Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (499)

Search Parameters:
Keywords = nitrophenol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2346 KB  
Article
A Fiber Optic Sensor Using a Molecularly Imprinted Chitosan Membrane Coating on a Fiber Surface as a Transducer for Discriminating 4-Nitrophenol from Its Positional Isomers
by Myra Arana and Shiquan Tao
Sensors 2026, 26(2), 398; https://doi.org/10.3390/s26020398 - 8 Jan 2026
Viewed by 180
Abstract
An optical fiber chemical sensor using a molecularly imprinted chitosan membrane coated on the surface of a bent optical fiber probe was developed for selectively analyzing 4-nitrophenol (4-NP) in water samples. When the sensor probe is exposed to a water sample, the chitosan [...] Read more.
An optical fiber chemical sensor using a molecularly imprinted chitosan membrane coated on the surface of a bent optical fiber probe was developed for selectively analyzing 4-nitrophenol (4-NP) in water samples. When the sensor probe is exposed to a water sample, the chitosan MIP membrane extracts/concentrates 4-NP from the water sample into the membrane. The 4-NP extracted into the membrane was detected by passing a light beam through the optical fiber and the interaction of the 4-NP in the membrane with an evanescent wave of light guided through the optical fiber was detected as a sensing signal. This sensor detects the intrinsic optical absorption signal of 4-NP itself as a sensing signal. No chemical reagent was needed in analyzing this compound in a sample. The sensor is reversible, can be used for continuous monitoring of 4-NP in a sample, and has a quick response with a response time of 5 min. The sensor has high sensitivity and selectivity because the MIP membrane selectively concentrates 4-NP by 1.4 × 104 times into the membrane from a sample solution, but blocks out interference species, including its isomers and derivatives, from entering the membrane. The sensor achieved a detection limit of 2.5 ng/mL (0.018 µM), which is lower than most reported analytical techniques for analyzing this compound in water samples. This sensor can discriminate 4-NP from its isomers and derivatives, such as 2-NP, 3-NP, 2-Cl-4-NP, and 2,4-di-NP, with a selectivity factor ranging from 104 to 1922. This is the first reported case of an MIP-based optical fiber chemical sensor with the capability of discriminating an organic compound from its closely related positional isomers, which demonstrates the high selectivity nature of the MIP-based optical fiber chemical sensor technique. The sensor has been used for analyzing 4-NP in a standard addition sample. The obtained recovery rate ranged from 93% to 101%, demonstrating the application potential of this sensor in water quality analysis. Full article
Show Figures

Figure 1

30 pages, 4841 KB  
Review
Recent Progress in Advanced Electrode Materials for the Detection of 4-Nitrophenol and Its Derivatives for Environmental Monitoring
by Shanmugam Vignesh, Chellakannu Rajkumar, Rohit Kumar Singh Gautam, Sanjeevamuthu Suganthi, Khursheed Ahmad and Tae Hwan Oh
Sensors 2026, 26(1), 306; https://doi.org/10.3390/s26010306 - 3 Jan 2026
Viewed by 447
Abstract
It is understood that 4-nitrophenol (4-NP) and its derivatives/isomers, such as m-NP and o-NP, are considered toxic nitroaromatic pollutants that pose health risks for human beings and have negative impacts on the environment. Therefore, monitoring of 4-NP is of particular importance to avoid [...] Read more.
It is understood that 4-nitrophenol (4-NP) and its derivatives/isomers, such as m-NP and o-NP, are considered toxic nitroaromatic pollutants that pose health risks for human beings and have negative impacts on the environment. Therefore, monitoring of 4-NP is of particular importance to avoid the negative impacts of these environmental pollutants on aquatic life and human health. Electrochemical sensors have emerged as the most promising next-generation technology for the detection of environmental pollutants. The electrochemical method has been extensively used for the detection of 4-NP, p-NP, etc., which has delivered an interesting electrochemical performance. This review provides an overview of the advances in electrode modifiers designed for the electrochemical detection of 4-NP and its isomers. This review includes the use of carbon-based materials, metal oxides, metal sulfides, metal-organic-frameworks (MOFs), conducting polymers, MXenes, covalent organic frameworks (COF), and composites for the development of 4-NP electrochemical sensors. Various electrochemical techniques, such as differential pulse voltammetry, square wave voltammetry, linear sweep voltammetry, cyclic voltammetry (CV), electrochemical impedance spectroscopy, and amperometry, are discussed for the detection of 4-NP and other isomers. Full article
(This article belongs to the Special Issue Electrochemical Sensing: Technologies, Applications and Challenges)
Show Figures

