Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,385)

Search Parameters:
Keywords = non-covalent interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6441 KB  
Article
Tetrabromocobalt Phthalocyanine-Functionalized Carbon Nanotubes as a High-Performance Anode for Lithium-Ion Batteries
by Keshavananda Prabhu Channabasavana Hundi Puttaningaiah
Nanomaterials 2025, 15(22), 1713; https://doi.org/10.3390/nano15221713 - 12 Nov 2025
Viewed by 142
Abstract
The search for high-capacity, stable anode materials is crucial for advancing lithium-ion battery (LIB) technology. Although carbon nanotubes (CNTs) are known for their excellent electrical conductivity and mechanical strength, their practical capacity is still limited. This study presents an advanced anode design by [...] Read more.
The search for high-capacity, stable anode materials is crucial for advancing lithium-ion battery (LIB) technology. Although carbon nanotubes (CNTs) are known for their excellent electrical conductivity and mechanical strength, their practical capacity is still limited. This study presents an advanced anode design by molecular functionalizing both single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) with tetrabromocobalt phthalocyanine (CoPc), resulting in CoPc/SWCNT and CoPc/MWCNT hybrid materials. Metal phthalocyanines (MPcs) are recognized for their tunable and redox-active properties. In CoPc, the redox-active metal centers and π-conjugated structure are uniformly attached to the CNT surface through strong π-π interactions. This synergistic combination significantly boosts the lithium-ion (Li-ion) storage capacity by offering numerous coordination sites for Li-ions and enhancing charge transfer kinetics. Electrochemical analysis shows that the CoPc-SWCNT active anode electrode material shows an impressive reversible capacity of 1216 mAh g−1 after 100 cycles at a current density of 0.1 A g−1, substantially surpassing the capacities of pristine CoPc (327 mAh g−1) and a CoPc/MWCNT hybrid (488 mAh g−1). Furthermore, the CoPc/SWCNT anode exhibited exceptional rate capability and outstanding long-term cyclability. These results underscore the effectiveness of non-covalent functionalization with SWCNTs in enhancing the electrical conductivity, structural stability, and active site utilization of CoPc, positioning CoPc/SWCNT hybrids as a highly promising anode material for high-performance Li-ion storage. Full article
Show Figures

Graphical abstract

22 pages, 1471 KB  
Article
Interacting Quantum Atoms Analysis of Covalent and Collective Interactions in Single Elongated Carbon–Carbon Bonds
by Antonio Bonesana-Espinoza, José Manuel Guevara-Vela, Evelio Francisco, Tomás Rocha-Rinza and Ángel Martín Pendás
Molecules 2025, 30(21), 4316; https://doi.org/10.3390/molecules30214316 - 6 Nov 2025
Viewed by 280
Abstract
Chemical bonds among carbon atoms are central to chemistry. A general working principle regarding these interactions is that these contacts become stronger as the carbon atoms become closer to each other. Nevertheless, there are long, yet strong single C–C bonds that challenge this [...] Read more.
Chemical bonds among carbon atoms are central to chemistry. A general working principle regarding these interactions is that these contacts become stronger as the carbon atoms become closer to each other. Nevertheless, there are long, yet strong single C–C bonds that challenge this interpretation. Herein, we perform a quantitative thorough decomposition of the electronic energy of hexaphenylethane and several derivatives of this molecule with increasingly bulkier substituents. For this purpose, we exploit state-of-the-art methods of wave function analysis for the examination of the chemical bonding scenario in the examined systems, namely, the quantum theory of atoms in molecules (QTAIM) and the interacting quantum atoms (IQA) electronic energy partition. Our results reveal the predominance of collective non-covalent interactions over the central, covalent one in the chemical bonding of the examined molecules, in particular for those that have been synthesized in the laboratory. The QTAIM and IQA methods also showed that, besides London dispersion, electron sharing comprises an important contribution to the abovementioned collective interactions. Overall, our results give valuable insights about the importance of collective interactions in the investigated systems and they aid in the understanding of the nature of long, yet stable single C–C bonds. Full article
(This article belongs to the Special Issue Fundamental Aspects of Chemical Bonding—2nd Edition)
Show Figures

