehler, P.; Scherf, K.A. The Two Faces of Wheat. Front. Nutr. 2020, 7, 517313. [Google Scholar] [CrossRef] [PubMed]
- Junker, Y.; Zeissig, S.; Kim, S.-J.; Barisani, D.; Wieser, H.; Leffler, D.A.; Zevallos, V.; Libermann, T.A.; Dillon, S.; Freitag, T.L.; et al. Wheat Amylase Trypsin Inhibitors Drive Intestinal Inflammation via Activation of Toll-like Receptor 4. J. Exp. Med. 2012, 209, 2395–2408. [Google Scholar] [CrossRef]
- Carcea, M.; Melloni, S.; Narducci, V.; Turfani, V. Wheat Germ Agglutinin (WGA): Its Nature, Biological Role, Significance in Human Nutrition, and Possibility to Be Used as Marker of Whole-Grain Status in Wheat-Based Foods. Foods 2024, 13, 2990. [Google Scholar] [CrossRef]
- El Mecherfi, K.-E.; Lupi, R.; Cherkaoui, M.; Albuquerque, M.A.C.; Todorov, S.D.; Tranquet, O.; Klingebiel, C.; Rogniaux, H.; Denery-Papini, S.; Onno, B.; et al. Fermentation of Gluten by Lactococcus Lactis LLGKC18 Reduces Its Antigenicity and Allergenicity. Probiot. Antimicro. Prot. 2022, 14, 779–791. [Google Scholar] [CrossRef]
- Biscola, V.; Albuquerque Cavalcanti de Albuquerque, M.; Pacheco, T.; Silva, D.; Gombossy, B. Lactic Acid Bacteria Application to Decrease Food Allergies. In Lactic Acid Bacteria. A Functional Approach; CRC Press: Boca Raton, FL, USA, 2020; p. 21. [Google Scholar]
- Kieliszek, M.; Pobiega, K.; Piwowarek, K.; Kot, A.M. Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021, 26, 1858. [Google Scholar] [CrossRef]
- Fu, W.; Xue, W.; Liu, C.; Tian, Y.; Zhang, K.; Zhu, Z. Screening of Lactic Acid Bacteria and Yeasts from Sourdough as Starter Cultures for Reduced Allergenicity Wheat Products. Foods 2020, 9, 751. [Google Scholar] [CrossRef]
- Fu, W.; Liu, C.; Meng, X.; Tao, S.; Xue, W. Co-Culture Fermentation of Pediococcus Acidilactici XZ31 and Yeast for Enhanced Degradation of Wheat Allergens. Int. J. Food Microbiol. 2021, 347, 109190. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; Lavermicocca, P.; De Vincenzi, M.; Giovannini, C.; Faccia, M.; Gobbetti, M. Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Appl. Environ. Microbiol. 2002, 68, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Arora, K.; Ameur, H.; Polo, A.; Di Cagno, R.; Rizzello, C.G.; Gobbetti, M. Thirty Years of Knowledge on Sourdough Fermentation: A Systematic Review. Trends Food Sci. Technol. 2021, 108, 71–83. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Nionelli, L.; Coda, R.; Di Cagno, R.; Gobbetti, M. Use of Sourdough Fermented Wheat Germ for Enhancing the Nutritional, Texture and Sensory Characteristics of the White Bread. Eur. Food Res. Technol. 2010, 230, 645–654. [Google Scholar] [CrossRef]
- Fraberger, V.; Ammer, C.; Domig, K.J. Functional Properties and Sustainability Improvement of Sourdough Bread by Lactic Acid Bacteria. Microorganisms 2020, 8, 1895. [Google Scholar] [CrossRef]
- Rizzello, C.G.; De Angelis, M.; Coda, R.; Gobbetti, M. Use of Selected Sourdough Lactic Acid Bacteria to Hydrolyze Wheat and Rye Proteins Responsible for Cereal Allergy. Eur. Food Res. Technol. 2006, 223, 405–411. [Google Scholar] [CrossRef]
- Rizzello, C.G.; De Angelis, M.; Di Cagno, R.; Camarca, A.; Silano, M.; Losito, I.; De Vincenzi, M.; De Bari, M.D.; Palmisano, F.; Maurano, F.; et al. Highly Efficient Gluten Degradation by Lactobacilli and Fungal Proteases during Food Processing: New Perspectives for Celiac Disease. Appl. Environ. Microbiol. 2007, 73, 4499–4507. [Google Scholar] [CrossRef]
- Calasso, M.; Francavilla, R.; Cristofori, F.; De Angelis, M.; Gobbetti, M. New Protocol for Production of Reduced-Gluten Wheat Bread and Pasta and Clinical Effect in Patients with Irritable Bowel Syndrome: A Randomised, Double-Blind, Cross-Over Study. Nutrients 2018, 10, 1873. [Google Scholar] [CrossRef]
- Reale, A.; Di Stasio, L.; Di Renzo, T.; De Caro, S.; Ferranti, P.; Picariello, G.; Addeo, F.; Mamone, G. Bacteria Do It Better! Proteomics Suggests the Molecular Basis for Improved Digestibility of Sourdough Products. Food Chem. 2021, 359, 129955. [Google Scholar] [CrossRef]
- De Vuyst, L.; González-Alonso, V.; Wardhana, Y.R.; Pradal, I. Taxonomy and Species Diversity of Sourdough Lactic Acid Bacteria. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 97–160. ISBN 978-3-031-23083-7. [Google Scholar]
- Radomir, L. The Chemistry of Cereal Proteins, 2nd ed.; Routledge: Oxford, UK, 2017; ISBN 978-0-203-73705-7. [Google Scholar]