Figure 1

27 pages, 19129 KB  
Article
Green Synthesis of AgNPs from Celtis africana: Biological and Catalytic Insights
by Amna N. Khan
Nanomaterials 2025, 15(23), 1821; https://doi.org/10.3390/nano15231821 - 1 Dec 2025
Viewed by 460
Abstract
Celtis africana, a rare plant native to southwestern Saudi Arabia, was explored for the first time as a source for the green synthesis of silver nanoparticles (AgNPs). Catechol-bearing phenolic amides in the aqueous leaf extract acted as both reducing and capping agents, enabling [...] Read more.
Celtis africana, a rare plant native to southwestern Saudi Arabia, was explored for the first time as a source for the green synthesis of silver nanoparticles (AgNPs). Catechol-bearing phenolic amides in the aqueous leaf extract acted as both reducing and capping agents, enabling eco-friendly AgNP fabrication. The synthesized AgNPs were characterized using SEM, TEM, XRD, UV-Vis, and FTIR, revealing predominantly spherical nanoparticles with an average size of 9.28 ± 0.11 nm, a face-centered cubic crystalline structure, and a pronounced surface plasmon resonance at 424 nm. HPLC analysis confirmed the presence of caffeoyltryamine in the extract, while UV-Vis and FTIR indicated its attachment to the AgNP surface. The AgNPs exhibited broad-spectrum antimicrobial activity against Gram-positive bacteria (S. aureus, MRSA and E. faecalis) and Gram-negative bacteria (E. coli, K. pneumoniae, S. typhimurium, and P. aeruginosa), as well as pathogenic fungi such as C. albicans, C. glabrata, C. parapsilosis, and C. krusei with performance comparable to or exceeding that of AgNPs from Artemisia vulgaris, Moringa oleifera, and Nigella sativa. The MIC and MBC values for S. aureus, MRSA, E. coli, and S. typhimurium were consistently 6.25 µg/mL and 25 µg/mL, respectively, reflecting strong inhibitory and bactericidal effects at low concentrations. MTT assays demonstrated selective cytotoxicity, showing higher viability in normal human skin fibroblasts (HSF) than in MCF-7 breast cancer cells. The AgNPs also displayed strong antioxidant activity (IC50 = 5.41 µg/mL, DPPH assay) and efficient catalytic reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with rate constants of 0.0165 s−1 and 0.0047 s−1, respectively, exceeding most reported values. These findings identify Celtis africana as a promising source for eco-friendly AgNPs with strong antimicrobial, antioxidant, and catalytic properties for broad biological and environmental applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

16 pages, 1778 KB  
Article
Characterizing PM-Bound Nitrated Aromatic Compounds from Construction Machinery: Emission Factors, Optical Properties, and Toxic Equivalents
by Runqi Zhang, Sheng Li, Long Peng, Qiongwei Zhang, Jun Wang, Datong Luo, Zhan Liu and Qiusheng He
Atmosphere 2025, 16(12), 1365; https://doi.org/10.3390/atmos16121365 - 30 Nov 2025
Viewed by 313
Abstract
Nitrated aromatic compounds (NACs) are critical toxic components of PM2.5, and accurately identifying their sources is vital for effective urban air quality improvement. However, the lack of real-world emission data for construction machinery has introduced significant uncertainties into NACs source apportionment [...] Read more.
Nitrated aromatic compounds (NACs) are critical toxic components of PM2.5, and accurately identifying their sources is vital for effective urban air quality improvement. However, the lack of real-world emission data for construction machinery has introduced significant uncertainties into NACs source apportionment and emission inventories, particularly in urban areas where such machinery is widely used. Here, we characterized NACs, including nitrated polycyclic aromatic hydrocarbons (NPAHs) and nitrophenols (NPs), emissions from forklifts and excavators at construction sites in China. It is found that construction machinery emitted significantly higher NACs levels compared to on-road vehicles, with average NPAHs and NPs emission factors of 340.1 and 562.0 μg kg−1 fuel for forklifts and 459.0 and 1381.1 μg kg−1 fuel for excavators. Emissions during working modes were 1.1–1.6 times higher than during idling for forklifts and excavators. A key finding was the dominance of 5-nitroacenaphthene and 1-nitropyrene, which contrasts sharply with the observed emissions in other sources. We believed that combining the 5-nitroacenaphthene and 1-nitropyrene during the source apportionment using the receptor model would make it possible to separate the contributions of construction machinery. Notably, the light absorption of 45 NACs from both forklifts and excavators collectively accounted for approximately 30% of the total methanol-soluble brown carbon—a significantly higher contribution ratio compared to other emission sources. Furthermore, while construction machinery accounted for less than 5% of urban vehicle numbers, its toxic equivalent quotients can reach 4 to 6 times that of on-road vehicles with the nonnegligible potential toxicity. These results highlight the urgent need for stricter emission controls on construction machinery to reduce NACs-related adverse environmental effects in urban environments. Our findings provide valuable insights for constructing NACs emission inventories and refining NACs source apportionment methods in urban atmospheric studies. Full article
(This article belongs to the Special Issue Air Pollution: Emission Characteristics and Formation Mechanisms)
Show Figures