Graphical abstract

22 pages, 4446 KB  
Review
Flavonoid-Based Cocrystals: A Comprehensive Study on Their Synthesis, Characterization, Physicochemical Properties and Applications
by Urszula Izabela Maciołek, Małgorzata Kosińska-Pezda, Tamara Martínez-Senra, Sonia Losada-Barreiro and Carlos Bravo-Díaz
Molecules 2025, 30(21), 4315; https://doi.org/10.3390/molecules30214315 - 6 Nov 2025
Viewed by 246
Abstract
Flavonoids are naturally occurring compounds with reported anticancer, antimicrobial, anti-inflammatory, cardio-protective and antioxidant effects. They are increasingly incorporated in functional foods designed to promote health, enhance well-being, and support physical performance. However, their practical use is limited because of their low water solubility [...] Read more.
Flavonoids are naturally occurring compounds with reported anticancer, antimicrobial, anti-inflammatory, cardio-protective and antioxidant effects. They are increasingly incorporated in functional foods designed to promote health, enhance well-being, and support physical performance. However, their practical use is limited because of their low water solubility and poor absorption within the body. An effective strategy for developing new flavonoid-based formulations involves their transformation into molecular complexes (cocrystals) through cocrystallization, a method that has emerged a powerful tool to modulate the physicochemical and biological properties of polyphenols and other relevant drugs. Cocrystals are stabilized through non-covalent interactions, which can introduce new physicochemical properties to the original molecules (coformers) while retaining the chemical properties of the coformers, as no bonds are broken or formed. Flavonoid-based cocrystals can be obtained through a variety of methods using different coformers, and we aim here to review cocrystals containing flavonoids and coformers, with a focus on their methods of synthesis, physicochemical and biological characteristics, as well as their potential applications in both the food and pharmaceutical sectors. Full article
Show Figures

Figure 1

17 pages, 2247 KB  
Article
DFT Insights into NHC-Catalyzed Switchable [3+4] and [3+2] Annulations of Isatin-Derived Enals and N-Sulfonyl Ketimines: Mechanism, Regio- and Stereoselectivity
by Saisai Yu, Wenxin Zhou, Yueming Jiang, Hangyu Wang, Xiaoyu Zhou and Shengwen Yang
Molecules 2025, 30(21), 4218; https://doi.org/10.3390/molecules30214218 - 29 Oct 2025
Viewed by 384
Abstract
Density functional theory (DFT) calculations at the M06-2X-D3/6-311++G(2df,2pd) level elucidate the mechanism and selectivity origins in the NHC-catalyzed divergent synthesis of spirocyclopentane oxindoles from isatin-derived enals and N-sulfonyl ketimines. The Michael addition constitutes the regio- and stereoselectivity-determining step, where Parr function analysis demonstrates [...] Read more.
Density functional theory (DFT) calculations at the M06-2X-D3/6-311++G(2df,2pd) level elucidate the mechanism and selectivity origins in the NHC-catalyzed divergent synthesis of spirocyclopentane oxindoles from isatin-derived enals and N-sulfonyl ketimines. The Michael addition constitutes the regio- and stereoselectivity-determining step, where Parr function analysis demonstrates that nucleophile/electrophile electrophilicity governs regioselectivity, while distortion/interaction and non-covalent interaction analyses reveal stereoselectivity is controlled by distortion and weak interactions. K3PO4 facilitates Breslow intermediate formation and proton transfer toward the β-lactam-fused spirocyclopentane oxindole, whereas N,N-diisopropylethylamine (DIPEA) promotes these processes for the spirocyclopentane oxindole bearing an enaminone moiety. Catalyst roles are also further delineated. Full article
Show Figures

