Source Apportionment and Seasonal Variation in Nitrate in Baiyangdian Lake After Restoration Projects Based on Dual Stable Isotopes and MixSIAR Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Analytical Procedures
2.4. Data Analyses
3. Results and Discussion
3.1. Nitrogen Concentrations in Baiyangdian in Different Seasons
3.2. δ15N-NO3− and δ18O-NO3− Values in Baiyangdian and Potential Sources
3.3. Identification of Nitrate Sources
3.3.1. Nitrate Sources Interpreted by Chemical Indicators
3.3.2. Nitrate Sources and Biogeochemical Processes in Baiyangdian Lake
3.3.3. Apportionment of NO3− Sources Based on the MixSIAR Model
3.4. Pollution Control Suggestions
- (1)
- Year-round priority of WWTPs: Optimize advanced nitrogen removal technologies for WWTPs along key inflowing rivers, strictly enforce discharge standards, and strengthen real-time monitoring of tailwater nitrogen concentration and flow to reduce baseline input.
- (2)
- Summer focus on agricultural non-point sources: For high-risk agricultural areas around the inflowing rivers, promote contour plowing and cover cropping to reduce soil erosion, build ecological ditches and runoff interceptors, and adjust fertilization timings to avoid overlapping with heavy rainfall periods, thereby curbing soil nitrogen loss.
- (3)
- Spring and autumn emphasis on sediment management: Strengthen dynamic monitoring of the sediment–water interface, especially in dredged areas, to prevent sediment resuspension and nitrogen release rebound, maintaining the long-term effect of ecological dredging.
3.5. Limitations and Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.Q.; Wang, L.; Wang, H.W.; Zhang, X.Q. Nitrogen dynamics in multi-source recharge lakes: A comprehensive exploration using multi-isotopic tracing, Bayesian mixing models and structural equation models. Environ. Technol. Innov. 2025, 40, 104482. [Google Scholar] [CrossRef]
- Kang, L.J.; Zhu, M.Y.; Zhu, G.W.; Xu, H.; Zou, W.; Xiao, M.; Guo, C.X.; Zhang, Y.L.; Qin, B.Q. Decreasing denitrification rates poses a challenge to further decline of nitrogen concentration in Lake Taihu, China. Water Res. 2024, 256, 121565. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, C.L.; Zheng, L.G.; Dong, X.L.; Chen, Y.C.; Li, C. Identification of nitrate sources and transformations in basin using dual isotopes and hydrochemistry combined with a Bayesian mixing model: Application in a typical mining city. Environ. Pollut. 2020, 267, 115651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, J.H.; Zhai, Y.J.; Zhang, K.G.; Wang, Y.Q.; Tang, R.X.; Xiao, R.; Jorquera, M.A. Seasonal changes in N-cycling functional genes in sediments and their influencing factors in a typical eutrophic shallow lake, China. Front. Microbiol. 2024, 15, 1363775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.T.; Zhang, J.F.; Shi, K.; Zhou, S.L. Divergent responses of nitrogen and phosphorus speciation to sediment dissolved organic matter dynamics in Baiyangdian Lake during pre- and post-flood periods. J. Environ. Chem. Eng. 2025, 13, 119071. [Google Scholar] [CrossRef]
- Liu, X.; Shi, B.; Meng, J.; Zhou, Y.Q.; Ke, X.; Wang, T.Y. Spatio-temporal Variations in the Characteristics of Water Eutrophication and Sediment Pollution in Baiyangdian Lake. Environ. Sci. 2020, 41, 2127–2136. [Google Scholar]
- Yang, W.B. Temporal and Spatial Characteristics of Nitrogen and Phosphorus Nutrient Flows and Losses in the Crop-Livestock System in Baiyangdian Basin. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2022. [Google Scholar]
- Baiyangdian Ecological Environment Management and Protection Plan (2018–2035). People’s Government of Hebei Province, China. 2019. Available online: https://global.chinadaily.com.cn/a/201901/07/WS5c329142a31068606745f1f1.html (accessed on 1 December 2025).