- Khan, A.; Li, S.; Han, H.; Jin, W.-L.; Ling, Z.; Ji, J.; Iram, S.; Liu, P.; Xiao, S.; Salama, E.-S.; et al. A Gluten Degrading Probiotic Bacillus Subtilis LZU-GM Relieve Adverse Effect of Gluten Additive Food and Balances Gut Microbiota in Mice. Food Res. Int. 2023, 170, 112960. [Google Scholar] [CrossRef]
- Sollid, L.M.; Qiao, S.-W.; Anderson, R.P.; Gianfrani, C.; Koning, F. Nomenclature and Listing of Celiac Disease Relevant Gluten T-Cell Epitopes Restricted by HLA-DQ Molecules. Immunogenetics 2012, 64, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Wang, S.; Xue, W. Mechanism of Carbohydrate and Protein Conversion during Sourdough Fermentation: An Analysis Based on Representative Chinese Sourdough Microbiota. Int. J. Food Microbiol. 2023, 410, 110487. [Google Scholar] [CrossRef]
- Thiele, C.; Grassl, S.; Gänzle, M. Gluten Hydrolysis and Depolymerization during Sourdough Fermentation. J. Agric. Food Chem. 2004, 52, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Zadeike, D.; Cipkute, K.; Cizeikiene, D. Effects of Co-Fermentation with Lactic Acid Bacteria and Yeast on Gliadin Degradation in Whole-Wheat Sourdough. Fermentation 2025, 11, 238. [Google Scholar] [CrossRef]
- Rollan, G.; De Angelis, M.; Gobbetti, M.; De Valdez, G.F. Proteolytic Activity and Reduction of Gliadin-like Fractions by Sourdough Lactobacilli. J. Appl. Microbiol. 2005, 99, 1495–1502. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Redruello, B.; Ladero, V.; Martín, M.C.; Fernández, M.; Alvarez, M.A. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide. Can. J. Microbiol. 2016, 62, 422–430. [Google Scholar] [CrossRef]
- Gerez, C.L.; Dallagnol, A.; Rollán, G.; Font De Valdez, G. A Combination of Two Lactic Acid Bacteria Improves the Hydrolysis of Gliadin during Wheat Dough Fermentation. Food Microbiol. 2012, 32, 427–430. [Google Scholar] [CrossRef]
- Brzozowski, B. Immunoreactivity of Wheat Proteins Modified by Hydrolysis and Polymerisation. Eur. Food Res. Technol. 2016, 242, 1025–1040. [Google Scholar] [CrossRef]
- Brzozowski, B.; Stasiewicz, K.; Ostolski, M.; Adamczak, M. Reducing Immunoreactivity of Gliadins and Coeliac-Toxic Peptides Using Peptidases from L. Acidophilus 5e2 and A. Niger. Catalysts 2020, 10, 923. [Google Scholar] [CrossRef]
- Leszczyńska, J.; Szczepankowska, A.K.; Majak, I.; Mańkowska, D.; Smolińska, B.; Ścieszka, S.; Diowksz, A.; Cukrowska, B.; Aleksandrzak-Piekarczyk, T. Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases. Nutrients 2024, 16, 976. [Google Scholar] [CrossRef]
- Bradauskiene, V.; Vaiciulyte-Funk, L.; Shah, B.; Cernauskas, D.; Tita, M. Recent Advances in Biotechnological Methods for Wheat Gluten Immunotoxicity Abolishment—A Review. Pol. J. Food Nutr. Sci. 2021, 71, 5–20. [Google Scholar] [CrossRef]
- Walter, T.; Wieser, H.; Koehler, P. Degradation of Gluten in Rye Sourdough Products by Means of a Proline-Specific Peptidase. Eur. Food Res. Technol. 2015, 240, 517–524. [Google Scholar] [CrossRef]
- Cano, R.H.; Guergoletto, K.B.; Garcia, S. Isolamento e Identificação de Bactérias Láticas Com Potencial Proteolítico a Partir de Sourdough Produzidas Em Londrina, Paraná, Brasil. Semin. Ciênc. Agrár. 2025, 46, 827–842. [Google Scholar] [CrossRef]
- Siddiqi, R.A.; Sogi, D.S.; Sehajpal, P.K. Effect of Short-Term Sourdough Fermentation on Wheat Protein. Cogent Food Agric. 2016, 2, 1132983. [Google Scholar] [CrossRef]
- Pourmohammadi, K.; Abedi, E. Hydrolytic Enzymes and Their Directly and Indirectly Effects on Gluten and Dough Properties: An Extensive Review. Food Sci. Nutr. 2021, 9, 3988–4006. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.; Montserrat, V.; Mujico, J.R.; Loh, K.L.; Beringer, D.X.; Van Lummel, M.; Thompson, A.; Mearin, M.L.; Schweizer, J.; Kooy-Winkelaar, Y.; et al. T-Cell Receptor Recognition of HLA-DQ2–Gliadin Complexes Associated with Celiac Disease. Nat. Struct. Mol. Biol. 2014, 21, 480–488. [Google Scholar] [CrossRef]
- De Angelis, M.; Rizzello, C.G.; Fasano, A.; Clemente, M.G.; De Simone, C.; Silano, M.; De Vincenzi, M.; Losito, I.; Gobbetti, M. VSL#3 Probiotic Preparation Has the Capacity to Hydrolyze Gliadin Polypeptides Responsible for Celiac Sprue Probiotics and Gluten Intolerance. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2006, 1762, 80–93. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Nikoloudaki, O.; Speckmann, B.; Calabrese, F.M.; Gobbetti, M.; De Angelis, M. Metabolic Characterization of Selected Probiotic Consortia during Gluten and Wheat Bread Simulated Digestion. Food Sci. Human. Wellness 2025, 14, 9250033. [Google Scholar] [CrossRef]