Figure 1

30 pages, 1593 KB  
Review
Dynamic Hydrogels in Breast Tumor Models
by Girdhari Rijal and In-Woo Park
Gels 2025, 11(11), 855; https://doi.org/10.3390/gels11110855 - 26 Oct 2025
Viewed by 629
Abstract
Fabricating breast tumor models that mimic the natural breast tissue-like microenvironment (normal or cancerous) both physically and bio-metabolically, despite extended research, is still a challenge. A native-mimicking breast tumor model is the demand since complex biophysiological mechanisms in the native breast tissue hinder [...] Read more.
Fabricating breast tumor models that mimic the natural breast tissue-like microenvironment (normal or cancerous) both physically and bio-metabolically, despite extended research, is still a challenge. A native-mimicking breast tumor model is the demand since complex biophysiological mechanisms in the native breast tissue hinder deciphering the root causes of cancer initiation and progression. Hydrogels, which mimic the natural extracellular matrix (ECM), are increasingly demanded for various biomedical applications, including tissue engineering and tumor modeling. Their biomimetic 3D network structures have demonstrated significant potential to enhance the breast tumor model, treatment, and recovery. Additionally, 3D tumor organoids cultivated within hydrogels maintain the physical and genetic traits of native tumors, offering valuable platforms for personalized medicine and therapy response evaluation. Hydrogels are broadly classified into static and dynamic hydrogels. Static hydrogels, however, are inert to external stimuli and do not actively participate in biological processes or provide scaffolding systems. Dynamic hydrogels, on the other hand, adapt and respond to the surrounding microenvironment or even create new microenvironments according to physiological cues. Dynamic hydrogels typically involve reversible molecular interactions—through covalent or non-covalent bonds—enabling the fabrication of hydrogels tailored to meet the mechanical and physiological properties of target tissues. Although both static and dynamic hydrogels can be advanced by incorporating active nanomaterials, their combinations with dynamic hydrogels provide enhanced functionalities compared to static hydrogels. Further, engineered hydrogels with adipogenic and angiogenic properties support tissue integration and regeneration. Hydrogels also serve as efficient delivery systems for chemotherapeutic and immunotherapeutic agents, enabling localized, sustained release at tumor sites. This approach enhances therapeutic efficacy while minimizing systemic side effects, supporting ongoing research into hydrogel-based breast cancer therapies and reconstructive solutions. This review summarizes the roles of dynamic hydrogels in breast tumor models. Furthermore, this paper discusses the advantages of integrating nanoparticles with dynamic hydrogels for drug delivery, cancer treatment, and other biomedical applications, alongside the challenges and future perspectives. Full article
Show Figures

Figure 1

20 pages, 4378 KB  
Article
Structural and Magneto-Optical Study on the Tetrahedrally Configured [CoCl2(1-allylimidazole)2] and Molecular Docking to Hypoxia-Inducible Factor-1α
by Hela Ferjani, Bruno Poti e Silva, Faizul Azam, Yasmeen G. Abou El-Reash, Tarek Yousef, Nahal Rouzbeh, Leonhard Rochels, Sabrina Disch, Sascha A. Schäfer and Axel Klein
Inorganics 2025, 13(11), 344; https://doi.org/10.3390/inorganics13110344 - 23 Oct 2025
Viewed by 401
Abstract
The Co(II) complex [CoCl2(AImd)2] (AImd = 1-allylimidazole) was reinvestigated using a combination of experimental and theoretical methods. The previously reported crystal structure was redetermined and Hirshfeld surface analysis and enrichment ratios were added showing that intermolecular H⋯Cl and π⋯π [...] Read more.
The Co(II) complex [CoCl2(AImd)2] (AImd = 1-allylimidazole) was reinvestigated using a combination of experimental and theoretical methods. The previously reported crystal structure was redetermined and Hirshfeld surface analysis and enrichment ratios were added showing that intermolecular H⋯Cl and π⋯π interactions are the primary forces in the crystal structure, while H⋯H interactions dominate the surface of the molecule, making it rather hydrophobic in keeping with a low solubility in water. A Quantum Theory of Atoms in Molecules (QTAIM)/Non-Covalent Interactions (NCI)-Reduced Density Gradient (RDG) analysis on a dimeric model showed that the energies V(r) of the classical H⋯Cl hydrogen bonds range from −3.64 kcal/mol to −0.75 kcal/mol and were augmented by hydrophobic H⋯C interactions of >1 kcal/mol. T-dependent magnetization measurements reveal paramagnetic behavior with an effective magnetic moment of µeff = 4.66(2) µB. UV-vis absorption spectra in solution showed intense absorptions peaking at 240 nm, corresponding to intraligand π→π* transitions within the 1-allylimidazole moiety and a structured absorption around 600 nm, which is attributed to the spin-allowed d→d transitions of the high-spin Co(II) d7 ion in a distorted tetrahedral geometry. Both assignments were confirmed through TD-DFT calculations on the electronic transitions and agree with the DFT-calculated compositions of the frontier molecular orbitals. Molecular docking to hypoxia-inducible factor-1 alpha (HIF-1α) gave a docking score of −5.48 kcal/mol and showed hydrophobic⋯hydrophobic π-stacking interactions with the Ile233, Leu243, Val338, and Leu262 residues. A higher docking score of −6.11 kcal/mol and predominant hydrophobic⋯hydrophobic interactions with Trp296, His279, and Ile281 were found for HIF-1 inhibiting factor (FIH-1). Full article
Show Figures

