Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (282)

Search Parameters:
Keywords = no motion no integration filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 (registering DOI) - 1 Aug 2025
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

18 pages, 3281 KiB  
Article
A Preprocessing Pipeline for Pupillometry Signal from Multimodal iMotion Data
by Jingxiang Ong, Wenjing He, Princess Maglanque, Xianta Jiang, Lawrence M. Gillman, Ashley Vergis and Krista Hardy
Sensors 2025, 25(15), 4737; https://doi.org/10.3390/s25154737 (registering DOI) - 31 Jul 2025
Abstract
Pupillometry is commonly used to evaluate cognitive effort, attention, and facial expression response, offering valuable insights into human performance. The combination of eye tracking and facial expression data under the iMotions platform provides great opportunities for multimodal research. However, there is a lack [...] Read more.
Pupillometry is commonly used to evaluate cognitive effort, attention, and facial expression response, offering valuable insights into human performance. The combination of eye tracking and facial expression data under the iMotions platform provides great opportunities for multimodal research. However, there is a lack of standardized pipelines for managing pupillometry data on a multimodal platform. Preprocessing pupil data in multimodal platforms poses challenges like timestamp misalignment, missing data, and inconsistencies across multiple data sources. To address these challenges, the authors introduced a systematic preprocessing pipeline for pupil diameter measurements collected using iMotions 10 (version 10.1.38911.4) during an endoscopy simulation task. The pipeline involves artifact removal, outlier detection using advanced methods such as the Median Absolute Deviation (MAD) and Moving Average (MA) algorithm filtering, interpolation of missing data using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP), and mean pupil diameter calculation through linear regression, as well as normalization of mean pupil diameter and integration of the pupil diameter dataset with facial expression data. By following these steps, the pipeline enhances data quality, reduces noise, and facilitates the seamless integration of pupillometry other multimodal datasets. In conclusion, this pipeline provides a detailed and organized preprocessing method that improves data reliability while preserving important information for further analysis. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Study on Comb-Drive MEMS Acceleration Sensor Used for Medical Purposes: Monitoring of Balance Disorders
by Michał Szermer and Jacek Nazdrowicz
Electronics 2025, 14(15), 3033; https://doi.org/10.3390/electronics14153033 - 30 Jul 2025
Viewed by 60
Abstract
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a [...] Read more.
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a smartphone equipped with dedicated software and will be used to assess the risk of falling, which is crucial for patients with balance disorders. The authors designed the accelerometer with special attention paid to the specification required in a system, where the acceleration is ±2 g and the frequency is 100 Hz. They investigated the sensor’s behavior in the DC, AC, and time domains, capturing both the mechanical response of the proof mass and the resulting changes in output capacitance due to external acceleration. A key component of the simulation is the implementation of a second-order sigma-delta modulator designed to digitize the small capacitance variations generated by the sensor. The Simulink model includes the complete signal path from analog input to quantization, filtering, decimation, and digital-to-analog reconstruction. By combining MEMS+ modeling with MATLAB-based system-level simulations, the workflow offers a fast and flexible alternative to traditional finite element methods and facilitates early-stage design optimization for MEMS sensor systems intended for real-world deployment. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

25 pages, 13014 KiB  
Article
Research on Spatial Coordinate Estimation of Karst Water-Rich Pipelines Based on Strapdown Inertial Navigation System
by Zhihong Tian, Wei Meng, Xuefu Zhang and Bowen Wan
Buildings 2025, 15(15), 2644; https://doi.org/10.3390/buildings15152644 - 26 Jul 2025
Viewed by 167
Abstract
In the field of tunnel engineering, the precise determination of the spatial coordinates of karst water-rich pipelines represents a critical area of research for disaster prevention and control. Traditional detection methods often exhibit limitations, including inadequate accuracy and low efficiency, which can significantly [...] Read more.
In the field of tunnel engineering, the precise determination of the spatial coordinates of karst water-rich pipelines represents a critical area of research for disaster prevention and control. Traditional detection methods often exhibit limitations, including inadequate accuracy and low efficiency, which can significantly compromise the safety and quality of tunnel construction. To enhance the accuracy of the spatial coordinate estimation for karst water-rich pipelines, this study introduces a novel method grounded in a strapdown inertial navigation system (SINS). This approach involves the deployment of sensing equipment within the karst water-rich pipeline to gather motion state data. Consequently, it provides spatial coordinate information pertinent to the karst water-rich pipeline within the tunnel site, thereby augmenting the completeness and accuracy of the spatial coordinate estimation results compared to conventional detection methods. This study employs ESKF filtering to process the data collected by the SINS, ensuring the robustness and accuracy of the data. The research integrates theoretical analysis, model testing, and numerical simulation. It systematically examines the operational principles and error characteristics associated with the SINS, develops an error model for this technology, and employs a comparative selection method to design the spatial coordinate sensing equipment based on the SINS. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