Figure 1

22 pages, 1743 KB  
Article
Ecotoxicity of Nitrated Monoaromatic Hydrocarbons in Aquatic Systems: Emerging Risks from Atmospheric Deposition of Biomass Burning and Anthropogenic Aerosols
by Saranda Bakija Alempijević, Slađana Strmečki, Ivan Mihaljević, Sanja Frka, Jelena Dragojević, Ivana Jakovljević and Tvrtko Smital
Toxics 2025, 13(12), 1037; https://doi.org/10.3390/toxics13121037 - 30 Nov 2025
Viewed by 567
Abstract
Nitrated monoaromatic hydrocarbons (NMAHs) are emerging air pollutants commonly found in biomass burning (BB) and anthropogenic aerosols (AA). Despite their frequent deposition into aquatic systems, their ecotoxicity is still poorly understood. This study evaluates the toxicity of BB and AA aerosol extracts and [...] Read more.
Nitrated monoaromatic hydrocarbons (NMAHs) are emerging air pollutants commonly found in biomass burning (BB) and anthropogenic aerosols (AA). Despite their frequent deposition into aquatic systems, their ecotoxicity is still poorly understood. This study evaluates the toxicity of BB and AA aerosol extracts and their main NMAH constituents (nitrocatechols, nitrophenols, and nitrosalicylic acids) using in vitro (cellular uptake, cytotoxicity) and in vivo (algal growth inhibition, zebrafish embryo development) bioassays. Polar aerosol extracts showed higher toxicity than nonpolar ones, with stronger interaction via zebrafish organic anion Oatp1d1 than organic cation Oct1 transporter, indicating selective uptake. NMAHs and their relevant mixtures showed similar toxicity patterns as BB water extract, so NMAHs were identified as contributors to aerosol toxicity. Nitrocatechols stand out for their toxicity, showing the highest chronic toxicity in algae (IC50: 0.6–1.1 mg/L) and acute cytotoxicity in fish cells (IC50: 2.0–4.1 mg/L), possibly because they dominated the NMAHs composition of aerosols (BB: 80.6%; AA: 79.8%). Sublethal NMAH concentrations caused developmental disorders and altered lipid homeostasis in zebrafish embryos, indicating early physiological stress on higher organisms. These findings reveal NMAHs as significant ecotoxic components of BB and AA emissions which may pose an increasing threat to aquatic ecosystems following atmospheric deposition. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