- Regulations on the Ecological Environment Management and Protection of Baiyangdian. Standing Committee of the Hebei Provincial People’s Congress, China. 2021. Available online: http://www.hbrd.gov.cn/system/2021/03/01/100611012.shtml (accessed on 1 December 2025).
- DB 13/2795-2018; Water Pollutant Discharge Standard for the Daqing River Basin. Hebei Provincial Department of Ecology and Environment: Shijiazhuang, China, 2018.
- Lin, S.S.; Shen, S.L.; Zhou, A.; Lyu, H.M. Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Sci. Total Environ. 2020, 751, 141618. [Google Scholar] [CrossRef]
- Wan, Y.S.; Zhang, L.Q.; Fu, X.; Jin, H.Y. Assessment of eutrophication degree and its prevention in Danjiangkou Reservoir. J. Beijing Norm. Univ. (Nat. Sci.) 2020, 56, 275–281. [Google Scholar]
- Zhang, Q.; Xu, S.; Yang, L. Spatiotemporal Variation Characteristics and Source Identification of Nitrogen in the Baiyangdian Lake Water, China. Water 2024, 16, 2969. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standard for Surface Water. China Environmental Science Press: Beijing, China, 2002.
- Liu, W.J.; Jiang, H.; Guo, X.; Li, Y.C.; Xu, Z.F. Time-series monitoring of river hydrochemistry and multiple isotope signals in the Yarlung Tsangpo River reveals a hydrological domination of fluvial nitrate fluxes in the Tibetan Plateau. Water Res. 2022, 225, 119098. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, W.X.; Xiao, C.N. Mixed integer optimization approach to groundwater pollution source identification problems. Environ. Forensics 2016, 17, 355–360. [Google Scholar] [CrossRef]
- Ran, X.B.; Bouwman, L.; Yu, Z.G.; Beusen, A.; Chen, H.T.; Yao, Q.Z. Nitrogen transport, transformation, and retention in the Three Gorges Reservoir: A mass balance approach. Limnol. Ocean. 2017, 62, 2323–2337. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, X.; Meng, L.; Wang, Y.; Ma, S.; Cao, J. The Impact of Catastrophic Flooding on Nitrogen Sources Composition in an Intensively Human-Impacted Lake: A Case Study of Baiyangdian Lake. Water 2025, 17, 3309. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zheng, B.H.; Jia, H.F.; Chen, Z.X. Determination sources of nitrates into the Three Gorges Reservoir using nitrogen and oxygen isotopes. Sci. Total Environ. 2019, 687, 128–136. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Toor, G.S. Sources and mechanisms of nitrate and orthophosphate transport in urban stormwater runoff from residential catchments. Water Res. 2017, 112, 176–184. [Google Scholar] [CrossRef]
- Li, C.Y.; Cheng, L.; Wang, T.F.; Li, L.Q.; Liao, G.Y.; Zhang, W.J.; Wang, D.S. Nitrogen and phosphorus diffusive fluxes across the sediment-water interface before and after dredging typical areas of Baiyangdian Lake. Acta Sci. Circumst. 2021, 41, 1401–1409. [Google Scholar]
- Tao, Y.; Liu, J.; Guan, X.Y.; Chen, H.R.; Ren, X.Q.; Wang, S.L.; Ji, M.Z. Estimation of potential agricultural non-point source pollution for Baiyangdian Basin, China, under different environment protection policies. PLoS ONE 2020, 15, e0239006. [Google Scholar] [CrossRef]
- Hao, P.X.; Yang, J.; Liu, X.; Strokal, M.; van Wijk, D.; Bai, Z.H.; Ma, L. Optimizing nitrogen management for pollution control in Lake Baiyangdian following water replenishment. J. Environ. Manag. 2024, 327, 123374. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Q.H.; Zhang, S.R.; Yang, X.L.; Wang, D.D.; Sun, Y.H.; Wang, T. Climatic and environmental evolution of the Baiyangdian area since the Lateglacial. Acta Geogr. Sin. 2022, 77, 1195–1210. [Google Scholar]