- Rashmi, B.S.; Gayathri, D.; Vasudha, M.; Prashantkumar, C.S.; Swamy, C.T.; Sunil, K.S.; Somaraja, P.K.; Prakash, P. Gluten Hydrolyzing Activity of Bacillus Spp Isolated from Sourdough. Microb. Cell Fact. 2020, 19, 130. [Google Scholar] [CrossRef]
- Schmidt, M.; Sciurba, E. Determination of FODMAP Contents of Common Wheat and Rye Breads and the Effects of Processing on the Final Contents. Eur. Food Res. Technol. 2021, 247, 395–410. [Google Scholar] [CrossRef]
- Varney, J.; Barrett, J.; Scarlata, K.; Catsos, P.; Gibson, P.R.; Muir, J.G. FODMAPs: Food Composition, Defining Cutoff Values and International Application. J. Gastro Hepatol. 2017, 32, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Loponen, J.; Gänzle, M.G. Characterization of the Extracellular Fructanase FruA in Lactobacillus Crispatus and Its Contribution to Fructan Hydrolysis in Breadmaking. J. Agric. Food Chem. 2020, 68, 8637–8647. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Steiner, D.; Longin, C.F.H.; Würschum, T.; Schweiggert, R.M.; Carle, R. Wheat and the Irritable Bowel Syndrome—FODMAP Levels of Modern and Ancient Species and Their Retention during Bread Making. J. Funct. Foods 2016, 25, 257–266. [Google Scholar] [CrossRef]
- Borowska, M.; Ispiryan, L.; Neylon, E.; Sahin, A.W.; Murphy, C.P.; Zannini, E.; Arendt, E.K.; Coffey, A. Screening and Application of Novel Homofermentative Lactic Acid Bacteria Results in Low-FODMAP Whole-Wheat Bread. Fermentation 2023, 9, 336. [Google Scholar] [CrossRef]
- Fang, S.; Yan, B.; Tian, F.; Lian, H.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. β-Fructosidase FosE Activity in Lactobacillus Paracasei Regulates Fructan Degradation during Sourdough Fermentation and Total FODMAP Levels in Steamed Bread. LWT 2021, 145, 111294. [Google Scholar] [CrossRef]
- Fraberger, V.; Ladurner, M.; Nemec, A.; Grunwald-Gruber, C.; Call, L.M.; Hochegger, R.; Domig, K.J.; D’Amico, S. Insights into the Potential of Sourdough-Related Lactic Acid Bacteria to Degrade Proteins in Wheat. Microorganisms 2020, 8, 1689. [Google Scholar] [CrossRef] [PubMed]
- Stefańska, I.; Piasecka-Jóźwiak, K.; Kotyrba, D.; Kolenda, M.; Stecka, K.M. Selection of Lactic Acid Bacteria Strains for the Hydrolysis of Allergenic Proteins of Wheat Flour. J. Sci. Food Agric. 2016, 96, 3897–3905. [Google Scholar] [CrossRef]
- Lopez, H.W.; Krespine, V.; Guy, C.; Messager, A.; Demigne, C.; Remesy, C. Prolonged Fermentation of Whole Wheat Sourdough Reduces Phytate Level and Increases Soluble Magnesium. J. Agric. Food Chem. 2001, 49, 2657–2662. [Google Scholar] [CrossRef]
- Leenhardt, F.; Levrat-Verny, M.-A.; Chanliaud, E.; Rémésy, C. Moderate Decrease of pH by Sourdough Fermentation Is Sufficient To Reduce Phytate Content of Whole Wheat Flour through Endogenous Phytase Activity. J. Agric. Food Chem. 2005, 53, 98–102. [Google Scholar] [CrossRef]
- Reale, A.; Konietzny, U.; Coppola, R.; Sorrentino, E.; Greiner, R. The Importance of Lactic Acid Bacteria for Phytate Degradation during Cereal Dough Fermentation. J. Agric. Food Chem. 2007, 55, 2993–2997. [Google Scholar] [CrossRef]
- De Angelis, M. Phytase Activity in Sourdough Lactic Acid Bacteria: Purification and Characterization of a Phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol. 2003, 87, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.S.; Raikhel, N. Sequence Variability in Three Wheat Germ Agglutinin Isolectins: Products of Multiple Genes in Polyploid Wheat. J. Mol. Evol. 1989, 28, 327–336. [Google Scholar] [CrossRef]
- Pellegrina, C.D.; Perbellini, O.; Scupoli, M.T.; Tomelleri, C.; Zanetti, C.; Zoccatelli, G.; Fusi, M.; Peruffo, A.; Rizzi, C.; Chignola, R. Effects of Wheat Germ Agglutinin on Human Gastrointestinal Epithelium: Insights from an Experimental Model of Immune/Epithelial Cell Interaction. Toxicol. Appl. Pharmacol. 2009, 237, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Van Buul, V.J.; Brouns, F.J.P.H. Health Effects of Wheat Lectins: A Review. J. Cereal Sci. 2014, 59, 112–117. [Google Scholar] [CrossRef]
