Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,403)

Search Parameters:
Keywords = nitrate sources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2455 KB  
Article
Temperature, Nitrogen, and Carbon Constraints on Growth and Metabolism of Regional Microalgae Strains
by Gulnaz Galieva, Mariam El Rawas, Darya Khlebova, Svetlana Selivanovskaya and Polina Galitskaya
Environments 2026, 13(2), 73; https://doi.org/10.3390/environments13020073 - 29 Jan 2026
Abstract
The rapid rise in atmospheric CO2 necessitates strategies for mitigation and valorization. Microalgae offer potential through simultaneous CO2 capture and production of high-value biomolecules. Five Chlorophyta strains (A–E: Micractinium sp., Chlamydomonas sp., Micractinium sp., Chlorococcum sp., and Chlorella vulgaris) were [...] Read more.
The rapid rise in atmospheric CO2 necessitates strategies for mitigation and valorization. Microalgae offer potential through simultaneous CO2 capture and production of high-value biomolecules. Five Chlorophyta strains (A–E: Micractinium sp., Chlamydomonas sp., Micractinium sp., Chlorococcum sp., and Chlorella vulgaris) were isolated from temperate waters and soils and tested for growth and biochemical responses under controlled nitrogen availability (low: 0.346 g L−1 nitrate; high: 0.6 g L−1 nitrate + ammonia), carbon supply (low: 0.04% CO2; high: 4% CO2), and cultivation systems (batch reactors, fermenters, and varied illumination). Over 14 days, maximum dry biomass was achieved in batch cultivation with CO2 sparging, low nitrogen, and continuous light, ranging from 1.47 g L−1 (strain A) to 2.67 g L−1 (strain D). Biomass composition varied: proteins, 25–45%; carbohydrates, 20–35%; and lipids, 18–28%. Nitrogen limitation promoted lipid accumulation (e.g., strain D: +40%) with concurrent protein decline (−25%). Chlorophyll a/b displayed strain-specific plasticity; high CO2 generally increased chlorophyll, while nitrogen stress reduced it up to 50%. Overall, this study demonstrates that locally adapted Chlorophyta strains can achieve high biomass productivity under CO2 enrichment while allowing for flexible redirection of carbon flux toward lipids, carbohydrates, or pigments through nutrient management. Among the tested isolates, strains D and E emerged as the most promising candidates for integrated CO2 sequestration and biomass production, while strains B, C, and D showed strong potential for biodiesel feedstock; strain A for carbohydrate valorization; and strain E for chlorophyll extraction. Future research should focus on scale-up validation in pilot photobioreactors under continuous operation, optimization of two-stage cultivation strategies for lipid production, integration with industrial CO2 point sources, and strain improvement using modern genomics-assisted breeding and genome-editing technologies. These efforts will support the translation of regional microalgal resources into scalable carbon-capture and bioproduct platforms. Full article
Show Figures