33 pages, 16538 KB  
Article
Role of Surface Charge in the Speciation and Photocatalytic Degradation of 4-Nitrophenol Using ZnO–CeO2–WO3 Photocatalysts
by Alma Rosa Alejandro-López, Laura Elvira Serrano de la Rosa, Sandra Leticia Castillejos-Mosqueda, Gerardo E. Córdova-Pérez, Jorge R. Cerna-Cortez, Claudia M. Gómez, Adib Abiu Silahua-Pavón, Rafael Omar Saavedra-Díaz, Srinivas Godavarthi and Adrián Cervantes-Uribe
J. Compos. Sci. 2025, 9(12), 646; https://doi.org/10.3390/jcs9120646 - 30 Nov 2025
Viewed by 755
Abstract
Understanding how the surface charge environment governs pollutant–catalyst interactions is essential for designing efficient photocatalysts. In this study, ZnO–CeO2–WO3 composite materials were synthesized through a simplex-centroid mixture design to evaluate their photocatalytic activity toward the degradation of 4-nitrophenol (4-NPOH) under [...] Read more.
Understanding how the surface charge environment governs pollutant–catalyst interactions is essential for designing efficient photocatalysts. In this study, ZnO–CeO2–WO3 composite materials were synthesized through a simplex-centroid mixture design to evaluate their photocatalytic activity toward the degradation of 4-nitrophenol (4-NPOH) under UV irradiation. The materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), UV–Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL), nitrogen adsorption–desorption (BET/DFT) and scanning electron microscopy (SEM). Photocatalytic experiments were conducted without pH adjustment to analyze the intrinsic behavior of each oxide and their mixtures. The acid–base equilibrium of 4-NPOH (pKa = 7.2) allowed evaluating its deprotonation to 4-nitrophenolate (4-NP) and its interaction with the catalyst surface, which depends on the point of zero charge (pHPzc) of ZnO, CeO2, and WO3. The Zn–W binary system (ZnWO4 phase) exhibited the highest activity, achieving 81% degradation efficiency and the largest apparent rate constant (k = 5.1 × 10−3 min−1). However, a 51% decrease in activity was observed after three reuse cycles, attributed to WO3 leaching induced by the interaction between 4-NPO and zinc tungstate hydroxide (Zn[W(OH)8]). This work establishes a direct correlation between surface charge, pollutant speciation, and photocatalytic performance, providing a mechanistic framework for understanding pH-dependent degradation processes over multicomponent oxide composites. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Graphical abstract

20 pages, 1913 KB  
Article
Quantifying Radical Pathways in a 425 kHz Sonoreactor: Coupled Calorimetric–Multidosimetric Assessment and Process Variable Impacts in Sunset Yellow FCF Degradation
by Abdulmajeed Baker, Oualid Hamdaoui, Lahssen El Blidi, Mohamed K. Hadj-Kali and Abdulaziz Alghyamah
Processes 2025, 13(12), 3827; https://doi.org/10.3390/pr13123827 - 26 Nov 2025
Viewed by 334
Abstract
This study quantifies radical pathways and the influence of process variables in a 425 kHz sonoreactor through a coupled calorimetric and multidosimetric approach during Sunset Yellow FCF degradation. Reactive oxygen species were mapped with four complementary dosimeters. Potassium iodide (KI) tracked interfacial hydroxyl [...] Read more.
This study quantifies radical pathways and the influence of process variables in a 425 kHz sonoreactor through a coupled calorimetric and multidosimetric approach during Sunset Yellow FCF degradation. Reactive oxygen species were mapped with four complementary dosimeters. Potassium iodide (KI) tracked interfacial hydroxyl radicals (OH). KI with ammonium heptamolybdate (AHM) captured OH radicals together with hydrogen peroxide (H2O2). Bulk H2O2 accumulation integrated the recombination branch. Hydroxylation of 4-nitrophenol to 4-nitrocatechol acted as a selective near-interface OH probe. Calorimetry showed that acoustic power density increased with set power and decreased with liquid height. All four dosimeters rose coherently with this variable, indicating that stronger driving elevated OH generation while channeling a larger fraction into H2O2 through recombination. Process studies linked energy delivery to performance across operating conditions. Higher power accelerated pseudo-first order dye decay. Increasing initial dye concentration reduced fractional removal at fixed power, consistent with a radical-limited regime. Acidic media enhanced degradation by maintaining a stronger hydroxyl radical to water redox couple and by improving H2O2 persistence. Near neutral and alkaline media exhibited carbonate and bicarbonate scavenging of hydroxyl radicals and faster peroxide loss. Dissolved gas identity strongly modulated activity. Oxygen and argon outperformed air and carbon dioxide due to the combined thermophysical and chemical roles of the bubble gas. The calorimetry anchored and multidosimetric protocol provides a general route to compare reactors, optimize conditions, and support scale-up based on delivered energy density. Ultrasonication-driven degradation is a robust, practical technology for advanced treatment of dye-laden waters. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