- Tovar, L.E.R.; Gänzle, M.G. Degradation of Wheat Germ Agglutinin during Sourdough Fermentation. Foods 2021, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Di Cagno, R.; Barbato, M.; Di Camillo, C.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; De Vincenzi, M.; Gobbetti, M.; Cucchiara, S. Gluten-free Sourdough Wheat Baked Goods Appear Safe for Young Celiac Patients: A Pilot Study. J. Pediatr. Gastroenterol. nutr. 2010, 51, 777–783. [Google Scholar] [CrossRef]
- De Angelis, M.; Siragusa, S.; Vacca, M.; Di Cagno, R.; Cristofori, F.; Schwarm, M.; Pelzer, S.; Flügel, M.; Speckmann, B.; Francavilla, R.; et al. Selection of Gut-Resistant Bacteria and Construction of Microbial Consortia for Improving Gluten Digestion under Simulated Gastrointestinal Conditions. Nutrients 2021, 13, 992. [Google Scholar] [CrossRef]
- Francavilla, R.; De Angelis, M.; Rizzello, C.G.; Cavallo, N.; Bello, F.D.; Gobbetti, M. Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion. Appl. Environ. Microbiol. 2017, 83, e00376-17. [Google Scholar] [CrossRef]
- Mandile, R.; Picascia, S.; Parrella, C.; Camarca, A.; Gobbetti, M.; Greco, L.; Troncone, R.; Gianfrani, C.; Auricchio, R. Lack of Immunogenicity of Hydrolysed Wheat Flour in Patients with Coeliac Disease after a Short-term Oral Challenge. Aliment. Pharmacol. Ther. 2017, 46, 440–446. [Google Scholar] [CrossRef]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.-M.; Loponen, J.; Poussa, T.; Huang, X.; Sontag-Strohm, T.; Salmenkari, H.; Korpela, R. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome. Nutrients 2017, 9, 1215. [Google Scholar] [CrossRef]
- Laatikainen, R.; Jalanka, J.; Loponen, J.; Hongisto, S.-M.; Hillilä, M.; Koskenpato, J.; Korpela, R.; Salonen, A. Randomised Clinical Trial: Effect of Low-FODMAP Rye Bread versus Regular Rye Bread on the Intestinal Microbiota of Irritable Bowel Syndrome Patients: Association with Individual Symptom Variation. BMC Nutr. 2019, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Islam, S. Sourdough Bread Quality: Facts and Factors. Foods 2024, 13, 2132. [Google Scholar] [CrossRef]
- Gélinas, P.; Théolier, J. How to Reduce Gluten in Foods: A Critical Review of Patents. Int. J. Food Sci. Technol. 2024, 59, 8069–8081. [Google Scholar] [CrossRef]
- Giuliani, G.; Benedusi, A.; Di Cagno, R.; Rizzello, C.G.; De Angelis, M.; Gobbetti, M.; Cassone, A. Method for Partial Degradation of Gluten. U.S. Patent 20140065262A1, 6 March 2014. [Google Scholar]
- Giuliani, G.; Benedusi, A.; Di Cagno, R.; Rizzello, C.G.; De Angelis, M.; Gobbetti, M.; Cassone, A. Process of Microbic Biotechnology for Completely Degrading Gluten in Flours. U.S. Patent 9386777B2, 12 July 2016. [Google Scholar]
- Pedroza-Islas, R. Microencapsulated Bacterial Consortium for the Degradation of Gluten into Sourdough and Method for Producing Said Sourdough. EP Patent 2818048A1, 9 January 2019. [Google Scholar]
- Poutanen, K.; Flander, L.; Katina, K. Sourdough and Cereal Fermentation in a Nutritional Perspective. Food Microbiol. 2009, 26, 693–699. [Google Scholar] [CrossRef]
- Corsetti, A.; Settanni, L. Lactobacilli in Sourdough Fermentation. Food Res. Int. 2007, 40, 539–558. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Activity of Wheat-Flour Sourdough (Type II) from Two Different Lactobacillus in Vitro and Bread. Appl. Food Res. 2023, 3, 100319. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus Plantarum and Its Aqueous Extracts In Vitro and Bread. Antibiotics 2022, 11, 1813. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Morales-Camacho, J.I.; Mani-López, E.; López-Malo, A. Assessment of Antifungal Activity of Aqueous Extracts and Protein Fractions from Sourdough Fermented by Lactiplantibacillus Plantarum. Future Foods 2024, 9, 100314. [Google Scholar] [CrossRef]
- De Bondt, Y.; Verdonck, C.; Brandt, M.J.; De Vuyst, L.; Gänzle, M.G.; Gobbetti, M.; Zannini, E.; Courtin, C.M. Wheat Sourdough Breadmaking: A Scoping Review. Annu. Rev. Food Sci. Technol. 2024, 15, 265–282. [Google Scholar] [CrossRef]
- Arendt, E.K.; Ryan, L.A.M.; Bello, F.D. Impact of Sourdough on the Texture of Bread. Food Microbiol. 2007, 24, 165–174. [Google Scholar] [CrossRef]