Figure 1

18 pages, 1555 KB  
Article
Unlocking Antioxidant Potential: Interactions Between Cyanidin-3-Glucoside and Corbicula fluminea Protein
by Sifan Guo, Xuemei Liu, Fei Wang, Yong Jiang, Lili Chen, Meilan Yuan, Li Zhao and Chunqing Bai
Biology 2025, 14(10), 1392; https://doi.org/10.3390/biology14101392 - 11 Oct 2025
Viewed by 427
Abstract
Corbicula fluminea protein (CFP) and cyanidin-3-O-glucoside (C3G) are natural nutrient fortifiers. During consumption or processing, they may interact with each other, inducing alternations in their structural and functional properties. However, nothing was known about the mechanism of their interaction and their synergistic antioxidant [...] Read more.
Corbicula fluminea protein (CFP) and cyanidin-3-O-glucoside (C3G) are natural nutrient fortifiers. During consumption or processing, they may interact with each other, inducing alternations in their structural and functional properties. However, nothing was known about the mechanism of their interaction and their synergistic antioxidant effect. In this research, C3G was physically mixed with CFP to simulate practical scenarios. The impact of the presence of C3G on the multispectral characteristics, antioxidant activity, and particle properties of CFP was examined and compared to chemically fabricated C3G-CFP covalent conjugates. The results indicate that C3G tended to spontaneously bind to CFP and formed compact non-covalent complex, with hydrophobic forces predominantly governing the interaction. This binding resulted in the statically quenched intrinsic fluorescence of CFP, accompanied by a dynamic model. Moreover, C3G preferentially induced Trp residue in CFP exposed to a more polar microenvironment, yet it exerted nearly no effects on CFP when analyzed using ultraviolet–visible (UV-Vis) spectroscopy and synchronous fluorescence spectroscopy (SFS). Additionally, although the formed non-covalent complex demonstrated strengthened antioxidant capacity, C3G displayed an antagonistic effect with CFP, whereas lower C3G concentrations led to synergistic effects in covalent conjugates. These findings provide new insights into the effective application of C3G and CFP as nutritional antioxidants. Full article
Show Figures

Graphical abstract

18 pages, 1534 KB  
Article
Synthesis of Polyfluorinated Aromatic Selenide-Modified Polysiloxanes: Enhanced Thermal Stability, Hydrophobicity, and Noncovalent Modification Potential
by Kristina A. Lotsman, Sofia S. Filippova, Vadim Yu. Kukushkin and Regina M. Islamova
Polymers 2025, 17(20), 2729; https://doi.org/10.3390/polym17202729 - 11 Oct 2025
Viewed by 530
Abstract
Polysiloxanes are unique polymers used in medicine and materials science and are ideal for various modifications. Classic functionalization methods involve a covalent approach, but finer tuning of the properties of the final polymers can also be achieved through sub-sequent noncovalent modifications. This study [...] Read more.
Polysiloxanes are unique polymers used in medicine and materials science and are ideal for various modifications. Classic functionalization methods involve a covalent approach, but finer tuning of the properties of the final polymers can also be achieved through sub-sequent noncovalent modifications. This study introduces a fundamentally new approach to polysiloxane functionalization by incorporating cooperative noncovalent interaction centers: selenium-based chalcogen bonding donors and polyfluoroaromatic π-hole acceptors into a single polymer platform. We developed an efficient nucleophilic substitution strategy using poly((3-chloropropyl)methylsiloxane) as a platform for introducing Se-containing groups with polyfluoroaromatic substituents. Three synthetic approaches were evaluated; only direct modification of Cl-PMS-2 proved successful, avoiding catalyst poisoning and crosslinking issues. The optimized methodology utilizes mild conditions and achieved high substitution degrees (74–98%) with isolated yields of 60–79%. Comprehensive characterization using 1H, 13C, 19F, 77Se, and 29Si NMR, TGA, and contact angle measurements revealed significantly enhanced properties. Modified polysiloxanes demonstrated improved thermal stability (up to 37 °C higher decomposition temperatures, 50–60 °C shifts in DTG maxima) and increased hydrophobicity (water contact angles from 69° to 102°). These systems potentially enable chalcogen bonding and arene–perfluoroarene interactions, providing foundations for materials with applications in biomedicine, electronics, and protective coatings. This dual-functionality approach opens pathways toward adaptive materials whose properties can be tuned through supramolecular modification while maintaining the inherent advantages of polysiloxane platforms—flexibility, biocompatibility, and chemical inertness. Full article
(This article belongs to the Special Issue Post-Functionalization of Polymers)
Show Figures