Figure 1

16 pages, 2022 KB  
Article
Source Apportionment and Seasonal Variation in Nitrate in Baiyangdian Lake After Restoration Projects Based on Dual Stable Isotopes and MixSIAR Model
by Yiwen Shen, Hao Wang, Shaopeng Ma, Miwei Shi, Lingyao Meng, Yanxia Wang, Kegang Zhang, Liyuan Wang and Yan Zhang
Water 2026, 18(3), 338; https://doi.org/10.3390/w18030338 - 29 Jan 2026
Abstract
Nitrate in Baiyangdian Lake is directly linked to the sustainability of watershed ecological functions, acting as a key priority for regional ecological protection. Subsequent to the completion of a series of ecological restoration projects, its sources have undergone inevitable shifts, rendering the original [...] Read more.
Nitrate in Baiyangdian Lake is directly linked to the sustainability of watershed ecological functions, acting as a key priority for regional ecological protection. Subsequent to the completion of a series of ecological restoration projects, its sources have undergone inevitable shifts, rendering the original pollution control framework incompatible with the new context. Thus, accurate identification of nitrate sources and their seasonal variation characteristics constitutes a core prerequisite for enhancing the targeting of pollution management. This study integrated dual stable isotopes (δ15N-NO3 and δ18O-NO3) in water and potential source samples, along with hydrochemical data, and applied the Bayesian stable isotope mixing model (MixSIAR) to elucidate the sources of NO3 in Baiyangdian Lake. The results indicated that denitrification exerted a weak influence on the isotopic composition of NO3 in Baiyangdian Lake. Plots of the NO3/Cl versus Cl ratios for water samples and δ15N-NO3 versus δ18O-NO3 ratios for both water samples and potential sources confirmed anthropogenic sources as the primary nitrate contributors. The δ15N-NO3 vs. 1/[NO3] plot revealed that the number of NO3 sources exceeded two. The MixSIAR model demonstrated that wastewater treatment plant (WWTP) discharge was the dominant source throughout the four seasons, accounting for 49–62% with the highest contribution in winter and the lowest in summer. Soil nitrogen release contributed 19–32%, reaching its annual peak in summer. Sediment release accounted for 11–13%, maintaining a relatively low contribution across all seasons. Chemical fertilizer, manure, and sewage (M&S), and atmospheric deposition each contributed less than 6.5%, with negligible contributions. A significant reduction in the contributions of sediment release and M&S reflected the optimization effect of long-term regional ecological restoration efforts. WWTPs point source discharge and seasonal non-point source input from soil nitrogen collectively constituted the core sources of nitrate in Baiyangdian Lake. These findings provide crucial scientific support for the precise source apportionment and differentiated management of nitrate pollution in the basin. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 6039 KB  
Article
Chemical Characteristics and Source Identification of PM2.5 in Industrial Complexes, Korea
by Hyeok Jang, Shin-Young Park, Ji-Eun Moon, Young-Hyun Kim, Joong-Bo Kwon, Jae-Won Choi and Cheol-Min Lee
Toxics 2026, 14(2), 111; https://doi.org/10.3390/toxics14020111 - 23 Jan 2026
Viewed by 263
Abstract
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, [...] Read more.
The composition of air pollutants in industrial complexes differs from that of general urban areas, often containing more hazardous substances that pose significant health risks to both workers and residents nearby. In this study, PM2.5 and its 29 chemical components (eight ions, two carbon species, and 19 trace elements) were measured and analyzed at five monitoring sites adjacent to the Yeosu and Gwangyang industrial complexes from August 2020 to December 2024. Chemical characterization and source identification were conducted. The average PM2.5 concentration was 18.63 ± 9.71 μg/m3, with notably higher levels observed during winter and spring. A low correlation (R = 0.56) between elemental carbon (EC) and organic carbon (OC) suggests a dominance of secondary aerosols. The charge balance analysis of [NH4+] with [SO42−], [NO3], and [Cl] showed slopes below the 1:1 line, indicating that NH4+ is capable of neutralizing these anions. Positive matrix factorization (PMF) identified eight contributing sources—biomass burning (10.4%), sea salt (11.8%), suspended particles (7.1%), industrial sources (4.6%), Asian dust (5.2%), steel industry (21.8%), secondary nitrate (16.4%), and secondary sulfate (22.7%). These findings provide valuable insights for the development of targeted mitigation strategies and the establishment of effective emission control policies in industrial regions. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