- Moroni, A.V.; Bello, F.D.; Arendt, E.K. Sourdough in Gluten-Free Bread-Making: An Ancient Technology to Solve a Novel Issue? Food Microbiol. 2009, 26, 676–684. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Curiel, J.A.; Nionelli, L.; Vincentini, O.; Di Cagno, R.; Silano, M.; Gobbetti, M.; Coda, R. Use of Fungal Proteases and Selected Sourdough Lactic Acid Bacteria for Making Wheat Bread with an Intermediate Content of Gluten. Food Microbiol. 2014, 37, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G.; Loponen, J.; Gobbetti, M. Proteolysis in Sourdough Fermentations: Mechanisms and Potential for Improved Bread Quality. Trends Food Sci. Technol. 2008, 19, 513–521. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; Ramírez-Corona, N.; López-Malo, A. Optimizing Lactic Acid Bacteria Proportions in Sourdough to Enhance Antifungal Activity and Quality of Partially and Fully Baked Bread. Foods 2024, 13, 2318. [Google Scholar] [CrossRef]
- Salehi, F. Improvement of Gluten-free Bread and Cake Properties Using Natural Hydrocolloids: A Review. Food Sci. Nutr. 2019, 7, 3391–3402. [Google Scholar] [CrossRef]
- Torres-Pérez, R.; Martínez-García, E.; Siguero-Tudela, M.M.; García-Segovia, P.; Martínez-Monzó, J.; Igual, M. Enhancing Gluten-Free Bread Production: Impact of Hydroxypropyl Methylcellulose, Psyllium Husk Fiber, and Xanthan Gum on Dough Characteristics and Bread Quality. Foods 2024, 13, 1691. [Google Scholar] [CrossRef]
- Irondi, E.A.; Imam, Y.T.; Ajani, E.O.; Alamu, E.O. Natural and Modified Food Hydrocolloids as Gluten Replacement in Baked Foods: Functional Benefits. Grain Oil Sci. Technol. 2023, 6, 163–171. [Google Scholar] [CrossRef]
- Capriles, V.D.; Arêas, J.A.G. Novel Approaches in Gluten-Free Breadmaking: Interface between Food Science, Nutrition, and Health. Comp. Rev. Food Sci. Food Saf. 2014, 13, 871–890. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Quek, S.; Perera, C.O. Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. J. Food Sci. 2010, 75, R163–R174. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Fuentes, A.P.; Genevois, C.E.; Flores, S.K.; Pla, M.F.d.E. Novel Application of a Food Ingredient Based on Soybean Extruded-expelled Meal Containing Probiotics for Improving Gluten-free Bread Quality. Int. J. Food Sci. Technol. 2023, 58, 6855–6861. [Google Scholar] [CrossRef]
- Peñalver, R.; Ros, G.; Nieto, G. Development of Gluten-Free Functional Bread Adapted to the Nutritional Requirements of Celiac Patients. Fermentation 2023, 9, 631. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Guo, X.; Wang, F.; Huang, J.; Sun, B.; Wang, X. Sourdough Improves the Quality of Whole-Wheat Flour Products: Mechanisms and Challenges—A Review. Food Chem. 2021, 360, 130038. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, A.; Cerrone, R.; Capobianco, D.; Filardo, S.; Mancini, P.; Zanni, F.; Fanelli, S.; Mastromarino, P.; Mosca, L. A Probiotic Preparation Hydrolyzes Gliadin and Protects Intestinal Cells from the Toxicity of Pro-Inflammatory Peptides. Nutrients 2020, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. How the Sourdough May Affect the Functional Features of Leavened Baked Goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel Insights on the Functional/Nutritional Features of the Sourdough Fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef]
- Fernández-Peláez, J.; Paesani, C.; Gómez, M. Sourdough Technology as a Tool for the Development of Healthier Grain-Based Products: An Update. Agronomy 2020, 10, 1962. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L. Impact of Sourdough Fermentation on Nutrient Transformations in Cereal-Based Foods: Mechanisms, Practical Applications, and Health Implications. Grain Oil Sci. Technol. 2024, 7, 124–132. [Google Scholar] [CrossRef]
- Gänzle, M.; Gobbetti, M. Physiology and Biochemistry of Sourdough Lactic Acid Bacteria and Their Impact on Bread Quality. In Handbook on Sourdough Biotechnology; Gobbetti, M., Gänzle, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 213–256. ISBN 978-3-031-23083-7. [Google Scholar]
- McCabe, M.S. Balancing Consumer Protection and Scientific Integrity in the Face of Uncertainty: The Example of Gluten-Free Foods. Food Drug LJ 2010, 65, 367–390. [Google Scholar]
- Grabowicz, A.; Czaja-Bulsa, G. Misleading Labelling of Gluten-Free Products in the Light of EU Regulations: Time for a Change? J. Consum. Prot. Food Saf. 2019, 14, 93–95. [Google Scholar] [CrossRef]
- Xhaferaj, M.; Alves, T.O.; Ferreira, M.S.L.; Scherf, K.A. Recent Progress in Analytical Method Development to Ensure the Safety of Gluten-Free Foods for Celiac Disease Patients. J. Cereal Sci. 2020, 96, 103114. [Google Scholar] [CrossRef]