Figure 1

9 pages, 889 KB  
Communication
Main Mechanical Forces to Analyse the Chemical Interactions Shaping Backbone Torsion Angles in DNA Tertiary Structures
by Michele Larocca, Giuseppe Floresta, Daniele Verderese and Agostino Cilibrizzi
AppliedChem 2025, 5(4), 26; https://doi.org/10.3390/appliedchem5040026 - 6 Oct 2025
Viewed by 441
Abstract
The genetic material in living systems is mainly stored in DNA molecules, which in turn play a dominant biological role in relation to the coding and transfer of genetic information, the biosynthesis of proteins and RNA and the packaging and regulation of DNA [...] Read more.
The genetic material in living systems is mainly stored in DNA molecules, which in turn play a dominant biological role in relation to the coding and transfer of genetic information, the biosynthesis of proteins and RNA and the packaging and regulation of DNA expression and accessibility. These features, strictly dictated by the three-dimensional structure of DNA, are governed by non-covalent chemical interactions that drive the folding process of these biological macromolecules. The Main Mechanical Forces (MMFs) approach is a recently formulated calculation method, based on the accurate prediction of structural features of biomolecules through an in-depth assessment of the interplay between specific non-covalent chemical interactions and related mechanical forces developed during the folding process. By adopting the MMFs method in the context of nucleic acids, we report here the results obtained in terms of predicting three-dimensional DNA oligomer tertiary structures. To this end, we have developed tailored nucleic acid-specific equations, enabling to predict the torsion angles (with a relevant level of agreement with experimental values) of the phosphate-sugar backbone of the three model molecules A-, B- and Z- DNA used in this study. To increase the validity of this methodology, we have conducted RMSD measurements, indicating that there is a weak but rather acceptable match between the calculated vs. predicted A-DNA structure, whereas the prediction of the BII-DNA and Z-DNA tertiary structures was fully correct. Full article
Show Figures

