Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,210)

Search Parameters:
Keywords = non-alcoholic fatty-liver disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2691 KiB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

11 pages, 327 KiB  
Article
Metabolic Mediation of the Association Between Hyperandrogenism and Paratubal Cysts in Polycystic Ovary Syndrome: A Structural Equation Modeling Approach
by Jin Kyung Baek, Chae Eun Hong, Hee Yon Kim and Bo Hyon Yun
J. Clin. Med. 2025, 14(15), 5545; https://doi.org/10.3390/jcm14155545 - 6 Aug 2025
Abstract
Objectives: Paratubal cysts (PTCs) are embryological remnants and are potentially hormonally responsive. Since hyperandrogenism (HA) is representative of polycystic ovary syndrome (PCOS), we examined whether biochemical hyperandrogenism is associated with PTCs in women with PCOS and if body mass index (BMI) and [...] Read more.
Objectives: Paratubal cysts (PTCs) are embryological remnants and are potentially hormonally responsive. Since hyperandrogenism (HA) is representative of polycystic ovary syndrome (PCOS), we examined whether biochemical hyperandrogenism is associated with PTCs in women with PCOS and if body mass index (BMI) and insulin resistance (IR) mediate this association. Methods: This retrospective study included 577 women diagnosed with PCOS at a tertiary academic center from 2010 to 2018. Clinical data included age at diagnosis, BMI, and diagnoses of hypertension, non-alcoholic fatty liver disease, and metabolic syndrome. Laboratory measures included total testosterone, sex hormone-binding globulin, anti-Müllerian hormone, luteinizing hormone, fasting glucose, insulin, and triglycerides (TG). Derived indices included a free androgen index (FAI), homeostasis model assessment of insulin resistance (HOMA-IR), and fasting glucose-to-insulin ratio. PTCs were identified through imaging or surgical findings. Structural equation modeling (SEM) assessed direct and indirect relationships between FAI, BMI, HOMA-IR, and PTCs, while adjusting for diagnostic age. Results: PTCs were identified in 2.77% of participants. BMI, FAI, TG, and IR indices were significantly higher for women with PTCs than those without PTCs. SEM revealed significant indirect effects of FAI on PTCs via BMI and HOMA-IR. The direct effect was negative, resulting in a non-significant total effect. A sensitivity model using HOMA-IR as the predictor showed a significant direct effect on PTCs without mediation via FAI. Conclusions: Biochemical HA may influence PTC development in PCOS through metabolic pathways, establishing the need to consider metabolic context when evaluating adnexal cysts in hyperandrogenic women. Full article
Show Figures

Figure 1

24 pages, 2171 KiB  
Review
Induction of Autophagy as a Therapeutic Breakthrough for NAFLD: Current Evidence and Perspectives
by Yanke Liu, Mingkang Zhang and Yazhi Wang
Biology 2025, 14(8), 989; https://doi.org/10.3390/biology14080989 - 4 Aug 2025
Viewed by 272
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterised by hepatic steatosis in the absence of significant alcohol consumption or other specific causes of liver injury. It has become one of the leading causes of liver dysfunction worldwide. However, the precise pathophysiological [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterised by hepatic steatosis in the absence of significant alcohol consumption or other specific causes of liver injury. It has become one of the leading causes of liver dysfunction worldwide. However, the precise pathophysiological mechanisms underlying NAFLD remain unclear, and effective therapeutic strategies are still under investigation. Autophagy, a vital intracellular process in eukaryotic cells, enables the degradation and recycling of cytoplasmic components through a membrane trafficking pathway. Recent studies have demonstrated a strong association between impaired or deficient autophagy and the development and progression of NAFLD. Restoring autophagic function may represent a key approach to mitigating hepatocellular injury. Nevertheless, due to the complexity of autophagy regulation and its context-dependent effects on cellular function, therapeutic strategies targeting autophagy in NAFLD remain limited. This review aims to summarise the relationship between autophagy and NAFLD, focusing on autophagy as a central mechanism. We discuss the latest research advances regarding interventions such as diet and exercise, pharmacological therapies (including modern pharmacological therapy and plant-derived compounds), and other approaches (such as hormones, nanoparticles, gut microbiota, and vitamins). Furthermore, we briefly highlight potential autophagy-related molecular targets that may offer novel therapeutic insights for NAFLD management. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