- Lima, T.T.M.; Hosken, B.D.O.; De Dea Lindner, J.; Menezes, L.A.A.; Pirozi, M.R.; Martin, J.G.P. How to Deliver Sourdough with Appropriate Characteristics for the Bakery Industry? The Answer May Be Provided by Microbiota. Food Biosci. 2023, 56, 103072. [Google Scholar] [CrossRef]
- Bruins Slot, I.D.; Bremer, M.G.E.G.; Hamer, R.J.; Van Der Fels-Klerx, H.J. Part of Celiac Population Still at Risk despite Current Gluten Thresholds. Trends Food Sci. Technol. 2015, 43, 219–226. [Google Scholar] [CrossRef]
- Di Sario, F.; Monachesi, C.; Verma, A.K.; Catassi, C. Everything That Must Be Known About the Relationship of Gluten to Human Health. In Designing Gluten Free Bakery and Pasta Products; De Escalada Pla, M.F., Genevois, C.E., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–17. ISBN 978-3-031-28343-7. [Google Scholar]
- Raju, N.; Joshi, A.K.R.; Vahini, R.; Deepika, T.; Bhaskarachari, K.; Devindra, S. Gluten Contamination in Labelled and Naturally Gluten-Free Grain Products in Southern India. Food Addit. Contam. Part. A 2020, 37, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Kaur, A.; Chopra, C.S. Gluten-Free Products for Celiac Susceptible People. Front. Nutr. 2018, 5, 116. [Google Scholar] [CrossRef]
- Arslain, K.; Gustafson, C.R.; Baishya, P.; Rose, D.J. Determinants of Gluten-Free Diet Adoption among Individuals without Celiac Disease or Non-Celiac Gluten Sensitivity. Appetite 2021, 156, 104958. [Google Scholar] [CrossRef]
- Verrill, L.; Zhang, Y.; Kane, R. Food Label Usage and Reported Difficulty with Following a Gluten-free Diet among Individuals in the USA with Coeliac Disease and Those with Noncoeliac Gluten Sensitivity. J. Human. Nutr. Diet. 2013, 26, 479–487. [Google Scholar] [CrossRef]
- Gutowski, E.D.; Weiten, D.; Green, K.H.; Rigaux, L.N.; Bernstein, C.N.; Graff, L.A.; Walker, J.R.; Duerksen, D.R.; Silvester, J.A. Can Individuals with Celiac Disease Identify Gluten-Free Foods Correctly? Clin. Nutr. ESPEN 2020, 36, 82–90. [Google Scholar] [CrossRef]
- Ribeiro, M.; De Sousa, T.; Sabença, C.; Poeta, P.; Bagulho, A.S.; Igrejas, G. Advances in Quantification and Analysis of the Celiac-related Immunogenic Potential of Gluten. Comp. Rev. Food Sci. Food Saf. 2021, 20, 4278–4298. [Google Scholar] [CrossRef]
- Scherf, K.A.; Poms, R.E. Recent Developments in Analytical Methods for Tracing Gluten. J. Cereal Sci. 2016, 67, 112–122. [Google Scholar] [CrossRef]
- Bustamante, M.Á.; Simón, E.; Churruca, I.; Del Pilar Fernández-Gil, M. Techniques for Analyzing Gluten. In Nutritional and Analytical Approaches of Gluten-Free Diet in Celiac Disease; SpringerBriefs in Food, Health, and Nutrition; Springer International Publishing: Cham, Switzerland, 2017; pp. 29–46. ISBN 978-3-319-53341-4. [Google Scholar]
- Morón, B.; Bethune, M.T.; Comino, I.; Manyani, H.; Ferragud, M.; López, M.C.; Cebolla, Á.; Khosla, C.; Sousa, C. Toward the Assessment of Food Toxicity for Celiac Patients: Characterization of Monoclonal Antibodies to a Main Immunogenic Gluten Peptide. PLoS ONE 2008, 3, e2294. [Google Scholar] [CrossRef]
- Osorio, C.E.; Mejías, J.H.; Rustgi, S. Gluten Detection Methods and Their Critical Role in Assuring Safe Diets for Celiac Patients. Nutrients 2019, 11, 2920. [Google Scholar] [CrossRef]
- Sena-Torralba, A.; Smits, N.G.E.; Blázquez, D.; Albero-Pérez, C.; Pallás-Tamarit, Y.; Maquieira, Á.; Morais, S. Simultaneous Quantification of Six Major Allergens in Commercial Foods for Children Using a Multiplex Array on a Digital Versatile Disc. Food Chem. 2023, 404, 134570. [Google Scholar] [CrossRef] [PubMed]
- Panda, R.; Garber, E.A.E. Western Blot Analysis of Fermented-Hydrolyzed Foods Utilizing Gluten-Specific Antibodies Employed in a Novel Multiplex Competitive ELISA. Anal. Bioanal. Chem. 2019, 411, 5159–5174. [Google Scholar] [CrossRef] [PubMed]
- Amnuaycheewa, P.; Niemann, L.; Goodman, R.E.; Baumert, J.L.; Taylor, S.L. Challenges in Gluten Analysis: A Comparison of Four Commercial Sandwich ELISA Kits. Foods 2022, 11, 706. [Google Scholar] [CrossRef] [PubMed]
- Mena, M.C.; Sousa, C. Analytical Tools for Gluten Detection. Policies and Regulation. In Advances in the Understanding of Gluten related Pathology and the Evolution of Gluten-Free Foods; Arranz, E., Fernández-Bañares, F., M.Rosell, C., Rodrigo, L., Peña, A.S., Eds.; OmniaScience: Barcelona, Spain, 2015; pp. 527–564. ISBN 978-84-943418-2-3. [Google Scholar]