32 pages, 18111 KiB  
Article
Across-Beam Signal Integration Approach with Ubiquitous Digital Array Radar for High-Speed Target Detection
by Le Wang, Haihong Tao, Aodi Yang, Fusen Yang, Xiaoyu Xu, Huihui Ma and Jia Su
Remote Sens. 2025, 17(15), 2597; https://doi.org/10.3390/rs17152597 - 25 Jul 2025
Viewed by 162
Abstract
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. [...] Read more.
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. Nevertheless, target motion introduces severe across-range unit (ARU), across-Doppler unit (ADU), and across-beam unit (ABU) effects, dispersing target energy across the range–Doppler-beam space. This paper proposes a beam domain angle rotation compensation and keystone-matched filtering (BARC-KTMF) algorithm to address the “three-crossing” challenge. This algorithm first corrects ABU by rotating beam–domain coordinates to align scattered energy into the final beam unit, reshaping the signal distribution pattern. Then, the KTMF method is utilized to focus target energy in the time-frequency domain. Furthermore, a special spatial windowing technique is developed to improve computational efficiency through parallel block processing. Simulation results show that the proposed approach achieves an excellent signal-to-noise ratio (SNR) gain over the typical single-beam and multi-beam long-time coherent integration (LTCI) methods under low SNR conditions. Additionally, the presented algorithm also has the capability of coarse estimation for the target incident angle. This work extends the LTCI technique to the beam domain, offering a robust framework for high-speed weak target detection. Full article
Show Figures

Figure 1

17 pages, 4280 KiB  
Article
Precise Control of Following Motion Under Perturbed Gap Flow Field
by Jin Luo, Xiaodong Ruan, Jing Wang, Rui Su and Liang Hu
Actuators 2025, 14(8), 364; https://doi.org/10.3390/act14080364 - 23 Jul 2025
Viewed by 180
Abstract
The control of following motion under mesoscale gap flow fields has important applications. The flexible characteristics of the plant, wideband time-varying disturbances caused by the flow field, and requirements of high precision and low overshoot make achieving submicron level accuracy a significant challenge [...] Read more.
The control of following motion under mesoscale gap flow fields has important applications. The flexible characteristics of the plant, wideband time-varying disturbances caused by the flow field, and requirements of high precision and low overshoot make achieving submicron level accuracy a significant challenge for traditional control methods. This study adopts the control concept of Disturbance Observer Control (DOBC) and uses H mixed-sensitivity shaping technology to design a Q-filter. Simultaneously, multiple control techniques, such as high-order reference trajectory planning, Proportional-Integral-Derivative (PID) control, low-pass filtering, notch filtering, lead lag correction, and disturbance rejection filtering, are applied to obtain a control system with a high open-loop gain, sufficient phase margin, and stable closed-loop system. Compared to traditional control methods, the new method can increase the open-loop gain by 15 times and the open-loop bandwidth by 8%. We even observed a 150-time increase of the open-loop gain at the peak frequency. Ultimately, the method achieves submicron level accuracy, making important advances in solving the control problem of semiconductor equipment. Full article
(This article belongs to the Special Issue Analysis and Design of Linear/Nonlinear Control System)
Show Figures