Figure 1

14 pages, 2579 KB  
Article
Targeted Delivery of VEGF-siRNA to Glioblastoma Using Orientation-Controlled Anti-PD-L1 Antibody-Modified Lipid Nanoparticles
by Ayaka Matsuo-Tani, Makoto Matsumoto, Takeshi Hiu, Mariko Kamiya, Longjian Geng, Riku Takayama, Yusuke Ushiroda, Naoya Kato, Hikaru Nakamura, Michiharu Yoshida, Hidefumi Mukai, Takayuki Matsuo and Shigeru Kawakami
Pharmaceutics 2025, 17(10), 1298; https://doi.org/10.3390/pharmaceutics17101298 - 4 Oct 2025
Viewed by 1104
Abstract
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional [...] Read more.
Background/Objectives: Glioblastoma (GBM) is an aggressive primary brain tumor with limited therapeutic options despite multimodal treatment. Small interfering RNA (siRNA)-based therapeutics can silence tumor-promoting genes, but achieving efficient and tumor-specific delivery remains challenging. Lipid nanoparticles (LNPs) are promising siRNA carriers; however, conventional antibody conjugation can impair antigen recognition and complicate manufacturing. This study aimed to establish a modular Fc-binding peptide (FcBP)-mediated post-insertion strategy to enable PD-L1-targeted delivery of VEGF-siRNA via LNPs for GBM therapy. Methods: Preformed VEGF-siRNA-loaded LNPs were functionalized with FcBP–lipid conjugates, enabling non-covalent anchoring of anti-PD-L1 antibodies through Fc interactions. Particle characteristics were analyzed using dynamic light scattering and encapsulation efficiency assays. Targeted cellular uptake and VEGF gene silencing were evaluated in PD-L1-positive GL261 glioma cells. Anti-tumor efficacy was assessed in a subcutaneous GL261 tumor model following repeated intratumoral administration using tumor volume and bioluminescence imaging as endpoints. Results: FcBP post-insertion preserved LNP particle size (125.2 ± 1.3 nm), polydispersity, zeta potential, and siRNA encapsulation efficiency. Anti-PD-L1–FcBP-LNPs significantly enhanced cellular uptake (by ~50-fold) and VEGF silencing in PD-L1-expressing GL261 cells compared to controls. In vivo, targeted LNPs reduced tumor volume by 65% and markedly suppressed bioluminescence signals without inducing weight loss. Final tumor weight was reduced by 63% in the anti-PD-L1–FcBP–LNP group (656.9 ± 125.4 mg) compared to the VEGF-siRNA LNP group (1794.1 ± 103.7 mg). The FcBP-modified LNPs maintained antibody orientation and binding activity, enabling rapid functionalization with targeting antibodies. Conclusions: The FcBP-mediated post-insertion strategy enables site-specific, modular antibody functionalization of LNPs without compromising physicochemical integrity or antibody recognition. PD-L1-targeted VEGF-siRNA delivery demonstrated potent, selective anti-tumor effects in GBM murine models. This platform offers a versatile approach for targeted nucleic acid therapeutics and holds translational potential for treating GBM. Full article
Show Figures

Graphical abstract

23 pages, 9224 KB  
Article
Polymeric Nanovehicle of α-Tocopheryl Succinate Based on a Methacrylic Derivative of Hydroxychloroquine and Its Cytotoxic Effect on Breast Cancer Cells
by Hernán Valle, Raquel Palao-Suay, Jesús Miranda, María Rosa Aguilar and Manuel Palencia
Polymers 2025, 17(19), 2672; https://doi.org/10.3390/polym17192672 - 2 Oct 2025
Viewed by 570
Abstract
This study focuses on the preparation of poly(HCQM-co-VP) copolymeric nanoparticles (NPs) to enhance the aqueous solubility and bioavailability of the hydrophobic and antitumor molecules HCQ (hydroxychloroquine) and α-TOS (α-tocopheryl succinate). HCQ is covalently incorporated into the polymer backbone, while α-TOS is [...] Read more.
This study focuses on the preparation of poly(HCQM-co-VP) copolymeric nanoparticles (NPs) to enhance the aqueous solubility and bioavailability of the hydrophobic and antitumor molecules HCQ (hydroxychloroquine) and α-TOS (α-tocopheryl succinate). HCQ is covalently incorporated into the polymer backbone, while α-TOS is encapsulated within the nanoparticles by non-covalent interactions. Poly(HCQM-co-VP) was synthesized from a vinyl derivative of HCQ (HCQM) and N-vinylpyrrolidone (VP), with a molar composition of 17% HCQM and 83% VP, providing the optimal hydrophobic/hydrophilic balance for forming, via nanoprecipitation, empty nanoparticles (NPs) with a diameter of 123.6 nm and a zeta potential of −5.8 mV. These nanoparticles effectively encapsulated α-TOS within their hydrophobic core, achieving an encapsulation efficiency (%EE) of 78%. These α-TOS-loaded NPs resulted in smaller diameters and more negative zeta potentials (71 nm, −19.2 mV) compared to the non-loaded NPs. The cytotoxicity of these NPs was evaluated using the AlamarBlue assay on MCF-7 breast cancer cells. The empty NPs showed no toxic effects within the tested concentration range, after 72 h of treatment. In contrast, the α-TOS-loaded NPs, exhibited a pronounced cytotoxic effect on MCF-7 cells with an IC50 value of 100.2 μg·mL−1, thereby demonstrating their potential as controlled drug delivery systems for cancer treatment. These findings contribute to the development of a new HCQ-based polymeric nanocarrier for α-TOS or other hydrophobic drugs for the treatment of cancer and other diseases treatable with these drugs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 1052 KB  
Article
Synthesis and Characterization of Imidazolium-Based Ionenes
by Eveline Elisabeth Kanatschnig, Florian Wanghofer, Markus Wolfahrt and Sandra Schlögl
Molecules 2025, 30(19), 3961; https://doi.org/10.3390/molecules30193961 - 2 Oct 2025
Viewed by 516
Abstract
Owing to multiple non-covalent interactions, ionic groups impart unique chemical and physical properties into polymers including ion conductivity/mobility, permeation, and intrinsic healability. Ionenes contain ionic groups in their polymer backbone, which offer great versatility in polymer design. Herein, selected aliphatic and aromatic imidazoles [...] Read more.
Owing to multiple non-covalent interactions, ionic groups impart unique chemical and physical properties into polymers including ion conductivity/mobility, permeation, and intrinsic healability. Ionenes contain ionic groups in their polymer backbone, which offer great versatility in polymer design. Herein, selected aliphatic and aromatic imidazoles were synthesized, which were used as monomeric building blocks for the preparation of thermoplastic ionenes by following a Sn2 step growth reaction across organic halides. The structure and molecular weight of the polymers was characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) techniques. Once polymerized, anion-exchange reactions were carried out to replace the halides with four other counter-anions. Subsequently, the effect of the nature of the anion and the cation on the polymers’ thermal and hygroscopic properties was studied in detail by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and FTIR spectroscopy. Depending on the chemical structures of the polymeric cations and the related anions, tailored polymers with a glass transition temperature (Tg) in the range of 30 °C to 131 °C and a thermal stability varying between 170 °C and 385 °C were obtained. Full article
Show Figures