13 pages, 724 KiB  
Article
Investigating the Diagnostic Utility of LncRNA GAS5 in NAFLD Patients
by Maysa A. Mobasher, Alaa Muqbil Alsirhani, Sahar Abdulrahman Alkhodair, Amir Abd-elhameed, Shereen A. Baioumy, Marwa M. Esawy and Marwa A. Shabana
Biomedicines 2025, 13(8), 1873; https://doi.org/10.3390/biomedicines13081873 - 1 Aug 2025
Viewed by 240
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in [...] Read more.
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver conditions globally. This study aimed to assess the long non-coding RNAs (lncRNAs) growth arrest-specific 5 (GAS5), miR-29a-3p, and neurogenic locus notch homolog protein 2 (NOTCH2) as biomarkers in patients with NAFLD and find out if they are related to any clinical factors. Subjects and Methods: Thirty-eight age-matched healthy persons and thirty-eight NAFLD patients were enrolled. Patients were split into the following three groups: non-alcoholic steatohepatitis (NASH) (n = 12), patients with NAFLD-related cirrhosis (n = 8), and patients with NAFLD-related simple steatosis (n = 18). Real-time PCR was utilized to examine the expression. Results: The lncRNA GAS5 and NOTCH2 were higher in NAFLD cases in comparison to controls. On the other hand, microRNA-29a-3p was underexpressed in NAFLD cases in comparison to controls. Regarding NAFLD diagnosis, lncRNA GAS5 was the best single marker with a sensitivity of 100% and a specificity of 94.7% at the cutoff values of ≥1.16-fold change. Regarding different stages of the disease, the highest level of lncRNA GAS5 was in cirrhosis. lncRNA GAS5 expression, among other studied parameters, is still a significant predictor of NAFLD (adjusted odds ratio of 162, C.I. = 5.7–4629) (p = 0.003). LncRNA GAS5 has a positive correlation with NOTCH2 and a negative correlation with miR-29a-3p. LncRNA GAS5, NOTCH2, and RNA-29a-3p were significantly different in NAFLD cases compared to controls. Conclusions: lncRNA GAS5 appears to be the most effective single marker for detecting NAFLD. LncRNA GAS5 expression is a significant independent predictor of NAFLD. LncRNA GAS5 can differentiate different NAFLD stages. Full article
Show Figures

Figure 1

19 pages, 523 KiB  
Review
Whey Proteins and Metabolic Dysfunction-Associated Steatotic Liver Disease Features: Evolving the Current Knowledge and Future Trends
by Maja Milanović, Nataša Milošević, Maja Ružić, Ludovico Abenavoli and Nataša Milić
Metabolites 2025, 15(8), 516; https://doi.org/10.3390/metabo15080516 - 1 Aug 2025
Viewed by 422
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with obesity, MASLD prevalence is estimated to be about 75%. Despite various approaches to MASLD treatment, dietary changes remain the most accessible and safe interventions in MASLD, especially in obese and overweight patients. Whey proteins are rich in bioactive compounds, essential amino acids with antioxidant properties, offering potential benefits for MASLD prevention and management. This state-of-the-art review summarizes whey protein impacts on a spectrum of MASLD-related manifestations, such as obesity, impaired glucose and lipid metabolism, hypertension, liver injury, oxidative stress, and inflammation. The results obtained in clinical environments, with a focus on meta-analysis, propose whey protein supplementation as a promising strategy aimed at managing multifaced MASLD disorders. Well-designed cohort studies are needed for validation of the efficacy and long-term safety of whey proteins in MASLD patients. Full article
(This article belongs to the Special Issue Effects of Diet on Metabolic Health of Obese People)
Show Figures