Figure 1

20 pages, 3710 KiB  
Article
An Accurate LiDAR-Inertial SLAM Based on Multi-Category Feature Extraction and Matching
by Nuo Li, Yiqing Yao, Xiaosu Xu, Shuai Zhou and Taihong Yang
Remote Sens. 2025, 17(14), 2425; https://doi.org/10.3390/rs17142425 - 12 Jul 2025
Viewed by 404
Abstract
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity [...] Read more.
Light Detection and Ranging(LiDAR)-inertial simultaneous localization and mapping (SLAM) is a critical component in multi-sensor autonomous navigation systems, providing both accurate pose estimation and detailed environmental understanding. Despite its importance, existing optimization-based LiDAR-inertial SLAM methods often face key limitations: unreliable feature extraction, sensitivity to noise and sparsity, and the inclusion of redundant or low-quality feature correspondences. These weaknesses hinder their performance in complex or dynamic environments and fail to meet the reliability requirements of autonomous systems. To overcome these challenges, we propose a novel and accurate LiDAR-inertial SLAM framework with three major contributions. First, we employ a robust multi-category feature extraction method based on principal component analysis (PCA), which effectively filters out noisy and weakly structured points, ensuring stable feature representation. Second, to suppress outlier correspondences and enhance pose estimation reliability, we introduce a coarse-to-fine two-stage feature correspondence selection strategy that evaluates geometric consistency and structural contribution. Third, we develop an adaptive weighted pose estimation scheme that considers both distance and directional consistency, improving the robustness of feature matching under varying scene conditions. These components are jointly optimized within a sliding-window-based factor graph, integrating LiDAR feature factors, IMU pre-integration, and loop closure constraints. Extensive experiments on public datasets (KITTI, M2DGR) and a custom-collected dataset validate the proposed method’s effectiveness. Results show that our system consistently outperforms state-of-the-art approaches in accuracy and robustness, particularly in scenes with sparse structure, motion distortion, and dynamic interference, demonstrating its suitability for reliable real-world deployment. Full article
(This article belongs to the Special Issue LiDAR Technology for Autonomous Navigation and Mapping)
Show Figures

Figure 1

17 pages, 3854 KiB  
Article
Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
by Yonglong Zhu, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma and Chengyao Cai
Electronics 2025, 14(14), 2761; https://doi.org/10.3390/electronics14142761 - 9 Jul 2025
Viewed by 224
Abstract
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise [...] Read more.
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise information, modal decomposition techniques that depend on empirical parameter optimization and are prone to modal aliasing, wavelet threshold functions that struggle to balance signal preservation with smoothness, and the high computational complexity of deep learning approaches—this paper proposes an ISSA-VMD-AWPTD denoising algorithm. This innovative approach integrates an improved sparrow search algorithm (ISSA), variational mode decomposition (VMD), and adaptive wavelet packet threshold denoising (AWPTD). The ISSA is enhanced through cubic chaotic mapping, butterfly optimization, and sine–cosine search strategies, targeting the minimization of the envelope entropy of modal components for adaptive optimization of VMD’s decomposition levels and penalty factors. A correlation coefficient-based selection mechanism is employed to separate target and mixed modes effectively, allowing for the efficient removal of noise components. Additionally, an exponential adaptive threshold function is introduced, combining wavelet packet node energy proportion analysis to achieve efficient signal reconstruction. By leveraging the rapid convergence property of ISSA (completing parameter optimization within five iterations), the computational load of traditional VMD is reduced while maintaining the denoising accuracy. Experimental results demonstrate that for a 200 Hz test signal, the proposed algorithm achieves a signal-to-noise ratio (SNR) of 24.47 dB, an improvement of 18.8% over the VMD method (20.63 dB), and a root-mean-square-error (RMSE) of 0.0023, a reduction of 69.3% compared to the VMD method (0.0075). The processing results for measured human blood flow signals achieve an SNR of 24.11 dB, a RMSE of 0.0023, and a correlation coefficient (R) of 0.92, all outperforming other algorithms, such as VMD and WPTD. This study effectively addresses issues related to parameter sensitivity and incomplete noise separation in traditional methods, providing a high-precision and low-complexity real-time signal processing solution for wearable devices. However, the parameter optimization still needs improvement when dealing with large datasets. Full article
Show Figures