- Alves, T.O.; D’Almeida, C.T.S.; Scherf, K.A.; Ferreira, M.S.L. Modern Approaches in the Identification and Quantification of Immunogenic Peptides in Cereals by LC-MS/MS. Front. Plant Sci. 2019, 10, 1470. [Google Scholar] [CrossRef]
- Lu, Y.; Ji, H.; Chen, Y.; Li, Z.; Timira, V. A Systematic Review on the Recent Advances of Wheat Allergen Detection by Mass Spectrometry: Future Prospects. Crit. Rev. Food Sci. Nutr. 2023, 63, 12324–12340. [Google Scholar] [CrossRef]
- Lock, S. Gluten Detection and Speciation by Liquid Chromatography Mass Spectrometry (LC-MS/MS). Foods 2013, 3, 13–29. [Google Scholar] [CrossRef]
Genus | |
---|---|
Lactobacillus | Fructilactobacillus sanfranciscensis Furfurilactobacillus rossiae Lactiplantibacillus plantarum Levilactobacillus brevis Lactiplantibacillus pentosus Companilactobacillus alimentarius Limosilactobacillus fermentum Lacticaseibacillus paracasei Lacticaseibacillus casei Lentilactobacillus hilgardii Latilactobacillus curvatus |
Pediococcus | P. pentosaceus P. acidilactici |
Leuconostoc | Ln. mesenteroides Ln. pseudomesenteroides |
LAB | Sourdough Preparation | Effect on Gluten | Reference |
---|---|---|---|
Lactobacillus alimentarius 15M, L. brevis 14G, L. sanfranciscensis 7A, and L. hilgardii 51B | 200 g of wheat flour, 70 g of tap water, and 30 mL of bacterial suspension (109 CFU/mL) incubated at 37 °C for 8 h | L. alimentarius degraded 7/13 gliadins fractions and L. sanfraciscensis hydrolyzed 18 gliadins | [54] |
L. alimentarius 15M, L. brevis 14G, L. sanfranciscensis 7A, and L. hilgardii 51B | 125 g of wheat or rye flour and 297 mL of tap water (containing a cell concentration of each sourdough LAB ~109 CFU/g) incubated for 24 h, 37 °C, and 200 rpm | Hydrolysis of albumins/globulins, gliadins has been obtained; glutenins did not hydrolyze. Most IgE-binding proteins remained after hydrolysis with LAB | [58] |
L. alimentarius 15M, L. brevis 14G, L. sanfranciscensis 7A, and L. hilgardii 51B (defined as pool 1). L. sanfranciscensis LS3, LS10, LS19, LS23, LS38, and LS47 mixture, define as pool 2 | 80 g of wheat flour and 320 g of tap water containing 5 × 108 CFU/g of pool 1 (S1) or the same microbial load of pool 2 for S2, both were incubated at 37 °C for 48 h and stirred (200 rpm) | Gluten content reduced from 74,592 ppm (control, chemically acidified dough at pH 3.5) to 20,315 ppm and 12,362 ppm for S1 and S2, respectively | [59] |
L. alimentarius 15M, L. brevis 14G, L. sanfranciscensis 7A, and L. hilgardii 51B | 80 g of wheat flour and 320 g of tap water containing 5 × 108 CFU/g incubated at 37 °C for 48 h and stirring (200 rpm) | The gluten concentration decreased from 80,127 ppm to 2480 ppm after sourdough fermentation | [9] |
Sourdough starter (major strains Lactobacillus plantarum, L. brevis, and Pediococcus pentosaceus) fermented by 1 (S1), 21 (S21), or 45 (S45) h | 45 g rye flour, 100 g water, and 5 g starter culture incubated 24 h at 30 °C | The gluten content modified from rye flour (56,173 mg/kg) to 70,953 mg/kg for S1, 32,375 mg/kg for S21, and 26,551 mg/kg for S45 | [76] |
Levilactobacillus brevis A6, Companilactobacillus alimentarius G4, Fructilactobacillus sanfranciscensis SB52, Leuconostoc pseudomesenteroides D4 and W2 | 90 g wheat flour and ~45 mL sterile water were inoculated with 108 CFU/g (individual bacterium) and incubated at 28 °C for 48 h | After 6 h of fermentation, >70 peptides were produced from >30 parental proteins, including α-gliadin, LMW-GS, and metabolic proteins After 24 h, Co. alimentarius G4 and Lev. brevis A6 generated >800 peptides from ~150 proteins, while F. sanfranciscensis SB52, Ln. pseudomesenteroides D4 and W2 were identified with 771, 693, and 550 peptides from 149, 145, and 102 parental proteins, respectively Then, at 48 h, the number of peptides did not increase and remained similar to that obtained after 24 h, even they were slightly lower, probably due to progressive peptidolysis to oligopeptides (4–5 amino acids) | [61] |
Eight commercial sourdough starters (frozen lactobacilli mixture, wheat, rye, and gluten-free crop (rice and buckwheat)-based) | 20 g of rye flour blend (from 6 different countries) was mixed with 40 mL of water, and 0.6 g of culture The dough was incubated at 25 °C or 30 °C for 48 h | Partial degradation of glutenins was observed during 48 h fermentation for three/eight sourdough starters measured as gluten content using R5 enzyme-linked immunosorbent assay and reversed-phase high-performance liquid chromatography | [5] |