26 pages, 3256 KB  
Article
Facile Hydrothermal Synthesis of a Graphene Oxide–Cerium Oxide Nanocomposite: A Highly Efficient Catalyst for Azo Dye Degradation
by Abdur Rauf, M. I. Khan, Muhammad Ismail, Mohamed Shaban, Nada Alfryyan, Hind Alshaikh, Saima Gul, Asif Nawaz and Sher Bahadar Khan
Catalysts 2025, 15(12), 1097; https://doi.org/10.3390/catal15121097 - 21 Nov 2025
Viewed by 692
Abstract
The pervasive discharge of synthetic dyes into aquatic ecosystems poses a significant threat due to their chemical stability, low biodegradability, and carcinogenicity. Conventional dye remediation methods—such as biological treatments, coagulation, and adsorption—have demonstrated limited efficiency and poor reusability, particularly against resilient azo dyes. [...] Read more.
The pervasive discharge of synthetic dyes into aquatic ecosystems poses a significant threat due to their chemical stability, low biodegradability, and carcinogenicity. Conventional dye remediation methods—such as biological treatments, coagulation, and adsorption—have demonstrated limited efficiency and poor reusability, particularly against resilient azo dyes. Cerium oxide (CeO2) nanoparticles have gained traction as photocatalysts owing to their redox-active surfaces and oxygen storage capabilities; however, issues like particle agglomeration and rapid charge recombination restrict their catalytic performance. To address these challenges, this study presents the novel synthesis of a graphene oxide–cerium oxide (GO-CeO2) nanocomposite via a facile in situ hydrothermal approach, using graphite from lead pencils as a sustainable precursor. The composite was structurally characterized using UV–visible spectroscopy, XRD, FTIR, and TEM. The GO matrix not only facilitates uniform dispersion of CeO2 nanoparticles but also enhances interfacial electron mobility and active site availability. The nanocomposite demonstrated exceptional photocatalytic degradation efficiencies for methyl orange (94%), methyl red (98%), congo red (96%), and 4-nitrophenol (85.6%) under sunlight irradiation, with first-order rate constants significantly exceeding those of pure CeO2. Notably, GO–CeO2 retained strong catalytic activity over four degradation cycles, confirming its recyclability and structural stability. Total organic carbon (TOC) analysis revealed 79% mineralization of methyl orange, outperforming CeO2 (45%), indicating near-complete conversion into benign byproducts. This work contributes a scalable, low-cost, and highly active heterogeneous photocatalyst for wastewater treatment, combining green synthesis principles with improved photodegradation kinetics. Its modular architecture and reusability make it a promising candidate for future environmental remediation technologies and integrated photocatalytic systems. Full article
(This article belongs to the Special Issue Cutting-Edge Catalytic Strategies for Organic Pollutant Mitigation)
Show Figures

Graphical abstract

16 pages, 1757 KB  
Article
Synergistic Remediation of Cr(VI) and P-Nitrophenol Co-Contaminated Soil Using Metal-/Non-Metal-Doped nZVI Catalysts with High Dispersion in the Presence of Persulfate
by Yin Wang, Siqi Xu, Yixin Yang, Yule Gao, Linlang Lu, Hu Jiang and Xiaodong Zhang
Catalysts 2025, 15(11), 1077; https://doi.org/10.3390/catal15111077 - 13 Nov 2025
Viewed by 641
Abstract
In this work, two novel nanoscale zero-valent iron (nZVI) composites (nanoscale zero-valent iron and copper-intercalated montmorillonite (MMT-nFe0/Cu0) and carbon microsphere-supported sulfurized nanoscale zero-valent iron (CMS@S-nFe0)) were used to treat soil contaminated with both Cr(VI) and p-nitrophenol (PNP), [...] Read more.
In this work, two novel nanoscale zero-valent iron (nZVI) composites (nanoscale zero-valent iron and copper-intercalated montmorillonite (MMT-nFe0/Cu0) and carbon microsphere-supported sulfurized nanoscale zero-valent iron (CMS@S-nFe0)) were used to treat soil contaminated with both Cr(VI) and p-nitrophenol (PNP), and added persulfate (PMS). Experiments found that the pollutant removal effect has a great relationship with the ratio of water to soil, the amount of catalyst, the amount of PMS, and the pH value. When the conditions are adjusted to the best (water–soil = 2:1, catalyst 30 g/kg, PMS 15 g/kg, pH 7–9), both materials fix Cr(VI) well and decompose PNP. The removal rates of Cr(VI) and PNP by the MMT-nFe0/Cu0 system are 90.4% and 72.6%, respectively, while the CMS@ S-nFe0 system is even more severe, reaching 94.8% and 81.3%. Soil column leaching experiments also proved that the fixation effect of Cr can last for a long time and PNP can be effectively decomposed. Through detection methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), we found that Cr(VI) was effectively reduced to Cr(III) by Fe0 and Fe2+ ions and subsequently transformed into stable FeCr2O4 spinel oxides, and the groups produced after the decomposition of PNP could also help fix the metal. This work provides a way to simultaneously treat Cr(VI) and PNP pollution, and also allows the use of multifunctional nZVI composites in complex soil environments. Full article
(This article belongs to the Special Issue Porous Catalytic Materials for Environmental Purification)
Show Figures