Figure 1

17 pages, 2528 KB  
Article
Potential Modulatory Effects of β-Hydroxy-β-Methylbutyrate on Type I Collagen Fibrillogenesis: Preliminary Study
by Izabela Świetlicka, Eliza Janek, Krzysztof Gołacki, Dominika Krakowiak, Michał Świetlicki and Marta Arczewska
Int. J. Mol. Sci. 2025, 26(19), 9621; https://doi.org/10.3390/ijms26199621 - 2 Oct 2025
Viewed by 1517
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix [...] Read more.
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix (ECM) components, particularly collagen, which is crucial for maintaining the mechanical integrity of connective tissues. In this investigation, bovine type I collagen was polymerised in the presence of two concentrations of HMB (0.025 M and 0.25 M) to explore its potential function as a molecular modulator of fibrillogenesis. The morphology of the resulting collagen fibres and their molecular architecture were examined using atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy. The findings demonstrated that lower levels of HMB facilitated the formation of more regular and well-organised fibrillar structures, exhibiting increased D-band periodicity and enhanced stabilisation of the native collagen triple helix, as indicated by Amide I and III band profiles. Conversely, higher concentrations of HMB led to significant disruption of fibril morphology and alterations in secondary structure, suggesting that HMB interferes with the self-assembly of collagen monomers. These structural changes are consistent with a non-covalent influence on interchain interactions and fibril organisation, to which hydrogen bonding and short-range electrostatics may contribute. Collectively, the results highlight the potential of HMB as a small-molecule regulator for soft-tissue matrix engineering, extending its consideration beyond metabolic supplementation towards controllable, materials-oriented modulation of ECM structure. Full article
(This article belongs to the Special Issue Advanced Spectroscopy Research: New Findings and Perspectives)
Show Figures

Graphical abstract

23 pages, 4453 KB  
Article
Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis
by Tomasz Tuzimski and Mateusz Sugajski
Molecules 2025, 30(19), 3941; https://doi.org/10.3390/molecules30193941 - 1 Oct 2025
Viewed by 487
Abstract
Bisphenol A (BPA) is classified as an endocrine disruptor that mainly mimics the effects of estrogen and disrupts the synthesis of male androgens. Due to the toxicity of BPA, some new analogs, such as bisphenol BPB, BPC, BPF, PBH, and BPZ, were introduced [...] Read more.
Bisphenol A (BPA) is classified as an endocrine disruptor that mainly mimics the effects of estrogen and disrupts the synthesis of male androgens. Due to the toxicity of BPA, some new analogs, such as bisphenol BPB, BPC, BPF, PBH, and BPZ, were introduced into the market. The goal of this research was to demonstrate the applicability of kinetic analysis, in particular, Lineweaver-Burk plots, in assessing the impact of bisphenol Z on enzymatic activity. This study aimed to characterize the inhibitory effects of BPZ on 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity in the transformation of 11-dehydrocorticosterone (DHC) to corticosterone (CORT). During the determination of the enzymatic reaction product, chromatographic analysis conditions were optimized using gradient elution and an Acquity UPLC BEH C18 chromatographic column. The retention time of the assayed corticosterone was approximately 2 min. Also described and compared were graphical methods of analysis and data interpretation, such as Lineweaver-Burk, Eadie-Hofstee, and Hanes-Woolf plots. The experiments demonstrated that bisphenol Z is a mixed 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor, responsible for catalyzing the conversion of 11-dehydrocorticosterone (DHC) to corticosterone (CORT). This relationship was confirmed by analyzing Lineweaver-Burk plots, which showed an increase in apparent KM with a decrease in the constant Vmax, suggesting a mixed inhibition mechanism. Molecular docking and detailed analysis of the interaction profiles revealed that BPZ consistently occupies the active site cavities of all examined enzymes (rat and human 11β-HSD1 and Arabidopsis 11β-HSD2), forming a stabilizing network of non-covalent interactions. Our research has significant biological significance considering the role of the 11β-HSD1 enzyme in the conversion of DHC to CORT and the importance of this process and its functions in adipose tissue, the liver, and the brain. Full article
(This article belongs to the Special Issue Modern Trends and Solutions in Analytical Chemistry in Poland)
Show Figures

Figure 1

23 pages, 1444 KB  
Article
Spray-Drying Microencapsulation of Artemisia herba-alba Phenolic Extract: Physicochemical Properties, Structural Characterization, and Bioactivity
by Sara Lemmadi, Emilie Dumas, Faïza Adoui, Géraldine Agusti, Séverine Vessot-Crastes, Wafa Medfai and Adem Gharsallaoui
Molecules 2025, 30(19), 3904; https://doi.org/10.3390/molecules30193904 - 27 Sep 2025
Viewed by 610
Abstract
Artemisia herba-alba Asso. is a medicinal plant rich in phenolic compounds with strong antioxidant and antimicrobial activities. However, these bioactive molecules are highly sensitive to environmental conditions, limiting their stability and potential applications. This study investigated, for the first time, the encapsulation of [...] Read more.
Artemisia herba-alba Asso. is a medicinal plant rich in phenolic compounds with strong antioxidant and antimicrobial activities. However, these bioactive molecules are highly sensitive to environmental conditions, limiting their stability and potential applications. This study investigated, for the first time, the encapsulation of ethanolic extracts from the aerial parts of A. herba-alba by spray-drying, using maltodextrin (MD) and sodium caseinate (SC) as wall materials. The extract was obtained by ultrasound-assisted extraction, and both free and encapsulated forms were analyzed for phytochemical composition, antioxidant capacity, and antibacterial activity. Spray-dried microcapsules (SDE) were further characterized for encapsulation yield, efficiency, moisture, water activity, hygroscopicity, particle size, and structural integrity (SEM, ATR-FTIR, TGA/DTG). The process resulted in a high encapsulation yield (69.40%) and efficiency (96.39%), producing microcapsules with a small average size (10.05 ± 0.08 µm), low moisture (4.34%), low water activity (0.415), and moderate hygroscopicity (12.67%). Although the encapsulated extract showed lower total phenolic content, antioxidant capacity, and antibacterial activity compared to the free extract, SEM observations confirmed the formation of spherical, crack-free microcapsules, ATR-FTIR analysis revealed non-covalent interactions between wall materials and phenolics, and TGA/DTG demonstrated improved thermal stability. These results highlight spray-drying microencapsulation as an efficient approach to stabilize A. herba-alba phenolic compounds, offering promising applications as natural preservatives in the food industry. Full article
Show Figures

Figure 1

Back to TopTop