Figure 1

20 pages, 13309 KiB  
Article
Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
by Hye Young Kim, Ju Hee Oh, Hyun Sung Kim and Dae Won Jun
Antioxidants 2025, 14(8), 943; https://doi.org/10.3390/antiox14080943 - 31 Jul 2025
Viewed by 292
Abstract
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver [...] Read more.
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs. (2) Methods: MASLD was induced in mice using a High-Fat diet (HF), Western diet (WD), and Methionine/Choline-Deficient diet (MCD) for 20 weeks (4 weeks for MCD). Liver tissue biopsies were performed, and the treatment effects of saponin and non-saponin feeds were evaluated. Fat accumulation and hepatic inflammation were measured, and mRNA sequencing analysis was conducted. The therapeutic effects were validated using patient-derived liver organoids. (3) Results: The NAFLD Activity Score (NAS) significantly increased in all MASLD models compared with controls. Saponin treatment decreased NAS in the HF and WD groups but not in the MCD group. RNA sequencing and PCA analysis showed that the HF saponin response samples were similar to normal controls. DAVID analysis revealed significant changes in lipid, triglyceride, and fatty acid metabolic processes. qRT-PCR confirmed decreased fibrosis markers in the HF saponin response group, and GSEA analysis showed reduced HAMP1 gene expression. (4) Conclusions: Among the diets, red ginseng was most effective in the HF diet, with significant effects in the saponin-treated group. The therapeutic efficacy was better when HAMP1 expression was increased. Therefore, we propose HAMP1 as a potential exploratory biomarker to assess the saponin response in a preclinical setting. In addition, the reduction of inflammation and hepatic iron accumulation suggests that saponins may exert antioxidant effects through modulation of oxidative stress. Full article
Show Figures

Graphical abstract

12 pages, 2404 KiB  
Article
Analysis of the Mitochondrial Dynamics in NAFLD: Drp1 as a Marker of Inflammation and Fibrosis
by Maël Padelli, Jocelyne Hamelin, Christophe Desterke, Mylène Sebagh, Raphael Saffroy, Claudio Garcia Sanchez, Audrey Coilly, Jean-Charles Duclos-Vallée, Didier Samuel and Antoinette Lemoine
Int. J. Mol. Sci. 2025, 26(15), 7373; https://doi.org/10.3390/ijms26157373 - 30 Jul 2025
Viewed by 217
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, projected to affect 55% globally by 2040. Up to one-third of NAFLD patients develop non-alcoholic steatohepatitis (NASH), with 40% progressing to fibrosis. However, there are currently few reliable tools to predict [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, projected to affect 55% globally by 2040. Up to one-third of NAFLD patients develop non-alcoholic steatohepatitis (NASH), with 40% progressing to fibrosis. However, there are currently few reliable tools to predict disease progression. Impaired mitochondrial dynamics, characterized by dysregulated fission, fusion, and mitophagy, have emerged as key events in NAFLD pathophysiology, contributing to hepatocyte death and inflammation. This study explored the transition from steatosis to NASH through transcriptomic analyses, including data from patients with steatosis and those with NASH at different fibrosis stages. By identifying a transcriptomic signature associated with disease progression, the study revealed increased expression of genes involved in mitochondrial dynamics in NASH compared to steatosis and during NASH-related fibrosis. Histological analyses highlighted the central role of Dynamin-related protein 1 (Drp1), a dynamin GTPase essential for mitochondrial fission and mitophagy. In human liver biopsies, Drp1 expression progressively increased from NAFLD to NASH and NASH-related fibrosis and cirrhosis, predominantly in Kupffer cells. These finding suggest Drp1 is a potential driver of the transition to more severe liver damage, making it a promising biomarker for NASH development and progression and a potential therapeutic target in metabolic disorders. Full article
(This article belongs to the Special Issue Nonalcoholic Liver Disease: Mechanisms, Prevention, and Treatment)
Show Figures