Graphical abstract

2184 KB  
Proceeding Paper
Tocopherol–Doxorubicin Conjugate as a Lipid–Prodrug: Synthetic Methods, Self-Assembly, Breast Cancer Cell Inhibition, and Theoretical Analysis
by Lara Caires, Dina Maciel, Rita Castro, Mara Gonçalves, Jorge A. M. Pereira, José S. Câmara, Jolanta Jaśkowska, João Rodrigues, Helena Tomás and Ruilong Sheng
Chem. Proc. 2025, 18(1), 118; https://doi.org/10.3390/ecsoc-29-26716 - 11 Nov 2025
Viewed by 101
Abstract
Developing natural lipid-based conjugates/prodrugs has emerged as a promising topic in pharmaceutical chemistry and biomedicine. In this work, a natural antioxidant lipid, α-tocopherol (vitamin E), was covalently connected with doxorubicin (Dox) to synthesize a Toco–Dox conjugate through two approaches: triphosgene activation (method A) [...] Read more.
Developing natural lipid-based conjugates/prodrugs has emerged as a promising topic in pharmaceutical chemistry and biomedicine. In this work, a natural antioxidant lipid, α-tocopherol (vitamin E), was covalently connected with doxorubicin (Dox) to synthesize a Toco–Dox conjugate through two approaches: triphosgene activation (method A) and 4-nitrophenyl chloroformate activation (method B). The latter method is non-volatile and generates safe-to-handle byproduct 4-nitrophenol, making it much less hazardous and more eco-friendly. The molecular structure of Toco–Dox was characterized by 1H, 13C NMR, FT-IR, and MALDI-TOF-MS. Toco–Dox could self-assemble into nanoparticles in the DMSO/water mixture and Toco–Dox nanoparticles were further characterized by DLS. Moreover, the molecular properties of Toco–Dox were theoretically calculated or virtually analyzed (Dox as a control). In addition, unlike (free) Dox, Toco–Dox showed moderate MCF-7 breast cancer cell inhibition (cytotoxicity) and a cytoplasm localization behavior. This work provided an efficient approach to develop a natural (fat-soluble) vitamin-based prodrug system for breast cancer chemotherapy. Full article
Show Figures

Figure 1

19 pages, 2049 KB  
Article
Eco-Friendly Biotechnological Approaches to Enhance Germination Efficiency in Lavandula angustifolia Mill.
by Ioan-Adrian Georgiu, Elena Adriana Ciulca, Giancarla Velicevici, Radu E. Sestras, Monica Boscaiu, Oscar Vicente and Adriana F. Sestras
Horticulturae 2025, 11(11), 1339; https://doi.org/10.3390/horticulturae11111339 - 6 Nov 2025
Cited by 1 | Viewed by 787
Abstract
The improvement of Lavandula angustifolia Mill. seed germination represents a crucial step towards the development of eco-biotechnological solutions for the sustainable propagation of aromatic plants. This study evaluated the effects of four biostimulant formulations, namely Amino 16 (amino acid-based), Razormin (humic–fulvic complex), Germinoseed [...] Read more.
The improvement of Lavandula angustifolia Mill. seed germination represents a crucial step towards the development of eco-biotechnological solutions for the sustainable propagation of aromatic plants. This study evaluated the effects of four biostimulant formulations, namely Amino 16 (amino acid-based), Razormin (humic–fulvic complex), Germinoseed (phytoextract-based), and Atonik (nitrophenolate), together with a non-treated control, on the germination efficiency and early growth of nine Lavandula genotypes under controlled laboratory conditions. A factorial design (9 × 5) with four replications was applied, and multiple germination indices were calculated. Data were analysed using a two-way ANOVA with genotype and treatment as main factors. Results indicated significant genotype-dependent responses. Amino 16 and Razormin markedly increased germination percentage, speed of emergence, and seedling vigour, achieving up to 100% germination in responsive genotypes such as ‘Ellagance Snow’ and ‘Blue Spear’. Correlation and clustering analyses revealed strong links between seed size, germination rate, and seedling development, suggesting a possible synergistic role of amino and humic substances in stimulating metabolic activation during germination. These findings demonstrate that eco-friendly biostimulants function as effective biotechnological activators of seed physiology, supporting low-input propagation systems and the transition toward a circular green bioeconomy. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