Figure 1

24 pages, 4937 KiB  
Article
Performance Improvement of Pure Pursuit Algorithm via Online Slip Estimation for Off-Road Tracked Vehicle
by Çağıl Çiloğlu and Emir Kutluay
Sensors 2025, 25(14), 4242; https://doi.org/10.3390/s25144242 - 8 Jul 2025
Viewed by 427
Abstract
The motion control of a tracked mobile robot remains an important capability for autonomous navigation. Kinematic path-tracking algorithms are commonly used in mobile robotics due to their ease of implementation and real-time computational cost advantage. This paper integrates an extended Kalman filter (EKF) [...] Read more.
The motion control of a tracked mobile robot remains an important capability for autonomous navigation. Kinematic path-tracking algorithms are commonly used in mobile robotics due to their ease of implementation and real-time computational cost advantage. This paper integrates an extended Kalman filter (EKF) into a common kinematic controller for path-tracking performance improvement. The extended Kalman filter estimates the instantaneous center of rotation (ICR) of tracks using the sensor readings of GPS and IMU. These ICR estimations are then given as input to the motion control algorithm to generate the track velocity demands. The platform to be controlled is a heavyweight off-road tracked vehicle, which necessitates the investigation of slip values. A high-fidelity simulation model, which is verified with field tests, is used as the plant in the path-tracking simulations. The performance of the filter and the algorithm is also demonstrated in field tests on a stabilized road. The field results show that the proposed estimation increases the path-tracking accuracy significantly (about 44%) compared to the classical pure pursuit. Full article
(This article belongs to the Special Issue INS/GNSS Integrated Navigation Systems)
Show Figures

Figure 1

16 pages, 976 KiB  
Article
Multi-Agent-Supported Tracking Based on Hidden Markov Model with Weighted Entropy
by Hao Sheng, Haoyu Gao, Shuai Wang, Da Yang, Dazhi Yang and Guanqun Su
Appl. Sci. 2025, 15(13), 7581; https://doi.org/10.3390/app15137581 - 6 Jul 2025
Viewed by 372
Abstract
Multi-object tracking (MOT) has witnessed significant advancements in recent years, yet it remains challenged by complex uncertainties arising from pedestrian movement patterns. To address this, we present a unified framework that explicitly models pedestrian dynamics through a dual-phase paradigm, combining a Hidden Markov [...] Read more.
Multi-object tracking (MOT) has witnessed significant advancements in recent years, yet it remains challenged by complex uncertainties arising from pedestrian movement patterns. To address this, we present a unified framework that explicitly models pedestrian dynamics through a dual-phase paradigm, combining a Hidden Markov Model (HMM) for motion modeling and weighted entropy for adaptive multi-cue fusion. Furthermore, a multi-agent architecture is employed for track management, enabling parallelized state estimation and seamless integration of the HMM-based Kalman filter with multi-cue fusion. Quantitative evaluations show that our method achieves 82.1 in IDF1, 81.5 in MOTA, 65.9 in HOTA, and 1,255 IDs on the MOT17 benchmark, and achieves 81.2 in IDF1, 78.4 in MOTA, 65.7 in HOTA, and 608 IDs on the MOT20 benchmark, and the application of the multi-agent mechanism significantly improves the scores on FPS as a result of efficient computation. The experimental results demonstrate that the proposed method achieves state-of-the-art performance, particularly in highly crowded scenes. Full article
(This article belongs to the Special Issue Advances in Image Recognition and Processing Technologies)
Show Figures

Figure 1

21 pages, 4859 KiB  
Article
Improvement of SAM2 Algorithm Based on Kalman Filtering for Long-Term Video Object Segmentation
by Jun Yin, Fei Wu, Hao Su, Peng Huang and Yuetong Qixuan
Sensors 2025, 25(13), 4199; https://doi.org/10.3390/s25134199 - 5 Jul 2025
Viewed by 500
Abstract
The Segment Anything Model 2 (SAM2) has achieved state-of-the-art performance in pixel-level object segmentation for both static and dynamic visual content. Its streaming memory architecture maintains spatial context across video sequences, yet struggles with long-term tracking due to its static inference framework. SAM [...] Read more.
The Segment Anything Model 2 (SAM2) has achieved state-of-the-art performance in pixel-level object segmentation for both static and dynamic visual content. Its streaming memory architecture maintains spatial context across video sequences, yet struggles with long-term tracking due to its static inference framework. SAM 2’s fixed temporal window approach indiscriminately retains historical frames, failing to account for frame quality or dynamic motion patterns. This leads to error propagation and tracking instability in challenging scenarios involving fast-moving objects, partial occlusions, or crowded environments. To overcome these limitations, this paper proposes SAM2Plus, a zero-shot enhancement framework that integrates Kalman filter prediction, dynamic quality thresholds, and adaptive memory management. The Kalman filter models object motion using physical constraints to predict trajectories and dynamically refine segmentation states, mitigating positional drift during occlusions or velocity changes. Dynamic thresholds, combined with multi-criteria evaluation metrics (e.g., motion coherence, appearance consistency), prioritize high-quality frames while adaptively balancing confidence scores and temporal smoothness. This reduces ambiguities among similar objects in complex scenes. SAM2Plus further employs an optimized memory system that prunes outdated or low-confidence entries and retains temporally coherent context, ensuring constant computational resources even for infinitely long videos. Extensive experiments on two video object segmentation (VOS) benchmarks demonstrate SAM2Plus’s superiority over SAM 2. It achieves an average improvement of 1.0 in J&F metrics across all 24 direct comparisons, with gains exceeding 2.3 points on SA-V and LVOS datasets for long-term tracking. The method delivers real-time performance and strong generalization without fine-tuning or additional parameters, effectively addressing occlusion recovery and viewpoint changes. By unifying motion-aware physics-based prediction with spatial segmentation, SAM2Plus bridges the gap between static and dynamic reasoning, offering a scalable solution for real-world applications such as autonomous driving and surveillance systems. Full article
Show Figures

Figure 1

13 pages, 531 KiB  
Article
Adaptive Motion Planning Leveraging Speed-Differentiated Prediction for Mobile Robots in Dynamic Environments
by Tengfei Liu, Zihe Wang, Jiazheng Hu, Shuling Zeng, Xiaoxu Liu and Tan Zhang
Appl. Sci. 2025, 15(13), 7551; https://doi.org/10.3390/app15137551 - 4 Jul 2025
Viewed by 289
Abstract
This paper presents a novel motion planning framework for mobile robots operating in dynamic and uncertain environments, with an emphasis on accurate trajectory prediction and safe, efficient obstacle avoidance. The proposed approach integrates search-based planning with deep learning techniques to improve both robustness [...] Read more.
This paper presents a novel motion planning framework for mobile robots operating in dynamic and uncertain environments, with an emphasis on accurate trajectory prediction and safe, efficient obstacle avoidance. The proposed approach integrates search-based planning with deep learning techniques to improve both robustness and interpretability. A multi-sensor perception module is designed to classify obstacles as either static or dynamic, thereby enhancing environmental awareness and planning reliability. To address the challenge of motion prediction, we introduce the K-GRU Kalman method, which first applies K-means clustering to distinguish between high-speed and low-speed dynamic obstacles, then models their trajectories using a combination of Kalman filtering and gated recurrent units (GRUs). Compared to state-of-the-art RNN and LSTM-based predictors, the proposed method achieves superior accuracy and generalization. Extensive experiments in both simulated and real-world scenarios of varying complexity demonstrate the effectiveness of the framework. The results show an average planning success rate exceeding 60%, along with notable improvements in path safety and smoothness, validating the contribution of each module within the system. Full article
Show Figures

Figure 1

21 pages, 5105 KiB  
Article
A Dynamic Kalman Filtering Method for Multi-Object Fruit Tracking and Counting in Complex Orchards
by Yaning Zhai, Ling Zhang, Xin Hu, Fanghu Yang and Yang Huang
Sensors 2025, 25(13), 4138; https://doi.org/10.3390/s25134138 - 2 Jul 2025
Viewed by 484
Abstract
With the rapid development of agricultural intelligence in recent years, automatic fruit detection and counting technologies have become increasingly significant for optimizing orchard management and advancing precision agriculture. However, existing deep learning-based models are primarily designed to process static and single-frame images, thereby [...] Read more.
With the rapid development of agricultural intelligence in recent years, automatic fruit detection and counting technologies have become increasingly significant for optimizing orchard management and advancing precision agriculture. However, existing deep learning-based models are primarily designed to process static and single-frame images, thereby failing to meet the large-scale detection and counting demands in the dynamically changing scenes of modern orchards. To address these challenges, this paper proposes a multi-object fruit tracking and counting method, which integrates an improved YOLO-based object detection algorithm with a dynamically optimized Kalman filter. By optimizing the network structure, the improved YOLO detection model provides high-quality detection results for subsequent tracking tasks. Then a modified Kalman filter with a variable forgetting factor is integrated to dynamically adjust the weighting of historical data, enabling the model to adapt to changes in observation and motion noise. Moreover, fruit targets are associated using a combined strategy based on Intersection over Union (IoU) and Re-Identification (Re-ID) features, improving the accuracy and stability of object matching. Consequently, the continuous tracking and precise counting of fruits in video sequences are achieved. Experimental results with image frames of fruits in video sequence are demonstrated, showing that the proposed method performs robust and continuous tracking (MOTA of 95.0% and HOTA of 82.4%). For fruit counting, the method attains a high coefficient-of-determination of 0.85 and a low root-mean-square error (RMSE) of 1.57, exhibiting high accuracy and stability of fruit detection, tracking and counting in video sequences under complex orchard environments. Full article
(This article belongs to the Special Issue AI-Based Computer Vision Sensors & Systems)
Show Figures

Figure 1

33 pages, 3235 KiB  
Article
Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions
by Serhii Semenov, Magdalena Krupska-Klimczak, Olga Wasiuta, Beata Krzaczek, Patryk Mieczkowski, Leszek Głowacki, Jian Yu, Jiang He and Olena Chernykh
Sustainability 2025, 17(13), 6030; https://doi.org/10.3390/su17136030 - 1 Jul 2025
Viewed by 386
Abstract
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based [...] Read more.
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based on the integration of geometric trajectory modeling, neural network-based sensor data filtering, and reinforcement learning. The geometric model, constructed using path coordinates, allows the trajectory tracking problem to be formalized as an affine control system, which ensures motion stability even in cases of partial data loss. To process noisy or fragmented GPS and IMU signals, an LSTM-based recurrent neural network filter is implemented. This significantly reduces positioning errors and maintains trajectory stability under environmental disturbances. In addition, the navigation system includes a reinforcement learning module that performs real-time obstacle prediction, path correction, and speed adaptation. The method has been tested in a simulated environment with limited sensor availability, variable velocity profiles, and dynamic obstacles. The results confirm the functionality and effectiveness of the proposed navigation system under sensor-deficient conditions. The approach is applicable to environmental monitoring, autonomous delivery, precision agriculture, and emergency response missions within smart regions. Its implementation contributes to achieving the Sustainable Development Goals (SDG 9, SDG 11, and SDG 13) by enhancing autonomy, energy efficiency, and the safety of flight operations. Full article
Show Figures

Figure 1

19 pages, 2267 KiB  
Article
Closed-Loop Aerial Tracking with Dynamic Detection-Tracking Coordination
by Yang Wang, Heqing Huang, Jiahao He, Dongting Han and Zhiwei Zhao
Drones 2025, 9(7), 467; https://doi.org/10.3390/drones9070467 - 30 Jun 2025
Viewed by 341
Abstract
Aerial tracking is an important service for many Unmanned Aerial Vehicle (UAV) applications. Existing work has failed to provide robust solutions when handling target disappearance, viewpoint changes, and tracking drifts in practical scenarios with limited UAV resources. In this paper, we propose a [...] Read more.
Aerial tracking is an important service for many Unmanned Aerial Vehicle (UAV) applications. Existing work has failed to provide robust solutions when handling target disappearance, viewpoint changes, and tracking drifts in practical scenarios with limited UAV resources. In this paper, we propose a closed-loop framework integrating three key components: (1) a lightweight adaptive detection with multi-scale feature extraction, (2) spatiotemporal motion modeling through Kalman-filter-based trajectory prediction, and (3) autonomous decision-making through composite scoring of detection confidence, appearance similarity, and motion consistency. By implementing dynamic detection-tracking coordination with quality-aware feature preservation, our system enables real-time operation through performance-adaptive frequency modulation. Evaluated on VOT-ST2019 and OTB100 benchmarks, the proposed method yields marked improvements over baseline trackers, achieving a 27.94% increase in Expected Average Overlap (EAO) and a 10.39% reduction in failure rates, while sustaining a frame rate of 23–95 FPS on edge hardware. The framework achieves rapid target reacquisition during prolonged occlusion scenarios through optimized protocols, outperforming conventional methods in sustained aerial surveillance tasks. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

Back to TopTop