Figure 1

24 pages, 2509 KiB  
Review
Potential Applications and Risks of Supranutritional Selenium Supplementation in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Critical Review
by Chuanming Liu, Ke Chen, Zijian Xu, Lianshun Wang, Yinhua Zhu, Zhengquan Yu, Tong Li and Jiaqiang Huang
Nutrients 2025, 17(15), 2484; https://doi.org/10.3390/nu17152484 - 30 Jul 2025
Viewed by 549
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most prevalent chronic diseases in the world, lacking specific pharmacological interventions or well-established treatments. MASLD involves intricate pathological mechanisms characterized by oxidative stress and robust inflammatory responses. Selenium, an essential trace element, plays [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the most prevalent chronic diseases in the world, lacking specific pharmacological interventions or well-established treatments. MASLD involves intricate pathological mechanisms characterized by oxidative stress and robust inflammatory responses. Selenium, an essential trace element, plays a critical role in antioxidation, regulation of inflammation, anticancer activity, and so on. Recent studies have reported that supplementation with selenium could alleviate MASLD and associated hepatic disorders, while excessive consumption may result in insulin resistance or even selenosis. Therefore, supranutritional selenium supplementation can be more suitable for the therapy and prevention of MASLD. This paper comprehensively reviews research about selenium and MASLD to highlight the potential applications and risks of supranutritional selenium supplementation in MASLD, following three steps: conducting a search, reviewing research articles and reviews, and discussing results. The keywords for the search include but are not limited to selenium, MASLD, supranutritional, hepatic diseases, selenoproteions, and selenium nanoparticles (SeNPs). We have reached the following conclusions: supranutritional selenium supplementation exhibits promising potential as a strategy to treat MASLD, but there are still some risks, depending on the dose and form of selenium; evaluating MASLD severity and selenium nutritional status accurately, as well as supplementing with superior forms of selenium (e.g., organic selenium and SeNPs), can further ensure the safety and efficacy of selenium supplementation. However, relationships between selenium homeostasis disorders and the occurrence and development of MASLD have not been fully elucidated. Methods for comprehensively assessing selenium status and mechanisms of selenosis require further investigation and research. Full article
Show Figures

Figure 1

22 pages, 1317 KiB  
Review
Obesity: Clinical Impact, Pathophysiology, Complications, and Modern Innovations in Therapeutic Strategies
by Mohammad Iftekhar Ullah and Sadeka Tamanna
Medicines 2025, 12(3), 19; https://doi.org/10.3390/medicines12030019 - 28 Jul 2025
Viewed by 750
Abstract
Obesity is a growing global health concern with widespread impacts on physical, psychological, and social well-being. Clinically, it is a major driver of type 2 diabetes (T2D), cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD), and cancer, reducing life expectancy by 5–20 years [...] Read more.
Obesity is a growing global health concern with widespread impacts on physical, psychological, and social well-being. Clinically, it is a major driver of type 2 diabetes (T2D), cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD), and cancer, reducing life expectancy by 5–20 years and imposing a staggering economic burden of USD 2 trillion annually (2.8% of global GDP). Despite its significant health and socioeconomic impact, earlier obesity medications, such as fenfluramine, sibutramine, and orlistat, fell short of expectations due to limited effectiveness, serious side effects including valvular heart disease and gastrointestinal issues, and high rates of treatment discontinuation. The advent of glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., semaglutide, tirzepatide) has revolutionized obesity management. These agents demonstrate unprecedented efficacy, achieving 15–25% mean weight loss in clinical trials, alongside reducing major adverse cardiovascular events by 20% and T2D incidence by 72%. Emerging therapies, including oral GLP-1 agonists and triple-receptor agonists (e.g., retatrutide), promise enhanced tolerability and muscle preservation, potentially bridging the efficacy gap with bariatric surgery. However, challenges persist. High costs, supply shortages, and unequal access pose significant barriers to the widespread implementation of obesity treatment, particularly in low-resource settings. Gastrointestinal side effects and long-term safety concerns require close monitoring, while weight regain after medication discontinuation emphasizes the need for ongoing adherence and lifestyle support. This review highlights the transformative potential of incretin-based therapies while advocating for policy reforms to address cost barriers, equitable access, and preventive strategies. Future research must prioritize long-term cardiovascular outcome trials and mitigate emerging risks, such as sarcopenia and joint degeneration. A multidisciplinary approach combining pharmacotherapy, behavioral interventions, and systemic policy changes is critical to curbing the obesity epidemic and its downstream consequences. Full article
Show Figures