9 pages, 1006 KB  
Proceeding Paper
Croton macrostachyus Bark Extract-Assisted Sustainable Synthesis of CuO Nanomaterials for 4-Nitrophenol Catalytic Reduction and Antibacterial Applications
by Atinafu Bergene Bassa, Shemelis Hailu Adula, Muluken Bergene Bassa and Taame Abraha Berhe
Chem. Proc. 2025, 17(1), 11; https://doi.org/10.3390/chemproc2025017011 - 5 Nov 2025
Viewed by 586
Abstract
Environmental pollution and sustainability issues require environmentally friendly solutions. In this study, we synthesized copper oxide nanoparticles (CuO NPs) using a sol––gel method with Croton macrostachyus bark extract for application in environmental remediation and as an antimicrobial agent. The uncalcined CuO NPs (200 [...] Read more.
Environmental pollution and sustainability issues require environmentally friendly solutions. In this study, we synthesized copper oxide nanoparticles (CuO NPs) using a sol––gel method with Croton macrostachyus bark extract for application in environmental remediation and as an antimicrobial agent. The uncalcined CuO NPs (200 mg/mL) demonstrated strong antimicrobial activity, with inhibition zones of 22 ± 1.3 mm against Staphylococcus aureus and 11 ± 0.7 mm against Escherichia coli. Moreover, the nanoparticles efficiently catalyzed the reduction of 4-nitrophenol, achieving 98.79% degradation within 8 min (Kapp = 0.507 min−1). These findings show that CuO NPs synthesized from the extract of Croton macrostachyus provide a sustainable and efficient approach for addressing both environmental pollution and antibacterial resistance. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Catalysis Sciences)
Show Figures

Figure 1

19 pages, 3963 KB  
Article
Safety and Process Intensification of Catalytic Reduction of 4-Nitophenol Using Sodium Borohydride in Flow Microreactor System
by Ahmed Ibrahim Elhadad and Magdalena Luty-Błocho
Catalysts 2025, 15(11), 1038; https://doi.org/10.3390/catal15111038 - 2 Nov 2025
Viewed by 870
Abstract
In this work, a novel approach for the catalytic reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride is proposed. It was shown that a continuous-flow microreactor system is an optimal tool for PdNP synthesis with dimensions of 3.0 ± 0.5 nm, as well [...] Read more.
In this work, a novel approach for the catalytic reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride is proposed. It was shown that a continuous-flow microreactor system is an optimal tool for PdNP synthesis with dimensions of 3.0 ± 0.5 nm, as well as the performance of catalytic tests with high process efficiency, while keeping a high level of safety. The results obtained from the microreactor system allowed for 100% conversion to 4-aminophenol and were compared to processes carried out in a batch reactor, as well as to a hybrid system which was a combination of a microreactor (synthesis of PdNPs) and batch reactor (catalytic test). These investigations were enhanced by kinetic studies, for which a stopped-flow spectrophotometer was applied due to the extremely high rate of the reaction, i.e., formation of PdNPs (2.1 s), as well as to measure in situ the rate of the heterogeneous catalytic process. To visualize the progress of the heterogeneous reaction more precisely, color coding based on transmittance measurements was employed. Furthermore, to deepen the understanding of the process, a detailed mechanism supported by DFT calculations for the conversion of 4-nitrophenol to 4-aminophenol in the presence of PdNPs was proposed. Full article
Show Figures

