polymers-logo

Journal Browser

Journal Browser

Post-Functionalization of Polymers

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Chemistry".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 919

Special Issue Editor


E-Mail Website
Guest Editor
Research Institute for Energy Technologies and Advanced Materials (IITEMA), National University of Río Cuarto (UNRC)-National Council of Scientific and Technical Research (CONICET), Río Cuarto 5800, Argentina
Interests: conducting polymers; hydrogels; functionalization; carbon materials; combinatorial chemistry; electrochemistry; biobased polymers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Post-functionalization of polymers is a powerful strategy used to modify the properties of preformed polymeric chains. It can be carried out by means of chemical reactions with the polymer chains or, in the case of polyelectrolytes (e.g., doped conductive polymers), by means of exchange with functional counterions. It has been extensively used to produce functionalized biomacromolecules from biomass (e.g., carboxymethylcellullose) and to create platforms for solid-state organic chemistry (e.g., Merrifield synthesis). Functionalization can be homogeneous or present a gradient from the surface of the solid, allowing for the modification of surface properties (e.g., wettability) while maintaining bulk properties (e.g., toughness). In this Special Issue, articles and reviews dealing with this active field will be published. Topics of interest include novel reactions with reactive chains (e.g., click chemistry) and the development of modification reactions of conventional, unreactive polymers (e.g., polypropylene). Equally, we are interested in the functionalization of the porous surface of gels, the modification of biomacromolecules (e.g., cellulose), and the incorporation of groups with intrinsic properties (photoactivity, electroactivity, pharmacoactivity, etc.). In addition to the functionalization of macromolecules in solution and solid state, this Special Issue seeks research on the modification of novel structures such as imprinted polymers, covalent organic frameworks, nanoparticles, and nanogels.

Prof. Dr. Cesar A. Barbero
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functionalization
  • covalent
  • conducting polymers
  • polyelectrolytes
  • hydrogels
  • surfaces
  • wettability
  • biofilm

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1534 KB  
Article
Synthesis of Polyfluorinated Aromatic Selenide-Modified Polysiloxanes: Enhanced Thermal Stability, Hydrophobicity, and Noncovalent Modification Potential
by Kristina A. Lotsman, Sofia S. Filippova, Vadim Yu. Kukushkin and Regina M. Islamova
Polymers 2025, 17(20), 2729; https://doi.org/10.3390/polym17202729 - 11 Oct 2025
Viewed by 350
Abstract
Polysiloxanes are unique polymers used in medicine and materials science and are ideal for various modifications. Classic functionalization methods involve a covalent approach, but finer tuning of the properties of the final polymers can also be achieved through sub-sequent noncovalent modifications. This study [...] Read more.
Polysiloxanes are unique polymers used in medicine and materials science and are ideal for various modifications. Classic functionalization methods involve a covalent approach, but finer tuning of the properties of the final polymers can also be achieved through sub-sequent noncovalent modifications. This study introduces a fundamentally new approach to polysiloxane functionalization by incorporating cooperative noncovalent interaction centers: selenium-based chalcogen bonding donors and polyfluoroaromatic π-hole acceptors into a single polymer platform. We developed an efficient nucleophilic substitution strategy using poly((3-chloropropyl)methylsiloxane) as a platform for introducing Se-containing groups with polyfluoroaromatic substituents. Three synthetic approaches were evaluated; only direct modification of Cl-PMS-2 proved successful, avoiding catalyst poisoning and crosslinking issues. The optimized methodology utilizes mild conditions and achieved high substitution degrees (74–98%) with isolated yields of 60–79%. Comprehensive characterization using 1H, 13C, 19F, 77Se, and 29Si NMR, TGA, and contact angle measurements revealed significantly enhanced properties. Modified polysiloxanes demonstrated improved thermal stability (up to 37 °C higher decomposition temperatures, 50–60 °C shifts in DTG maxima) and increased hydrophobicity (water contact angles from 69° to 102°). These systems potentially enable chalcogen bonding and arene–perfluoroarene interactions, providing foundations for materials with applications in biomedicine, electronics, and protective coatings. This dual-functionality approach opens pathways toward adaptive materials whose properties can be tuned through supramolecular modification while maintaining the inherent advantages of polysiloxane platforms—flexibility, biocompatibility, and chemical inertness. Full article
(This article belongs to the Special Issue Post-Functionalization of Polymers)
Show Figures

Figure 1

29 pages, 5126 KB  
Article
Integrating Computational and Experimental Methods for the Rational Ecodesign and Synthesis of Functionalized Safe and Sustainable Biobased Oligoesters
by Federico Zappaterra, Anamaria Todea, Fioretta Asaro, Pasquale Fabio Alberto Ditalia, Chiara Danielli, Monia Renzi, Serena Anselmi and Lucia Gardossi
Polymers 2025, 17(18), 2537; https://doi.org/10.3390/polym17182537 - 19 Sep 2025
Viewed by 334
Abstract
A chemical platform for post-polymerization methods was developed, starting from the ecodesign and enzymatic synthesis of safe and sustainable bio-based polyesters containing discrete units of itaconic acid. This unsaturated bio-based monomer enables the covalent linkage of molecules that can impart desired properties such [...] Read more.
A chemical platform for post-polymerization methods was developed, starting from the ecodesign and enzymatic synthesis of safe and sustainable bio-based polyesters containing discrete units of itaconic acid. This unsaturated bio-based monomer enables the covalent linkage of molecules that can impart desired properties such as hydrophilicity, flexibility, permeability, or affinity for biological targets. Molecular descriptor-based computational methods, which are generally used for modeling the pharmacokinetic properties of drugs (ADME), were employed to predict in silico the hydrophobicity (LogP), permeability, and flexibility of virtual terpolymers composed of different polyols (1,4-butanediol, glycerol, 1,3-propanediol, and 1,2-ethanediol) with adipic acid and itaconic acid. Itaconic acid, with its reactive vinyl group, acts as a chemical platform for various post-polymerization functionalizations. Poly(glycerol adipate itaconate) was selected because of its higher hydrophilicity and synthetized via solvent-free enzymatic polycondensation at 50 °C to prevent the isomerization or crosslinking of itaconic acid. The ecotoxicity and marine biodegradability of the resulting oligoester were assessed experimentally in order to verify its compliance with safety and sustainability criteria. Finally, the viability of the covalent linkage of biomolecules via Michael addition to the vinyl pendant of the oligoesters was verified using four molecules bearing thiol and amine nucleophilic groups: N-acetylcysteine, N-Ac-Phe-ε-Lys-OtBu, Lys-Lys-Lys, and glucosamine. Full article
(This article belongs to the Special Issue Post-Functionalization of Polymers)
Show Figures

Figure 1

Back to TopTop