Figure 1

25 pages, 1329 KiB  
Review
Research Progress and Prospects of Flavonoids in the Treatment of Hyperlipidemia: A Narrative Review
by Xingtong Chen, Jinbiao Yang, Yunyue Zhou, Qiao Wang, Shuang Xue, Yukun Zhang and Wenying Niu
Molecules 2025, 30(15), 3103; https://doi.org/10.3390/molecules30153103 - 24 Jul 2025
Viewed by 540
Abstract
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty [...] Read more.
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty liver disease, obesity, diabetes, atherosclerosis, and cardiovascular and cerebrovascular diseases. Statistics show that the prevalence of dyslipidemia among Chinese adults is as high as 35.6%, and it has shown a trend of younger onset in recent years, posing a serious threat to public health. Therefore, the prevention and treatment of dyslipidemia carry significant social significance. The pathogenesis of hyperlipidemia is complex and diverse, and currently used medications are often accompanied by side effects during treatment, making the research and development of new therapeutic approaches a current focus. Numerous studies have shown that flavonoids, which are abundant in most medicinal plants, fruits, and vegetables, exert effects on regulating lipid homeostasis and treating hyperlipidemia through a multi-target mechanism. These compounds have demonstrated significant effects in inhibiting lipid synthesis, blocking lipid absorption, promoting cholesterol uptake, enhancing reverse cholesterol transport, and suppressing oxidative stress, inflammation, and intestinal microbiota disorders. This article reviews the latest progress in the mechanisms of flavonoids in the treatment of hyperlipidemia, providing a theoretical basis for future research on drugs for hyperlipidemia. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

22 pages, 1531 KiB  
Article
Evaluation of the Biological Properties and Antibacterial Activities of the Natural Food Supplement “Epavin” for Liver Detoxification and Protection
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Anita Caforio, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Foods 2025, 14(15), 2600; https://doi.org/10.3390/foods14152600 - 24 Jul 2025
Viewed by 403
Abstract
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients [...] Read more.
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients with advanced liver dysfunction. The global rise in these conditions underscores the need for effective interventions. Natural products have attracted attention for their potential to support liver health, particularly through synergistic combinations of plant extracts. Epavin, a dietary supplement from Erbenobili S.r.l., formulated with plant extracts like Taraxacum officinale (L.), Silybum marianum (L.) Gaertn., and Cynara scolymus (L.), known for their liver-supporting properties, has been proposed as adjuvant for liver functions. The aim of this work was to evaluate of Epavin’s antioxidant, anti-inflammatory, and protective effects against heavy metal-induced toxicity. In addition, the antibacterial effect of Epavin against a panel of bacterial strains responsible for infections associated with liver injuries has been evaluated. Methods: The protection against oxidative stress induced by H2O2 was evaluated in HepG2 and BALB/3T3 cells using the dichlorofluorescein diacetate (DCFH-DA) assay. Its anti-inflammatory activity was investigated by measuring the reduction in nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using the Griess assay. Additionally, the cytoprotecting of Epavin against heavy metal-induced toxicity and oxidative stress were evaluated in HepG2 cells using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) and DCFH-DA assays. The antibacterial activity of Epavin was assessed by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against Gram-positive (Enterococcus faecalis ATCC 29212, and BS, Staphylococcus aureus 25923, 29213, 43300, and BS) and Gram-negative (Escherichia coli 25922, and BS, Klebsiella pneumoniae 13883, 70063, and BS) bacterial strains using the microdilution method in broth, following the Clinical and Laboratory Standards Institute’s (CLSI) guidelines. Results: Epavin effectively reduced oxidative stress in HepG2 and BALB/3T3 cells and decreased NO production in LPS-stimulated RAW 264.7 macrophages. Moreover, Epavin demonstrated a protective effect against heavy metal-induced toxicity and oxidative damage in HepG2 cells. Finally, it exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacterial strains, with MIC values ranging from 1.5 to 6.0 mg/mL. Conclusions: The interesting results obtained suggest that Epavin may serve as a valuable natural adjuvant for liver health by enhancing detoxification processes, reducing inflammation, and exerting antibacterial effects that could be beneficial in the context of liver-associated infections. Full article
Show Figures