- Weigand, M.A.; Foriel, J.; Barnett, B.; Oleynik, S.; Sigman, D.M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 2016, 30, 1365–1383. [Google Scholar] [CrossRef]
- Casciotti, K.L.; Sigman, D.M.; Hastings, M.G.; Böhlke, J.K.; Hilkert, A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 2002, 74, 4905–4912. [Google Scholar] [CrossRef] [PubMed]
- Zaryab, A.; Nassery, H.R.; Knoeller, K.; Alijani, F.; Minet, E. Determining nitrate pollution sources in the Kabul Plain aquifer (Afghanistan) using stable isotopes and Bayesian stable isotope mixing model. Sci. Total Environ. 2022, 823, 153749. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Jiang, C.L.; Chen, X.; Li, Y.H.; Li, C. Combining hydrochemistry and hydrogen and oxygen stable isotopes to reveal the influence of human activities on surface water quality in Chaohu Lake Basin. J. Environ. Manag. 2022, 312, 114933. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.X.; Huang, L.C.; Liu, C.Q.; Zhang, Z.Z.; Zhu, Y.; Pan, M. Effects of different water environments in Dianchi Lake on the Kinetic Parameters of Chlorophyll Fluorescence induction of Potamogeton wrightii Morong. Acta Ecol. Sinica 2024, 44, 8520–8531. [Google Scholar]
- She, W.J.; Jiao, Y.M.; Lu, R.T.; Chai, Y.; Chen, F.; Shen, J.; Zhang, H.S.; Liao, H.J.; Xu, Q.E. Quantification of nitrate sources and its spatial heterogeneity by dual isotopes. Ecosyst. Health Sust. 2024, 10, 0201. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, D.H.; Li, Y.; Han, X.Q.; Wang, X.Y.; Zhang, J.A.; Gu, K.D.; Sun, S.J.; Liu, Q.G.; Lv, J. Spatiotemporal dynamics of nitrogen and phosphorus in the water and sediment from the source reservoir of the Mid-Route of China’s South-to-North Water Diversion Project. Water 2025, 17, 1824. [Google Scholar] [CrossRef]
- Liu, Z.J.; Wang, X.H.; Jia, S.Q.; Mao, B.Y. Multi-methods to investigate spatiotemporal variations of nitrogen-nitrate and its risks to human health in China’s largest fresh water lake (Poyang Lake). Sci. Total Environ. 2023, 863, 160975. [Google Scholar] [CrossRef]
- Rani, A.; Ranjan, R.; Bonina, S.M.C.; Izadmehr, M.; Giesy, J.P.; Li, A.; Sturchio, N.C.; Rockne, K.J. Aqueous geochemical controls on the sestonic microbial community in Lakes Michigan and Superior. Microorganisms 2023, 11, 16. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, X.; Strokal, M.; Kroeze, C.; Hao, P.X.; Bai, Z.H.; Ma, L. Sources of nitrogen in reservoirs of the Haihe basin (China) 2012–2017. J. Environ. Manag. 2023, 345, 118667. [Google Scholar] [CrossRef]
- Yang, C.H.; Yang, P.; Geng, J.; Yin, H.B.; Chen, K.N. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environ. Pollut. 2020, 262, 114292. [Google Scholar] [CrossRef]
- Yao, X.L.; Ding, R.N.; Zhou, Y.Q.; Wang, Z.W.; Liu, Y.A.; Zhang, L. How internal nutrient loading forms in shallow lakes: Insights from benthic organic matter mineralization. Water Res. 2023, 245, 120544. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Zhou, Z.F.; Gong, X.H.; Yan, L.H.; Ding, S.J.; Dong, H.; Zhang, Y.; Wang, X.D. Identification of nitrate sources and transformation in karst cave water using hydrochemistry and NO3− isotopes (δ15N/δ18O) combined with a Bayesian mixing model. All Earth 2023, 36, 2356138. [Google Scholar]