19 pages, 2493 KB  
Article
Functional Differences of Glutamine Synthetase Isoenzymes in Wheat Canopy Ammonia Exchange
by Xi Zhang, Junying Chen, Wenjing Song, Siddique Ahmad, Zhiyong Zhang, Huiqiang Li, Xinming Ma, Xiaochun Wang and Yihao Wei
Int. J. Mol. Sci. 2026, 27(3), 1179; https://doi.org/10.3390/ijms27031179 - 23 Jan 2026
Viewed by 178
Abstract
Canopy ammonia (NH3) exchange is a major contributor to agricultural NH3 emissions and is closely linked to nitrogen-use efficiency. Glutamine synthetase (GS) mediates plant NH3 assimilation, yet the specific roles of different GS isoenzymes in regulating wheat canopy NH [...] Read more.
Canopy ammonia (NH3) exchange is a major contributor to agricultural NH3 emissions and is closely linked to nitrogen-use efficiency. Glutamine synthetase (GS) mediates plant NH3 assimilation, yet the specific roles of different GS isoenzymes in regulating wheat canopy NH3 exchange remain unclear. This study aimed to clarify the functional differences of wheat TaGS isoenzymes in modulating canopy–atmosphere NH3 exchange dynamics using two wheat cultivars (Yumai 49-198 and Xinong 509) under two nitrogen application levels (120 and 225 kg N ha−1). Field experiments combined with FTIR-based NH3 flux measurement, biochemical assays, and molecular analyses were conducted at anthesis and 16, 24, and 30 days after anthesis (DAA). Results showed that the leaf NH3 compensation point, determined by apoplastic NH4+ concentration, is a key factor influencing canopy NH3 exchange. Leaf NH3 sources exhibited distinct temporal specificity: photorespiration and nitrate reduction dominated at anthesis to 16 DAA, whereas nitrogenous compound degradation prevailed at 24–30 DAA. This temporal partitioning was highly coordinated with TaGS isoenzyme expression: TaGS2 was highest in early grain filling, potentially supporting assimilate NH3 from photorespiration/nitrate reduction, while TaGS1;1 expression increased progressively, aligning with the scavenging of NH3 from organic nitrogen degradation. These coordinated patterns suggest that the TaGS isoenzymes play differentiated roles in influencing wheat canopy NH3 exchange. This study thus provides correlative insights that point to potential molecular targets for breeding nitrogen-efficient wheat cultivars and mitigating agricultural NH3 emissions sustainably. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2018 KB  
Article
Leaf Removal Enhances Tuber Yield in Jerusalem Artichoke by Modulating Rhizosphere Nutrient Availability
by Meijiao Ge, Kai Gao, Yadong Wang, Mingxiu Ju, Ziwei Li, Xinwei Hai and Xiaoyang Liu
Agronomy 2026, 16(2), 266; https://doi.org/10.3390/agronomy16020266 - 22 Jan 2026
Viewed by 40
Abstract
Leaves, as the primary “source” organ for photosynthesis, directly influence plant yield. However, it remains unclear whether leaf removal affects Jerusalem artichoke yield by altering rhizosphere nutrient availability. This study evaluated the effects of different leaf removal intensities on tuber yield and rhizosphere [...] Read more.
Leaves, as the primary “source” organ for photosynthesis, directly influence plant yield. However, it remains unclear whether leaf removal affects Jerusalem artichoke yield by altering rhizosphere nutrient availability. This study evaluated the effects of different leaf removal intensities on tuber yield and rhizosphere nutrient characteristics of Jerusalem artichoke (Helianthus tuberosus L.). Results from two consecutive field experiments demonstrated that removal of the lower leaves (Q2) significantly increased tuber yield in both years, with gains of 93.7% in 2022 and 282% in 2023 compared with the control. Although other leaf removal treatments also showed yield increases, these were not statistically significant. Principal component analysis revealed that rhizosphere soils associated with tubers and taproots contained higher concentrations of ammonium nitrogen, nitrate nitrogen, available phosphorus, and available potassium than bulk soils. Among these nutrients, tuber yield was significantly and positively correlated with available potassium (r = 0.57). These findings indicate that moderate removal of lower leaves enhances rhizosphere nutrient conditions and promotes higher tuber yield in Jerusalem artichoke. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

11 pages, 1034 KB  
Article
Vasoprotection by Dietary Nitrate in Rats with Vitamin D3-Induced Vascular Calcification
by Masashi Tawa, Keisuke Nakagawa and Mamoru Ohkita
J. Vasc. Dis. 2026, 5(1), 3; https://doi.org/10.3390/jvd5010003 - 20 Jan 2026
Viewed by 91
Abstract
Background/Objectives: Vascular calcification is a major contributor to cardiovascular mortality and disability. Here, we investigated whether dietary nitrate, an exogenous source of nitric oxide (NO), could inhibit vascular calcification in a rat model induced by excess vitamin D3. Methods: The rats [...] Read more.
Background/Objectives: Vascular calcification is a major contributor to cardiovascular mortality and disability. Here, we investigated whether dietary nitrate, an exogenous source of nitric oxide (NO), could inhibit vascular calcification in a rat model induced by excess vitamin D3. Methods: The rats were injected subcutaneously with phosphate-buffered saline or 200,000 IU/kg cholecalciferol and the abdominal aorta was isolated 7 and 14 d after injection. Results: Von Kossa staining revealed mild vascular calcification 7 d after injection, with the positive area expanding by 14 d. Vasorelaxation induced by the NO donor sodium nitroprusside was normal 7 d after injection but weakened 14 d after injection. In a separate experiment, sodium nitrate (3 or 10 mM in drinking water) was administered for the last 7 and 13 d, prior to sacrifice, 14 d after cholecalciferol injection. Von Kossa staining-positive areas and calcium content in the abdominal aortas did not decrease with short-term administration of sodium nitrate but decreased with long-term administration; no difference in effect based on dosage was observed in either short-term or long-term administration. Low-dose sodium nitrate tended to increase plasma nitrite and nitrate levels, which are indicators of NO bioavailability, similar to both short- and long-term administration, which increased significantly at higher doses. Conclusions: These findings suggest that NO homeostasis in blood vessels deteriorates with the progression of vascular calcification, and that dietary nitrate may be a useful therapeutic approach. Full article
(This article belongs to the Section Cardiovascular Diseases)
Show Figures