Figure 1

22 pages, 4544 KiB  
Article
Aspirin Eugenol Ester Ameliorates HFD-Induced NAFLD in Mice via the Modulation of Bile Acid Metabolism
by Zhi-Jie Zhang, Qi Tao, Ji Feng, Qin-Fang Yu, Li-Ping Fan, Zi-Hao Wang, Wen-Bo Ge, Jian-Yong Li and Ya-Jun Yang
Int. J. Mol. Sci. 2025, 26(15), 7044; https://doi.org/10.3390/ijms26157044 - 22 Jul 2025
Viewed by 197
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition worldwide and represents a major global health challenge. Pharmacological and pharmacodynamic results indicate that aspirin eugenol ester (AEE) performs various pharmacological activities. However, it is unclear whether AEE can ameliorate the NAFLD. This [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition worldwide and represents a major global health challenge. Pharmacological and pharmacodynamic results indicate that aspirin eugenol ester (AEE) performs various pharmacological activities. However, it is unclear whether AEE can ameliorate the NAFLD. This study investigated the ameliorative effects of AEE on glucose and lipid metabolism disorders by in vitro and in vivo experiments. In the cellular model, TC increased to 0.104 μmol/mg and TG increased to 0.152 μmol/mg in the model group, while TC decreased to 0.043 μmol/mg and TG decreased to 0.058 μmol/mg in the AEE group. In the model group, the area occupied by lipid droplets within the visual field was significantly elevated to 17.338%. However, the administration of AEE resulted in a substantial reduction in this area to 10.064%. AEE significantly reduced the lipid droplet area and TC and TG levels (p < 0.05), increased bile acids in the cells and in the medium supernatant (p < 0.05), and significantly up-regulated the expression of LRH-1, PPARα, CYP7A1, and BSEP mRNA levels (p < 0.05) compared to the model group. In the animal model, different doses of AEE administration significantly down-regulated the levels of TC, TG, LDL, GSP, and FBG (p < 0.05) compared to the high-fat-diet (HFD) group, and 216 mg/kg of AEE significantly improved hepatocellular steatosis, attenuated liver injury, and reduced the area of glycogen staining (p < 0.05). In the HFD group, the glycogen area within the visual field exhibited a significant increase to 18.250%. However, the administration of AEE resulted in a notable reduction in the glycogen area to 13.314%. Liver and serum metabolomics results show that AEE can reverse the metabolite changes caused by a HFD. The major metabolites were involved in seven pathways, including riboflavin metabolism, glycerophospholipid metabolism, tryptophan metabolism, primary bile acid biosynthesis, biosynthesis of unsaturated fatty acids, nicotinate and nicotinamide metabolism, and tryptophan metabolism. In conclusion, AEE had a positive regulatory effect on NAFLD. Full article
(This article belongs to the Special Issue Using Model Organisms to Study Complex Human Diseases)
Show Figures

Figure 1

33 pages, 1553 KiB  
Review
Multifaceted Human Antigen R (HuR): A Key Player in Liver Metabolism and MASLD
by Natalie Eppler, Elizabeth Jones, Forkan Ahamed and Yuxia Zhang
Livers 2025, 5(3), 33; https://doi.org/10.3390/livers5030033 - 21 Jul 2025
Viewed by 504
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease worldwide, affecting approximately 25–30% of the global adult population and highlighting the urgent need for effective therapeutics and prevention strategies. MASLD is characterized by excessive hepatic lipid accumulation [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease worldwide, affecting approximately 25–30% of the global adult population and highlighting the urgent need for effective therapeutics and prevention strategies. MASLD is characterized by excessive hepatic lipid accumulation and can progress, in a subset of patients, to metabolic dysfunction-associated steatohepatitis (MASH), a pro-inflammatory and pro-fibrotic condition associated with increased risk of liver cirrhosis and hepatocellular carcinoma. Although the molecular drivers of MASLD progression remain incompletely understood, several key metabolic pathways—such as triglyceride handling, cholesterol catabolism, bile acid metabolism, mitochondrial function, and autophagy—are consistently dysregulated in MASLD livers. This narrative review summarizes primary literature and highlights insights from recent reviews on the multifaceted role of the mRNA-binding protein Human antigen R (HuR) in the post-transcriptional regulation of critical cellular processes, including nutrient metabolism, cell survival, and stress responses. Emerging evidence underscores HuR’s essential role in maintaining liver homeostasis, particularly under metabolic stress conditions characteristic of MASLD, with hepatocyte-specific HuR depletion associated with exacerbated disease severity. Moreover, comorbid conditions such as obesity, type 2 diabetes mellitus, and cardiovascular disease not only exacerbate MASLD progression but also involve HuR dysregulation in extrahepatic tissues, further contributing to liver dysfunction. A deeper understanding of HuR-regulated post-transcriptional networks across metabolic organs may enable the development of targeted therapies aimed at halting or reversing MASLD progression. Full article
Show Figures