- Jin, Z.F.; Cen, J.R.; Hu, Y.M.; Li, L.J.; Shi, Y.S.; Fu, G.W.; Li, F.L. Quantifying nitrate sources in a large reservoir for drinking water by using stable isotopes and a Bayesian isotope mixing model. Environ. Sci. Pollut. Res. 2018, 26, 20364–20376. [Google Scholar] [CrossRef] [PubMed]
- Saccon, P.; Leis, A.; Marca, A.; Kaiser, J.; Campisi, L.; Böttcher, M.E.; Savarino, J.; Escher, P.; Eisenhauer, A.; Erbland, J. Multi-isotope approach for the identification and characterisation of nitrate pollution sources in the Marano lagoon (Italy) and parts of its catchment area. Appl. Geochem. 2013, 34, 75–89. [Google Scholar] [CrossRef]
- Ding, J.T.; Xi, B.D.; Gao, R.T.; He, L.S.; Liu, H.L.; Dai, X.L.; Yu, Y.J. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach. Sci. Total Environ. 2014, 484, 10–18. [Google Scholar] [CrossRef]
- Wu, W.H.; He, X.J.; Wu, H.L.; Wang, X.Z.; Shen, J. Identification of sources of nitrate in the Yongan River with isotopic technology. J. Ecol. Nat. Environ. 2016, 32, 802–807. [Google Scholar]
- Jiang, H.; Zhang, Q.Q.; Liu, W.J.; Zhang, J.Y.; Pan, K.; Zhao, T.; Xu, Z.F. Isotopic compositions reveal the driving forces of high nitrate level in an urban river: Implications for pollution control. J. Clean. Prod. 2021, 298, 126693. [Google Scholar] [CrossRef]
- Li, Z.T.; Xiao, H.W.; Wu, Z.T.; Ma, Y.; Xiao, Y.N.; Chen, Z.P.; Tao, J.H. Hydrochemistry, nitrogen and oxygen isotope composition of nitrate to trace its source and transformation in Poyang Lake. Chin. Environ. Sci. 2022, 42, 4315–4322. [Google Scholar]
- Li, C.; Li, S.L.; Yue, F.J.; Liu, J.; Zhong, J.; Yan, Z.F.; Zhang, R.C.; Wang, Z.J.; Xu, S. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. Sci. Total Environ. 2019, 646, 801–810. [Google Scholar] [CrossRef]
- Yin, C.; Yang, H.Q.; Chen, J.A.; Guo, J.Y.; Wang, J.F.; Zhang, Z.; Tang, X.Y. Tracing nitrate sources with dual isotopes and hydrochemical characteristics during wet season in Lake Caohai, Guizhou Province. J. Lake Sci. 2020, 32, 989–998. [Google Scholar] [CrossRef]
- Kumar, A.; Ajay, A.; Dasgupta, B.; Bhadury, P.; Sanyal, P. Deciphering the nitrate sources and processes in the Ganga river using dual isotopes of nitrate and Bayesian mixing model. Environ. Res. 2023, 216, 114744. [Google Scholar] [CrossRef]
- Hocaoglu, S.M.; Insel, G.; Cokgor, E.U.; Orhon, D. Effect of sludge age on simultaneous nitrification and denitrification in membrane. Bioresour. Technol. 2011, 102, 6665–6672. [Google Scholar] [CrossRef]
- Xue, D.M.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; Van Cleemput, O.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Ogrinc, N.; Tamse, S.; Zavadlav, S.; Vrzel, J.; Jin, L.X. Evaluation of geochemical processes and nitrate pollution sources at the ljubljansko Polje aquifer (Slovenia): A stable isotope perspective. Sci. Total Environ. 2019, 646, 1588–1600. [Google Scholar] [CrossRef]
- Böttcher, J.; Strebel, O.; Voerkelius, S.; Schmidt, H.L. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 1990, 114, 413–424. [Google Scholar] [CrossRef]
- Wu, X. The analysis and protection of Baiyangdian Marsh’s water environment quality. Heilongjiang Sci. Technol. Water Conserv. 2013, 41, 191–192. [Google Scholar]
- Work Committee of Xiong’an New Area; Administrative Committee of Xiong’an New Area. Press Conference on Ecological Environment Governance and Protection of Baiyangdian Lake. 2023. Available online: https://www.xiongan.gov.cn/2023-12/07/c_1212311777.htm (accessed on 1 December 2025).