Companilactobacillus crustorum isolated and identified from a sourdough (water and wheat flour) | 50 g of wheat flour and 50 g of water, stored for 48 h at 24 °C; step 2, 25 g of the fermented dough was used to inoculate 50 g of dough + 50 g of water (1:2:2) and stored for 48 h at 24 °C; in the next inoculation the time was reduced to 24 h, in the fourth step the storage temperature was 21 °C The final dough was prepared with 50% wheat flour, 15% starter dough, 33.8% water, and 1.2% salt, mixed 10 min and stored for 48 h at 21 °C | Dry gluten was reduced by 19.9% at the end of sourdough fermentation | [77] |
L. brevis ATCC 367 and P. pentosaceus ATCC 25745) | 10 g of commercial gluten mixed with 50 mL of distilled water was supplemented with 2% of bacterial suspension (109 CFU/mL) and incubated for 24 h at 35 °C | The gliadin content was reduced by 77.0% for P. pentosaceus and 78.8% for L. brevis | [68] |
Technological Aspect | Effect of Sourdough Fermentation | Strategies to Mitigate Challenges | Reference(s) |
---|---|---|---|
Dough rheology | Weakened gluten network, reduced extensibility, and elasticity | Use of hydrocolloids, protein fortification | [117,118] |
Loaf volume | Decreased due to partial gluten hydrolysis | Longer fermentation, addition of starches, or binding agents | [79] |
Flavor and aroma | Enhanced due to the production of organic acids and volatiles | N/A | [111] |
Shelf life | Improved through LAB antimicrobial activity | Controlled fermentation conditions | [112] |
Texture | Softer crumb, possible gumminess if degradation is excessive | Adjusting hydration and fermentation time | [106,121] |
Challenge | Implication | Potential Solution | Reference(s) |
Variability in microbial activity | Inconsistent gluten degradation across batches | Use of defined starter cultures with characterized strains | [139] |
Incomplete gluten hydrolysis | Risk for celiac patients if the final gluten content exceeds 20 ppm | Combining sourdough with exogenous proteases | [23,140,141] |
Regulatory limitations | Limited approval for ‘gluten-free’ labeling for fermented wheat-based products | Strict monitoring and validation of gluten content | [142,143] |
Product standardization at scale | Difficulties reproducing artisanal fermentation results in industrial settings | Process control and strain engineering | [117,118] |
Consumer understanding and labeling | Confusion between “gluten-free” and “gluten-reduced” claims | Clear regulatory guidelines and labeling strategies | [144,145,146] |
Method | Rationale | Reference |
ELISA (R5 Sandwich ELISA) | Highly sensitive and specific; standard method recognized by Codex Alimentarius; suitable for intact gluten detection | [138,151,155] |
Lateral Flow Devices (LFDs) | Rapid, portable; used for on-site screening with high specificity (G12 antibodies) | [138,150] |
PCR (Real-time PCR) | Detects DNA from gluten-containing cereals; useful in processed foods where proteins are degraded | [138,151] |
Mass Spectrometry (LC-MS/MS) | High specificity and sensitivity for gluten peptides; effective in hydrolyzed foods | [138,156,157,158] |
Western Blot | Confirms the presence of gluten proteins; useful in research and validation studies | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Figueroa, R.H.; López-Malo, A.; Mani-López, E. Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders. Microbiol. Res. 2025, 16, 161. https://doi.org/10.3390/microbiolres16070161
Hernández-Figueroa RH, López-Malo A, Mani-López E. Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders. Microbiology Research. 2025; 16(7):161. https://doi.org/10.3390/microbiolres16070161
Chicago/Turabian StyleHernández-Figueroa, Ricardo H., Aurelio López-Malo, and Emma Mani-López. 2025. "Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders" Microbiology Research 16, no. 7: 161. https://doi.org/10.3390/microbiolres16070161
APA StyleHernández-Figueroa, R. H., López-Malo, A., & Mani-López, E. (2025). Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders. Microbiology Research, 16(7), 161. https://doi.org/10.3390/microbiolres16070161