Figure 1

31 pages, 2740 KiB  
Review
Lipid Accumulation and Insulin Resistance: Bridging Metabolic Dysfunction-Associated Fatty Liver Disease and Chronic Kidney Disease
by Xinyi Cao, Na Wang, Min Yang and Chun Zhang
Int. J. Mol. Sci. 2025, 26(14), 6962; https://doi.org/10.3390/ijms26146962 - 20 Jul 2025
Viewed by 564
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), a recently proposed term to replace non-alcoholic fatty liver disease (NAFLD), emphasizes the critical role of metabolic dysfunction and applies broader diagnostic criteria. Diagnosis of MAFLD requires evidence of hepatic steatosis combined with obesity, type 2 diabetes [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD), a recently proposed term to replace non-alcoholic fatty liver disease (NAFLD), emphasizes the critical role of metabolic dysfunction and applies broader diagnostic criteria. Diagnosis of MAFLD requires evidence of hepatic steatosis combined with obesity, type 2 diabetes mellitus, or other metabolic dysregulation conditions, all of which significantly elevate the risk of chronic kidney disease (CKD). This review discusses the pathological mechanisms of lipid accumulation and insulin resistance in MAFLD and CKD, highlighting their mechanistic connections. Specifically, ectopic fat accumulation triggered by metabolic reprogramming, oxidative stress and inflammation induced by energy overload, modified lipids, uremic toxins, and senescence, as well as insulin resistance pathways activated by pro-inflammatory factors and lipotoxic products, collectively exacerbate simultaneous hepatic and renal injury. Moreover, interactions among hyperinsulinemia, the sympathetic nervous system, the renin–angiotensin system (RAS), and altered adipokine and hepatokine profiles further amplify insulin resistance, ectopic lipid deposition, and systemic damage. Finally, the review explores potential therapeutic strategies targeting lipid metabolism, insulin sensitivity, and RAS activity, which offer promise for dual-organ protection and improved outcomes in both hepatic and renal systems. Full article
(This article belongs to the Special Issue Nonalcoholic Liver Disease: Mechanisms, Prevention, and Treatment)
Show Figures

Figure 1

21 pages, 2139 KiB  
Review
Orchestrating Nutrient Homeostasis: RNA-Binding Proteins as Molecular Conductors in Metabolic Disease Pathogenesis
by Siyuan Sun, Xinchun Li, Jianan Zhai, Chenxu Lu, Weiru Yu, Wenhao Wu and Juan Chen
Nutrients 2025, 17(14), 2367; https://doi.org/10.3390/nu17142367 - 19 Jul 2025
Viewed by 508
Abstract
RNA-binding proteins (RBPs) are critical regulators of post-transcriptional processes, playing essential roles in nutrient metabolism and metabolic homeostasis. This literature review explores how RBPs influence the metabolism of glucose, lipid, and amino acid metabolism by controlling processes like mRNA stability and translation regulation. [...] Read more.
RNA-binding proteins (RBPs) are critical regulators of post-transcriptional processes, playing essential roles in nutrient metabolism and metabolic homeostasis. This literature review explores how RBPs influence the metabolism of glucose, lipid, and amino acid metabolism by controlling processes like mRNA stability and translation regulation. The dysregulation of RBPs, including HuR, PTB, and YTHDF1, is linked to metabolic diseases such as obesity, diabetes, and non-alcoholic fatty liver disease. Advances in techniques like TREX technology and transcriptome analysis have deepened our understanding of RBP functions. Additionally, RBPs show promise as potential biomarkers and targets for new therapies. Future research directions in RBPs could focus on tissue-specific regulation and nutrient–RBP interactions. This could pave the way for more personalized treatments and improved metabolic health. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Figure 1

Back to TopTop