| Water | δ15N-NO3− (‰) | δ18O-NO3− (‰) | ||||
|---|---|---|---|---|---|---|
| Rang | Mean | SD | Rang | Mean | SD | |
| Spring | +1.91~+5.70 | 3.82 | 1.11 | −5.31~+2.69 | 1.06 | 1.53 |
| Summer | +1.67~+5.69 | 3.39 | 0.93 | −4.27~+3.36 | 0.51 | 2.02 |
| Autumn | +1.62~+4.76 | 3.05 | 0.78 | −2.48~+2.40 | 1.2 | 1.17 |
| Winter | +1.58~+5.70 | 3.49 | 1.18 | −3.20~+2.39 | 0.57 | 1.39 |
| Source | δ15N-NO3− (‰) | δ18O-NO3− (‰) | ||
|---|---|---|---|---|
| Mean | SD | Mean | SD | |
| Sediment release (SR) | 6.59 | 1.64 | 8.81 | 1.13 |
| Chemical fertilizer (CF) [41] | 2.01 | 0.12 | 20.1 | 3.21 |
| Wastewater treatment plant (WWTP) effluent | 11.09 | 4.15 | −0.37 | 2.63 |
| Manure and sewage (M&S) | 7.82 | 2.91 | 14.29 | 1.32 |
| Soil nitrogen (SN) | 1.34 | 3.17 | −0.89 | 6.35 |
| Atmospheric precipitation (AP) | −4.42 | 0.48 | 56.94 | 7.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shen, Y.; Wang, H.; Ma, S.; Shi, M.; Meng, L.; Wang, Y.; Zhang, K.; Wang, L.; Zhang, Y. Source Apportionment and Seasonal Variation in Nitrate in Baiyangdian Lake After Restoration Projects Based on Dual Stable Isotopes and MixSIAR Model. Water 2026, 18, 338. https://doi.org/10.3390/w18030338
Shen Y, Wang H, Ma S, Shi M, Meng L, Wang Y, Zhang K, Wang L, Zhang Y. Source Apportionment and Seasonal Variation in Nitrate in Baiyangdian Lake After Restoration Projects Based on Dual Stable Isotopes and MixSIAR Model. Water. 2026; 18(3):338. https://doi.org/10.3390/w18030338
Chicago/Turabian StyleShen, Yiwen, Hao Wang, Shaopeng Ma, Miwei Shi, Lingyao Meng, Yanxia Wang, Kegang Zhang, Liyuan Wang, and Yan Zhang. 2026. "Source Apportionment and Seasonal Variation in Nitrate in Baiyangdian Lake After Restoration Projects Based on Dual Stable Isotopes and MixSIAR Model" Water 18, no. 3: 338. https://doi.org/10.3390/w18030338
APA StyleShen, Y., Wang, H., Ma, S., Shi, M., Meng, L., Wang, Y., Zhang, K., Wang, L., & Zhang, Y. (2026). Source Apportionment and Seasonal Variation in Nitrate in Baiyangdian Lake After Restoration Projects Based on Dual Stable Isotopes and MixSIAR Model. Water, 18(3), 338. https://doi.org/10.3390/w18030338