Graphical abstract

16 pages, 1529 KB  
Article
Dynamics of Soil CH4 and CO2 Fluxes from Cattle Urine with and Without a Nitrification Inhibitor, and Dung Deposited onto a UK Grassland Soil
by Jerry Celumusa Dlamini, David Chadwick and Laura Maritza Cardenas
Methane 2026, 5(1), 4; https://doi.org/10.3390/methane5010004 - 19 Jan 2026
Viewed by 252
Abstract
Food production systems associated with livestock management are significant sources of greenhouse gases (GHGs). Livestock excreta are one of the primary sources of GHG emissions from grazing livestock. Against this context, a field experiment was established in a UK grassland to establish the [...] Read more.
Food production systems associated with livestock management are significant sources of greenhouse gases (GHGs). Livestock excreta are one of the primary sources of GHG emissions from grazing livestock. Against this context, a field experiment was established in a UK grassland to establish the extent of soil methane (CH4), carbon dioxide (CO2), andN2O fluxes upon the deposition of (i) cattle urine (U), (ii) urine + dicyandiamide (DCD) (U + DCD), (iii) artificial urine (AU), and dung (D), and compared with a (iv) control, where neither urine nor dung was applied. Excreta applications were made at three experimental periods during the grazing season: early-, mid-, and late-season. Soil N2O emissions data have been published already by co-authors; hence, this paper summarizes the emissions of soil-borne CH4 and CO2 emissions, and explores in particular, the effects of the addition of DCD, a nitrification inhibitor used to reduce direct and indirect N2O emissions from urine patches, on these (carbon) C-GHGs. Soil moisture (p = 0.47), soil temperature (p = 0.51), and nitrate (NO3) (p = 0.049) and ammonium (NH4+) (p = 0.66) availability, and C (p = 0.54) addition were key controls of both soil CH4 and CO2 emissions. The dung treatment stimulated the production and subsequent emissions of soil CH4 and CO2, a significantly high net CH4 and CO2-based global warming potential (GWP). The findings of the current study lay a foundation for an in-depth understanding of the magnitude and dynamics of soil-borne CH4 and CO2 upon urine and dung deposition during three different seasons. This study implies that the use of DCD may have the potential to reduce carbon-based GHGs from the urine and dung of grazing animals. Full article
Show Figures

Figure 1

17 pages, 2331 KB  
Review
Pathways for SDG 6 in Japan: Challenges and Policy Directions for a Nature-Positive Water Future
by Qinxue Wang, Tomohiro Okadera, Satoshi Kameyama and Xinyi Huang
Sustainability 2026, 18(2), 994; https://doi.org/10.3390/su18020994 - 19 Jan 2026
Viewed by 459
Abstract
Japan has largely achieved the “first half” of SDG 6—universal access to safe drinking water and sanitation—through decades of intensive investment in water supply and sewerage systems, implementation of the Total Pollutant Load Control System, and stringent regulation of industrial effluents. National indicators [...] Read more.
Japan has largely achieved the “first half” of SDG 6—universal access to safe drinking water and sanitation—through decades of intensive investment in water supply and sewerage systems, implementation of the Total Pollutant Load Control System, and stringent regulation of industrial effluents. National indicators show that coverage of safely managed drinking water and sanitation services is nearly 99%, and domestic statistics report high compliance rates for BOD/COD-based environmental standards in rivers, lakes, and coastal waters. Conversely, the “second half” of SDG 6 reveals persistent gaps: ambient water quality (6.3.2) remains at 57% (2023 data), while water stress (6.4.2) is at approximately 21.6%. Furthermore, SDG 6.6.1 shows that 3% of water basins are experiencing rapid changes in surface water area (2020 data), with ecosystems increasingly threatened by hypoxia in enclosed bays and climate-induced vulnerabilities. Drawing on global comparisons, this review synthesizes Japan’s progress toward SDG 6, elucidates the structural drivers for remaining gaps, and proposes policy pathways for a nature-positive water future. Using national statistics (1970–2023) and the DPSIR framework, our analysis confirms that improvements in BOD/COD compliance plateaued around 2002, reinforcing concerns that point-source measures alone are insufficient to address diffuse pollution, groundwater nitrate contamination, and emerging contaminants like PFAS. We propose six strategic directions: (1) climate-resilient water systems leveraging groundwater; (2) smart infrastructure renewal; (3) advanced treatment for emerging contaminants; (4) basin-scale IWRM enhancing transboundary cooperation; (5) data transparency and citizen engagement; and (6) scaled nature-based solutions (NbS) integrated with green–gray infrastructure. The paper concludes by outlining priorities to close the gaps in SDG 6.3 and 6.6, advancing Japan toward a sustainable, nature-positive water cycle. Full article
Show Figures

Figure 1

20 pages, 2875 KB  
Article
Characteristics and Sources of Particulate Matter During a Period of Improving Air Quality in Urban Shanghai (2016–2020)
by Xinlei Wang, Zheng Xiao, Lian Duan and Guangli Xiu
Atmosphere 2026, 17(1), 99; https://doi.org/10.3390/atmos17010099 - 17 Jan 2026
Viewed by 163
Abstract
Following the implementation of the Shanghai Clean Air Act, this study investigates the evolution of air pollution in central Shanghai (Putuo District) by analyzing continuous monitoring data (2016–2020) and chemical speciation of particulate matter (2017–2018). The results confirm a transition toward a “low [...] Read more.
Following the implementation of the Shanghai Clean Air Act, this study investigates the evolution of air pollution in central Shanghai (Putuo District) by analyzing continuous monitoring data (2016–2020) and chemical speciation of particulate matter (2017–2018). The results confirm a transition toward a “low exceedance rate and low background concentration” regime. However, short-term exceedance episodes persist, generally occurring in winter and spring, with significantly amplified diurnal variations on exceedance days. Distinct patterns emerged between PM fractions: PM10 exceedances were characterized by a single morning peak linked to traffic-induced coarse particles, while PM2.5 exceedances showed synchronized diurnal peaks with NO2, suggesting a stronger contribution from vehicle exhaust. Source apportionment revealed that mineral components (21.61%) and organic matter (OM, 21.02%) dominated in PM10, implicating construction and road dust. In contrast, PM2.5 was primarily composed of OM (26.73%) and secondary inorganic ions (dominated by nitrate), highlighting the greater importance of secondary formation. The findings underscore that sustained PM2.5 mitigation requires targeted control of gasoline vehicle emissions and gaseous precursors. Full article
Show Figures

Figure 1

29 pages, 10493 KB  
Article
Water Surface Ratio and Inflow Rate of Paddy Polder Under the Stella Nitrogen Cycle Model
by Yushan Jiang, Junyu Hou, Fanyu Zeng, Jilin Cheng and Liang Wang
Sustainability 2026, 18(2), 897; https://doi.org/10.3390/su18020897 - 15 Jan 2026
Viewed by 106
Abstract
To address the challenge of optimizing hydrological parameters for nitrogen pollution control in paddy polders, this study coupled the Stella eco-dynamics model with an external optimization algorithm and developed a nonlinear programming framework using the water surface ratio and inflow rate as decision [...] Read more.
To address the challenge of optimizing hydrological parameters for nitrogen pollution control in paddy polders, this study coupled the Stella eco-dynamics model with an external optimization algorithm and developed a nonlinear programming framework using the water surface ratio and inflow rate as decision variables and the maximum nitrogen removal rate as the objective function. The simulation and optimization conducted for the Hongze Lake polder area indicated that the model exhibited strong robustness, as verified through Monte Carlo uncertainty analysis, with coefficients of variation (CV) of nitrogen outlet concentrations all below 3%. Under the optimal regulation scheme, the maximum nitrogen removal rates (η1, η2, and η4) during the soaking, tillering, and grain-filling periods reached 98.86%, 98.74%, and 96.26%, respectively. The corresponding optimal inflow rates (Q*) were aligned with the lower threshold limits of each growth period (1.20, 0.80, and 0.50 m3/s). The optimal channel water surface ratios (A1*) were 3.81%, 3.51%, and 3.34%, respectively, while the optimal pond water surface ratios (A2*) were 19.94%, 16.30%, and 17.54%, respectively. Owing to the agronomic conflict between “water retention without drainage” and concentrated fertilization during the heading period, the maximum nitrogen removal rate (η3) during this stage was only 37.34%. The optimal channel water surface ratio (A1*) was 2.37%, the pond water surface ratio (A2*) was 19.04%, and the outlet total nitrogen load increased to 8.39 mg/L. Morphological analysis demonstrated that nitrate nitrogen and organic nitrogen dominated the outlet water body. The “simulation–optimization” coupled framework established in this study can provides quantifiable decision-making tools and methodological support for the precise control and sustainable management of agricultural non-point source pollution in the floodplain area. Full article
Show Figures

Figure 1

17 pages, 3151 KB  
Article
Exploring the Effects of Diluted Plasma-Activated Water (PAW) on Various Sprout Crops and Its Role in Autophagy Regulation
by Injung Song, Suji Hong, Yoon Ju Na, Seo Yeon Jang, Ji Yeong Jung, Young Koung Lee and Sung Un Huh
Agronomy 2026, 16(2), 207; https://doi.org/10.3390/agronomy16020207 - 15 Jan 2026
Viewed by 242
Abstract
Plasma-activated water (PAW) has gained attention across agricultural, medical, cosmetic, and sterilization fields due to its production of reactive oxygen and nitrogen species (ROS and RNS). Although PAW has been primarily explored for seed germination and sterilization in agriculture, its role as a [...] Read more.
Plasma-activated water (PAW) has gained attention across agricultural, medical, cosmetic, and sterilization fields due to its production of reactive oxygen and nitrogen species (ROS and RNS). Although PAW has been primarily explored for seed germination and sterilization in agriculture, its role as a nutrient source and physiological regulator remains less understood. In this study, PAW generated by a surface dielectric barrier discharge (SDBD) system contained approximately 1000 ppm nitrate (NO3) and was designated as PAW1000. Diluted PAW solutions were applied to sprout crops—wheat (Triticum aestivum), barley (Hordeum vulgare), radish (Raphanus sativus), and broccoli (Brassica oleracea var. italica)—grown under hydroponic and soil-based conditions. PAW100 and PAW200 treatments enhanced growth, increasing fresh biomass by up to 26%, shoot length by 22%, and root length by 18%, depending on the species. In silico analysis identified nitrogen-responsive transcripts among several autophagy-related genes. Consistent with this, fluorescence microscopy of Arabidopsis thaliana GFP-StATG8 lines revealed increased autophagosome formation following PAW treatment. The growth-promoting effect of PAW was diminished in atg4 mutants, indicating that autophagy contributes to plant responses to PAW-derived ROS and RNS. Together, these findings demonstrate that diluted PAW generated by SDBD enhances biomass accumulation in sprout crops, and that autophagy plays a regulatory role in mediating PAW-induced physiological responses. Full article
(This article belongs to the Topic Applications of Biotechnology in Food and Agriculture)
Show Figures

Figure 1

28 pages, 9478 KB  
Article
Integrating Agro-Hydrological Modeling with Index-Based Vulnerability Assessment for Nitrate-Contaminated Groundwater
by Dawid Potrykus, Adam Szymkiewicz, Beata Jaworska-Szulc, Gianluigi Busico, Anna Gumuła-Kawęcka, Wioletta Gorczewska-Langner and Micol Mastrocicco
Sustainability 2026, 18(2), 729; https://doi.org/10.3390/su18020729 - 10 Jan 2026
Viewed by 270
Abstract
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices [...] Read more.
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices in the context of groundwater vulnerability to contamination. In this study we present a method to assess groundwater vulnerability to nitrate pollution based on a combination of the SWAT agro-hydrological model and the DRASTIC index method. SWAT modeling was applied to assess different scenarios of agricultural practices and identify solutions for sustainable management of soil and groundwater and reduction of nitrate pollution. The developed method was implemented for groundwater resources in a study area (Puck Bay region, southern Baltic coast), which represented a complex multi-aquifer system formed in Quaternary fluvioglacial deposits (sand and gravel) separated by moraine tills. In order to investigate the effects of different agricultural practices, 12 scenarios have been defined, which were grouped into four classes: crop type, fertilizer management, tillage, and grazing. An overlay index structure was applied, and ratings and weights to several factors were assigned. All analyses were processed using GIS tools, and the results are presented in the form of maps, which categorize groundwater vulnerability to nitrate pollution into five classes, ranging from very low to very high. The results reveal significant variability in groundwater vulnerability to nitrate pollution in the study area. Agricultural practices have a very strong influence on groundwater vulnerability by controlling both recharge rates and nitrogen losses from the soil profile. The most pronounced increases in vulnerability were associated with scenarios involving excessive fertilization and intensive grazing. Among crop types, potato cultivation appears to pose the greatest risk to groundwater quality. Full article
Show Figures

Figure 1

22 pages, 5183 KB  
Article
Optimizing Drainage Design to Reduce Nitrogen Losses in Rice Field Under Extreme Rainfall: Coupling Log-Pearson Type III and DRAINMOD-N II
by Anis Ur Rehman Khalil, Fazli Hameed, Junzeng Xu, Muhammad Mannan Afzal, Khalil Ahmad, Shah Fahad Rahim, Raheel Osman, Peng Chen and Zhenyang Liu
Water 2026, 18(2), 175; https://doi.org/10.3390/w18020175 - 8 Jan 2026
Viewed by 269
Abstract
The intensification of extreme rainfall events under changing climate regimes has heightened concerns over nutrient losses from paddy agriculture, particularly nitrogen (N), a primary contributor to non-point source pollution. Despite advances in drainage management, limited studies have integrated probabilistic rainfall modeling with N [...] Read more.
The intensification of extreme rainfall events under changing climate regimes has heightened concerns over nutrient losses from paddy agriculture, particularly nitrogen (N), a primary contributor to non-point source pollution. Despite advances in drainage management, limited studies have integrated probabilistic rainfall modeling with N transport simulation to evaluate mitigation strategies in rice-based systems. This study addresses this critical gap by coupling the Log-Pearson Type III (LP-III) distribution with the DRAINMOD-N II model to simulate N dynamics under varying rainfall exceedance probabilities and drainage design configurations in the Kunshan region of eastern China. The DRAINMOD-N II showed good performance, with R2 values of 0.70 and 0.69, AAD of 0.05 and 0.39 mg L−1, and RMSE of 0.14 and 0.91 mg L−1 for NO3-N and NH4+-N during calibration, and R2 values of 0.88 and 0.72, AAD of 0.06 and 0.21 mg L−1, and RMSE of 0.10 and 0.34 mg L−1 during validation. Using around 50 years of historical precipitation data, we developed intensity–duration–frequency (IDF) curves via LP-III to derive return-period rainfall scenarios (2%, 5%, 10%, and 20%). These scenarios were then input into a validated DRAINMOD-N II model to assess nitrate-nitrogen (NO3-N) and ammonium-nitrogen (NH4+-N) losses across multiple drain spacing (1000–2000 cm) and depth (80–120 cm) treatments. Results demonstrated that NO3-N and NH4+-N losses increase with rainfall intensity, with up to 57.9% and 45.1% greater leaching, respectively, under 2% exceedance events compared to 20%. However, wider drain spacing substantially mitigated N losses, reducing NO3-N and NH4+-N loads by up to 18% and 12%, respectively, across extreme rainfall scenarios. The integrated framework developed in this study highlights the efficacy of drainage design optimization in reducing nutrient losses while maintaining hydrological resilience under extreme weather conditions. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

16 pages, 4291 KB  
Article
New CdS–Bentonite Composites with Photocatalytic Properties
by Anca Dumbrava, Cristian Matei, Florin Moscalu, Diana Jecu and Daniela Berger
Appl. Sci. 2026, 16(2), 649; https://doi.org/10.3390/app16020649 - 8 Jan 2026
Viewed by 194
Abstract
Cadmium sulfide is an important II-VI semiconductor known for its valuable photocatalytic properties ascribable to its band gap energy, which allows light absorption in the visible domain. Nonetheless, the application of cadmium sulfide in wastewater organic pollutant degradation is restricted due to its [...] Read more.
Cadmium sulfide is an important II-VI semiconductor known for its valuable photocatalytic properties ascribable to its band gap energy, which allows light absorption in the visible domain. Nonetheless, the application of cadmium sulfide in wastewater organic pollutant degradation is restricted due to its high toxicity to humans, soil, and marine life. To address this issue, we developed new composite materials by depositing CdS on a bentonite support in a 1:9 mass ratio to develop a photocatalyst with lower toxicity. In the first step, bentonite was activated using an aqueous HCl solution; for the deposition of CdS powder, we proposed the trituration method and compared it with chemical precipitation and hydrothermal synthesis, using thioacetamide as a sulfide ion source. The modified bentonite underwent characterization using X-ray diffraction, scanning electron microscopy, X-ray fluorescence, UV-Vis, and FTIR spectroscopy. The photocatalytic activity was tested in the degradation of Congo red (CR), a persistent diazo dye. The efficiency of removing CR with CdS–bentonite composites depended on the deposition method of CdS, and it was higher than that of pristine CdS and of only adsorption onto acid-activated bentonite. The photocatalytic degradation mechanism was estimated by the scavenger test using ethylenediaminetetraacetic acid disodium salt, ascorbic acid, ethanol, and silver nitrate as radical scavengers. Full article
(This article belongs to the Special Issue New Approaches to Water Treatment: Challenges and Trends, 2nd Edition)
Show Figures

Figure 1

15 pages, 1329 KB  
Article
Production of Carbon Sources Through Anaerobic Fermentation Using the Liquid Phase of Food Waste Three-Phase Separation: Influencing Factors and Microbial Community Structure
by Yangqing Hu, Enwei Lin, Xianming Weng, Fei Wang, Zhenghui Chen and Guojun Lv
Bioengineering 2026, 13(1), 60; https://doi.org/10.3390/bioengineering13010060 - 5 Jan 2026
Viewed by 291
Abstract
The urgent need for effective food waste management, coupled with the scarcity of carbon sources for sewage treatment, highlights the potential of producing carbon sources from food waste as a mutually beneficial solution. This study investigated the production of carbon sources through anaerobic [...] Read more.
The urgent need for effective food waste management, coupled with the scarcity of carbon sources for sewage treatment, highlights the potential of producing carbon sources from food waste as a mutually beneficial solution. This study investigated the production of carbon sources through anaerobic fermentation using the liquid phase of food waste three-phase separation. Compared with previous studies using raw food waste or mixed substrates, the liquid phase derived from three-phase separation is richer in soluble organic matter and has been pre-heated (80 °C), which facilitates subsequent fermentation and offers easier integration into existing food waste treatment plants. A series of lab-scale batch fermentation experiments were carried out at different temperatures, including ambient, mesophilic, and thermophilic conditions, as well as varying initial pH levels (uncontrolled, neutral, and alkaline). The experimental results indicated that optimal production parameters involve a 4-day mesophilic fermentation at 35 °C with an initial alkaline pH, which increased the total VFAs yield by 252.5% to 40.26 g/L and raised the acetic acid fraction to 45.5% of total VFAs. Under these conditions, there was an observed increase in the relative abundance of acidogenic bacteria and a decrease in that of methanogen archaea. Furthermore, the denitrification performance of the produced carbon source was evaluated in short-term tests, and near-complete nitrate removal was achieved within approximately 2 h. These findings suggest the fermented liquid phase of food waste is a promising partial substitute for conventional external carbon sources. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

Back to TopTop