Graphical abstract

15 pages, 2832 KB  
Article
Halloysite@Polydopamine Nanoplatform for Ultrasmall Pd and Cu Nanoparticles: Suitable Catalysts for Hydrogenation and Reduction Reactions
by Marina Massaro, Chiara D’Acunzi, Stefano Paganelli, Maria Laura Alfieri, Leonarda F. Liotta, Alberto Lopez-Galindo, Raquel de Melo Barbosa, Oreste Piccolo, Rita Sánchez-Espejo, César Viseras and Serena Riela
Catalysts 2025, 15(11), 1029; https://doi.org/10.3390/catal15111029 - 1 Nov 2025
Viewed by 636
Abstract
The design of sustainable nanomaterials for catalysis is a key challenge in green chemistry. Herein, we report the synthesis of halloysite nanotube (Hal)-based nanomaterials selectively functionalized with a bio-inspired polydopamine (PDA) coating, which enables the controlled anchoring of palladium and copper nanoparticles (PdNPs [...] Read more.
The design of sustainable nanomaterials for catalysis is a key challenge in green chemistry. Herein, we report the synthesis of halloysite nanotube (Hal)-based nanomaterials selectively functionalized with a bio-inspired polydopamine (PDA) coating, which enables the controlled anchoring of palladium and copper nanoparticles (PdNPs and CuNPs). This mild and ecofriendly strategy yields highly dispersed and ultrasmall (<5 nm) metal nanoparticles without the need for surfactants or harsh reagents. The resulting materials, Hal@PDA/PdNPs and Hal@PDA/CuNPs, were evaluated in two well-established model reactions commonly employed to probe catalytic performance: cinnamaldehyde hydrogenation and 4-nitrophenol reduction. Hal@PDA/PdNPs displayed complete conversion and >90% selectivity toward hydrocinnamaldehyde at low Pd loading (0.8 wt%) and maintained its efficiency over six catalytic cycles (TOF up to 0.1 s−1), while Hal@PDA/CuNPs retained high activity through eight consecutive runs in the reduction of 4-nitrophenol. Hal@PDA/CuNPs proved to be an excellent recyclable catalyst for the reduction of 4-nitrophenol, retaining high activity through eight consecutive runs. Overall, this study introduces a robust and modular approach to fabricating halloysite-based nanocatalysts, demonstrating their potential as green platforms for metal nanoparticle-mediated transformation. Full article
Show Figures

Graphical abstract

19 pages, 4047 KB  
Article
Compound Sodium Nitrophenolate (CSN) Improves Photo-Synthesis and Forage Quality in Hemarthria compressa
by Zhongpeng Liu, Peng Han, Ruijie Zhao, Yuanyuan Wu, Wenxuan Wei, Fahui He and Chenfei Dong
Agronomy 2025, 15(11), 2526; https://doi.org/10.3390/agronomy15112526 - 30 Oct 2025
Viewed by 630
Abstract
Hemarthria compressa is a valuable C4 forage grass, prized for its high biomass (dry weight, DW) and palatability, that plays a significant role in forage production and ecological restoration. Improving its nutritional quality and productivity remains a key objective. Although compound sodium [...] Read more.
Hemarthria compressa is a valuable C4 forage grass, prized for its high biomass (dry weight, DW) and palatability, that plays a significant role in forage production and ecological restoration. Improving its nutritional quality and productivity remains a key objective. Although compound sodium nitrophenolate (CSN) is known to promote growth and stress tolerance in crops, its impact on forage grasses is unclear. Therefore, this study investigated the effects of foliar-applied CSN on the photosynthesis, growth, and nutritional quality of H. compressa and explored the underlying molecular mechanisms. The results demonstrated that CSN significantly improved the photosynthetic efficiency (Fv/Fm), increased the chlorophyll and carotenoid content, enhanced carbon fixation, and promoted biomass (DW) accumulation. Additionally, the crude protein content rose while the acid detergent fiber content decreased. Transcriptome analysis revealed the enrichment of differentially expressed genes involved in photosynthesis antenna proteins, carbon fixation, and starch/sucrose metabolism. Consequently, CSN reduced the lignin content while improving both biomass and forage quality. These findings provide molecular insights and practical strategies for forage cultivation and breeding. Full article
(This article belongs to the Topic Plant Breeding, Genetics and Genomics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop