Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (659)

Search Parameters:
Keywords = neuroendocrine diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1906 KiB  
Review
The Duodenum-Centered Neurohormonal Hypothesis of Type 2 Diabetes: A Mechanistic Review and Therapeutic Perspective
by Athena N. Kapralou, Christos Yapijakis and George P. Chrousos
Curr. Issues Mol. Biol. 2025, 47(8), 657; https://doi.org/10.3390/cimb47080657 - 14 Aug 2025
Viewed by 258
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disorder defined by insulin resistance, β-cell dysfunction, and chronic hyperglycemia. Although peripheral mechanisms have been extensively studied, increasing evidence implicates the gastrointestinal tract in disease onset. Insights from bariatric surgery, gut hormone signaling, and incretin-based [...] Read more.
Type 2 diabetes mellitus (T2DM) is a multifactorial disorder defined by insulin resistance, β-cell dysfunction, and chronic hyperglycemia. Although peripheral mechanisms have been extensively studied, increasing evidence implicates the gastrointestinal tract in disease onset. Insights from bariatric surgery, gut hormone signaling, and incretin-based therapies suggest that the gut contributes actively beyond nutrient absorption. Yet, a cohesive framework integrating these observations remains absent, leaving a critical gap in our understanding of T2DM’s upstream pathophysiology. This work builds upon the anti-incretin theory, which posits that nutrient-stimulated neurohormonal signals—termed “anti-incretins”—arise from the proximal intestine to counteract incretin effects and regulate glycemic homeostasis. The excess of anti-incretin signals, perhaps stimulated by macronutrient composition or chemical additives of modern diets, disrupts this balance and may cause insulin resistance and β-cell depletion, leading to T2D. We hypothesize that the neuroendocrine signals produced by cholecystokinin (CCK)-I and secretin-S cells, both located in the proximal intestine, function as endogenous anti-incretins. In this context, we hypothesize a novel model centered on the chronic overstimulation of I and S cells by high-fat, high glycemic index modern diets. This drives what we term “amplified digestion”—a state marked by heightened vagal and hormonal stimulation of biliary and pancreatic secretions, increased enzymatic and bile acid activity, and alterations in bile acid composition. This condition leads to an extended breakdown of carbohydrates, lipids, and proteins into absorbable units, thereby promoting excessive nutrient absorption and ultimately contributing to insulin resistance and progressive β-cell failure. Multiple lines of clinical, surgical, and experimental evidence converge to support our model, rooted in the physiology of digestion and absorption. Western dietary patterns appear to induce an over-digestive adaptation—marked by excessive vagal and hormonal stimulation of biliary and pancreatic secretion—which amplifies digestive signaling. This heightened state correlates with increased nutrient absorption, insulin resistance, and β-cell dysfunction. Interventions that disrupt this maladaptive signaling—such as truncal vagotomy combined with duodenal bypass—may offer novel, physiology-based strategies for T2DM treatment. This hypothesis outlines a potential upstream contributor to insulin resistance and T2DM, grounded in digestive tract-derived neurohormonal dysregulation. This gut-centered model may provide insight into early, potentially reversible stages of the disease and identify a conceptual therapeutic target. Nonetheless, both the hypothesis and the accompanying surgical strategy—truncal vagotomy combined with proximal intestinal bypass—remain highly exploratory and require systematic validation through mechanistic and clinical studies. Further investigation is warranted to clarify the molecular regulation of I and S enteroendocrine cells, including the genetic and epigenetic factors that may drive hypersecretion. While speculative, interventions—surgical or pharmacologic—designed to modulate these digestive signals could represent a future avenue for research into T2DM prevention or remission, pending rigorous evidence. Full article
Show Figures

Figure 1

16 pages, 1310 KiB  
Review
Updates on Pulmonary Neuroendocrine Carcinoids: Progress and Perspectives
by Anna Scognamiglio, Arianna Zappi, Elisa Andrini, Adriana Di Odoardo, Davide Campana, Anna La Salvia and Giuseppe Lamberti
J. Clin. Med. 2025, 14(16), 5733; https://doi.org/10.3390/jcm14165733 - 13 Aug 2025
Viewed by 249
Abstract
Neuroendocrine neoplasms (NENs) of the lung are a biologically and clinically diverse group of tumors that includes well-differentiated typical and atypical carcinoids (LNETs), as well as poorly differentiated large-cell neuroendocrine carcinoma and small-cell lung cancer. Despite their relative rarity, the incidence of LNETs [...] Read more.
Neuroendocrine neoplasms (NENs) of the lung are a biologically and clinically diverse group of tumors that includes well-differentiated typical and atypical carcinoids (LNETs), as well as poorly differentiated large-cell neuroendocrine carcinoma and small-cell lung cancer. Despite their relative rarity, the incidence of LNETs is increasing, primarily due to advancements in diagnostic techniques and heightened clinical awareness. While the current World Health Organization (WHO) classification offers a morphological basis for diagnosis and prognosis, particularly for extrapulmonary neuroendocrine neoplasms (ep-NENs), it has limitations in predicting the clinical behavior of pulmonary carcinoids. Recent evidence highlights the inadequacy of traditional criteria in fully capturing the biological complexity and clinical heterogeneity of these tumors. This review explores the evolving landscape of LNETs, focusing on well-differentiated forms and analyzing current classification systems, clinicopathological features, and the emerging role of novel prognostic and predictive biomarkers. Advances in histopathology and molecular profiling have begun to elucidate distinct molecular subsets within carcinoids, offering potential avenues for improved risk stratification and therapeutic decision-making. Although there are limited treatment options for advanced disease, new insights into tumor biology could facilitate the development of personalized therapeutic strategies and pave the way for future innovations in LNET management. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

19 pages, 622 KiB  
Review
Decoding Pancreatic Neuroendocrine Tumors: Molecular Profiles, Biomarkers, and Pathways to Personalized Therapy
by Linda Galasso, Federica Vitale, Gabriele Giansanti, Giorgio Esposto, Raffaele Borriello, Irene Mignini, Alberto Nicoletti, Lorenzo Zileri Dal Verme, Antonio Gasbarrini, Maria Elena Ainora and Maria Assunta Zocco
Int. J. Mol. Sci. 2025, 26(16), 7814; https://doi.org/10.3390/ijms26167814 - 13 Aug 2025
Viewed by 293
Abstract
Pancreatic neuroendocrine tumors (pNETs) are rare malignancies, accounting for 1–2% of pancreatic cancers, with an incidence of ≤1 case per 100,000 individuals annually. Originating from pancreatic endocrine cells, pNETs display significant clinical and biological heterogeneity. Traditional classification based on proliferative grading does not [...] Read more.
Pancreatic neuroendocrine tumors (pNETs) are rare malignancies, accounting for 1–2% of pancreatic cancers, with an incidence of ≤1 case per 100,000 individuals annually. Originating from pancreatic endocrine cells, pNETs display significant clinical and biological heterogeneity. Traditional classification based on proliferative grading does not fully capture the complex mechanisms involved, such as oxidative stress, mitochondrial dysfunction, and tumor-associated macrophage infiltration. Recent advances in molecular profiling have revealed key oncogenic drivers, including MEN1 (menin 1), DAXX (death domain–associated protein), ATRX (alpha thalassemia/mental retardation syndrome X-linked), CDKN1B (cyclin-dependent kinase inhibitor 1B) mutations, chromatin remodeling defects, and dysregulation of the mTOR pathway. Somatostatin receptors, particularly SSTR2, play a central role in tumor biology and serve as important prognostic markers, enabling the use of advanced diagnostic imaging (e.g., Gallium-68 DOTATATE PET/CT) and targeted therapies like somatostatin analogs and peptide receptor radionuclide therapy (PRRT). Established biomarkers such as Chromogranin A and the Ki-67 proliferation index remain vital for diagnosis and prognosis, while emerging markers, like circulating tumor DNA and microRNAs, show promise for enhancing disease monitoring and diagnostic accuracy. This review summarizes the molecular landscape of pNETs and highlights genomic, transcriptomic, proteomic, and epigenomic factors that support the identification of novel diagnostic, prognostic, and therapeutic biomarkers, ultimately advancing personalized treatment strategies. Full article
Show Figures

Figure 1

14 pages, 2890 KiB  
Article
Automatic 3D Tracking of Liver Metastases: Follow-Up Assessment of Cancer Patients in Contrast-Enhanced MRI
by Sophia Schulze-Weddige, Uli Fehrenbach, Johannes Kolck, Richard Ruppel, Georg Lukas Baumgärtner, Maximilian Lindholz, Isabel Theresa Schobert, Anna-Maria Haack, Henning Jann, Martina Mogl, Dominik Geisel, Bertram Wiedenmann and Tobias Penzkofer
Bioengineering 2025, 12(8), 874; https://doi.org/10.3390/bioengineering12080874 - 12 Aug 2025
Viewed by 202
Abstract
Background: Tracking differential growth of secondary liver metastases is important for early detection of progression but remains challenging due to variable tumor growth rates. We aimed to automate accurate, consistent, and efficient longitudinal monitoring. Methods: We developed an automatic 3D segmentation and tracking [...] Read more.
Background: Tracking differential growth of secondary liver metastases is important for early detection of progression but remains challenging due to variable tumor growth rates. We aimed to automate accurate, consistent, and efficient longitudinal monitoring. Methods: We developed an automatic 3D segmentation and tracking algorithm to quantify differential growth, tested on contrast-enhanced MRI follow-ups of patients with neuroendocrine liver metastases (NELMs). The output was integrated into a decision support tool to distinguish between progressive disease, stable disease, and partial/complete response. A user study involving an expert group of seven expert radiologists evaluated its impact. Group comparisons used the Friedman test with post hoc analyses. Results: Our algorithm detected 991 metastases in 30 patients: 13% new, 30% progressive, 18% stable, and 18% regressive; the remainder were either too small to measure (15%) or merged with another metastasis in the follow-up assessment (6%). Diagnostic accuracy improved with additional information on hepatic tumor load and differential growth, albeit not significantly (p = 0.72). The diagnosis time increased (p < 0.001). All radiologists found the method useful and expressed a desire to integrate it in existing diagnostic tools. Conclusions: We automated segmentation and quantification of individual NELMs, enabling comprehensive longitudinal analysis of differential tumor growth with the potential to enhance clinical decision-making. Full article
(This article belongs to the Special Issue AI-Driven Imaging and Analysis for Biomedical Applications)
Show Figures

Figure 1

24 pages, 790 KiB  
Review
Circulating Biomarkers in Medullary Thyroid Carcinoma: Bridging Laboratory Complexities and Clinical Application Through Algorithm Design
by Luca Giovanella, Federica D’Aurizio and Petra Petranović Ovčariček
J. Clin. Med. 2025, 14(16), 5645; https://doi.org/10.3390/jcm14165645 - 9 Aug 2025
Viewed by 381
Abstract
Medullary thyroid carcinoma (MTC) is a rare (~2–5% of all thyroid cancers) neuroendocrine thyroid malignancy originating from parafollicular C-cells of the thyroid gland with variable biological behavior and potential for early metastasis. Diagnosis, staging, and surveillance are heavily reliant on circulating biomarkers. We [...] Read more.
Medullary thyroid carcinoma (MTC) is a rare (~2–5% of all thyroid cancers) neuroendocrine thyroid malignancy originating from parafollicular C-cells of the thyroid gland with variable biological behavior and potential for early metastasis. Diagnosis, staging, and surveillance are heavily reliant on circulating biomarkers. We aimed to provide a comprehensive overview of circulating biomarkers in the management of MTC and propose an integrated, evidence-based algorithm to guide clinical decision-making using both established and emerging biomarkers. This is a narrative review on the evolving landscape of biomarker-driven management in MTC with emphasis on analytical advancements, clinical applications, and the prognostic implications of individual and combined biomarkers. Calcitonin remains the cornerstone biomarker for MTC, and new generation immunoassays have addressed several pre-analytical and analytical challenges such as pre-analytical degradation, inter-assay variability, and biological confounders. Procalcitonin (ProCT) has emerged as a stable and less interference-prone alternative or adjunct to calcitonin, which is particularly useful in cases with indeterminate calcitonin levels. Carcinoembryonic antigen (CEA) remains a useful complementary biomarker often correlating with aggressive behavior, advanced disease, and distant metastases. Kinetic evaluation (doubling times) of calcitonin and CEA offers independent prognostic information values and those < 6 months are associated with poor survival, whereas those > 2 years suggest favorable outcomes. Newer biomarkers such as pro-gastrin-releasing peptide (ProGRP) and carbohydrate antigen 19-9 (CA19-9) show potential in monitoring advanced disease and response to therapy. Their role is still under investigation but appears promising, particularly when used in conjunction with calcitonin and CEA. Our work advances a comprehensive and clinically pragmatic framework for the management of MTC by integrating established and emerging biomarkers with evidence-based algorithms, offering greater diagnostic precision, more reliable prognostic stratification, and improved personalization of follow-up and treatment strategies. Full article
(This article belongs to the Special Issue Thyroid Disease: Updates from Diagnosis to Treatment)
Show Figures

Figure 1

26 pages, 701 KiB  
Review
Skeletal Health in Pituitary and Neuroendocrine Diseases: Prevention and Treatments of Bone Fragility
by Flavia Costanza, Antonella Giampietro, Laura De Marinis, Antonio Bianchi, Sabrina Chiloiro and Alfredo Pontecorvi
Targets 2025, 3(3), 26; https://doi.org/10.3390/targets3030026 - 8 Aug 2025
Viewed by 213
Abstract
Bone loss is common in patients affected by pituitary and neuroendocrine disorders as both hormone excess and hormone deficiency can affect bone structure. There is increasing evidence that pituitary hormones directly influence bone cells turnover by bypassing endocrine organs. Osteopenia, osteoporosis, and vertebral [...] Read more.
Bone loss is common in patients affected by pituitary and neuroendocrine disorders as both hormone excess and hormone deficiency can affect bone structure. There is increasing evidence that pituitary hormones directly influence bone cells turnover by bypassing endocrine organs. Osteopenia, osteoporosis, and vertebral fractures often result from these skeletal changes; however, diagnosing and managing bone frailty in pituitary and neuroendocrine disorders is still challenging because of the unpredictable outcomes in terms of fracture risk, even after the improvement of pituitary dysfunction, and the limited evidence for the use of bone-active drugs in these pathologies. The use of vitamin D supplements for fracture prevention is still debated in these secondary forms of bone frailty, although some studies have shown similar benefits to those derived in the general population. This review offers an overview on the characteristics of bone fragility in different pituitary and neuroendocrine diseases, and focuses on the prevention and treatment of skeletal disorders with bone-active drugs and vitamin D formulations currently available in this setting. Full article
Show Figures

Figure 1

15 pages, 726 KiB  
Article
Surgical Management of Pulmonary Typical Carcinoids: A Single-Centre Experience Comparing Anatomical and Non-Anatomical Resections
by Carmelina Cristina Zirafa, Beatrice Manfredini, Gaetano Romano, Ilaria Ceccarelli, Fabrizia Calabrò, Riccardo Morganti, Greta Alì, Franca Melfi and Federico Davini
J. Clin. Med. 2025, 14(15), 5488; https://doi.org/10.3390/jcm14155488 - 4 Aug 2025
Viewed by 335
Abstract
Background/Objectives: Pulmonary typical carcinoid (TC) is a rare type of primary neuroendocrine neoplasm of the lung with indolent behavior and a good prognosis. The main treatment strategy is surgery, the extent of which is controversial given the nature of the disease. The aim [...] Read more.
Background/Objectives: Pulmonary typical carcinoid (TC) is a rare type of primary neuroendocrine neoplasm of the lung with indolent behavior and a good prognosis. The main treatment strategy is surgery, the extent of which is controversial given the nature of the disease. The aim of this study is to assess whether the extent of resection influences survival and recurrence in patients undergoing lung resection and lymphadenectomy for TC and to investigate negative prognostic factors for OS. Methods: A single-centre retrospective study of 15 years’ experience was conducted. Data from all patients who underwent lung resection and lymphadenectomy for TC were collected. Patients were divided into two groups: anatomical and non-anatomical resections. Perioperative and long-term oncological results were analyzed. Results: In total, 115 patients were surgically treated for TC, of whom 83 (72%) underwent anatomical resection and 32 (28%) non-anatomical resection. Univariate analyses showed that age, left lower lobe, and many comorbidities had a detrimental effect on OS, whereas on multivariate analysis, only left lower lobe location and a high Charlson–Deyo comorbidity index (CCI) were confirmed as negative prognostic factors for OS. At a median follow-up of 93 months (IQR 57-129), the OS survival curves show a slightly lower trend for non-anatomical resections (p 0.152), while no differences were found for DFS. Conclusions: The results of this study confirm that in selected patients at risk for major resections, non-anatomical resection can be used to treat TC when R0 is achievable. These data, together with evidence from the literature, highlight the importance of patient-centred care in this rare disease. Full article
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Evaluating the Therapeutic Role of Lymph Node Dissection in Variant Subtype Bladder Cancer
by Syed Nahiyaan Rahman, Darryl T. Martin, Kandala Keervani, Spencer James, Peter Humphrey, David Hesse, Wei Shen Tan, Sunil Patel, Jonathan Wright and Fady Ghali
Cancers 2025, 17(15), 2536; https://doi.org/10.3390/cancers17152536 - 31 Jul 2025
Viewed by 249
Abstract
Background: The importance of lymph node dissection (LND) at the time of radical cystectomy for urothelial carcinoma (UC) is widely accepted despite known risks. The therapeutic benefits of LND for variant subtype bladder cancer (VBC), a heterogenous and distinct set of diseases, are [...] Read more.
Background: The importance of lymph node dissection (LND) at the time of radical cystectomy for urothelial carcinoma (UC) is widely accepted despite known risks. The therapeutic benefits of LND for variant subtype bladder cancer (VBC), a heterogenous and distinct set of diseases, are not well established. We aim to characterize the impact of LND on overall survival across VBC subtypes. Methods: The National Cancer Database was queried for all cases of variant subtype bladder cancer managed with radical cystectomy between 2004 and 2020, using the International Classification of Disease-O-3 morphological codes. The cases were stratified by receipt of individual variant subtypes. The primary outcome was overall survival associated with pathologic nodal status and receipt of nodal dissection. A Kaplan–Meier analysis and Cox proportional hazards analysis were used for survival analyses. Results: A total of 30,911 patients with VBC that were managed with radical cystectomy were included in our analysis. The pNx rates ranged from 33.1% in the micropapillary subtype, 42.2% in the sarcomatoid subtype, 68.4% in the squamous subtype, 48.9% in the adenocarcinoma subtype, and 56.2% in the neuroendocrine subtype. The median OS was higher in those that received a nodal dissection across subtypes but was statistically significant only for the squamous (71.0 [68.0 vs. 74.0] vs. 37.2 [33.6 vs. 40.9] months p < 0.001) and adenocarcinoma (45.9 [32.9 vs. 59.0] vs. 37.9 [28.6 vs. 47.1] months p = 0.037) subtypes. Using Cox proportional hazards regression, LN dissection was associated with improved OS for the squamous (0.50 (0.44–0.58) p < 0.001) and adenocarcinoma (0.65 [0.45–0.93) p = 0.030) subtypes. Conclusions: The role of LND across VBC subtypes is not clearly defined and warrants further investigation to develop a more risk-adaptive approach. We demonstrate heterogeneity with respect to the OS benefit associated with LND at the time of surgery. Among certain VBC subtypes, LND may not offer a significant therapeutic benefit, while LND in squamous and adenocarcinoma VBCs is correlated with improved survival. Full article
Show Figures

Figure 1

17 pages, 331 KiB  
Review
Liver Transplantation for Cancer—Current Challenges and Emerging Solutions
by Steven M. Elzein, Elizabeth W. Brombosz and Sudha Kodali
J. Clin. Med. 2025, 14(15), 5365; https://doi.org/10.3390/jcm14155365 - 29 Jul 2025
Viewed by 564
Abstract
Liver transplantation (LT) for hepatic malignancies is becoming increasingly common, largely because it offers superior survival relative to other treatment approaches. LT is well-accepted for primary liver cancers such as hepatocellular carcinoma and perihilar cholangiocarcinoma and is being increasingly accepted for intrahepatic cholangiocarcinoma [...] Read more.
Liver transplantation (LT) for hepatic malignancies is becoming increasingly common, largely because it offers superior survival relative to other treatment approaches. LT is well-accepted for primary liver cancers such as hepatocellular carcinoma and perihilar cholangiocarcinoma and is being increasingly accepted for intrahepatic cholangiocarcinoma and metastases of colorectal cancer or neuroendocrine tumors to the liver. Over time, indications for transplant oncology have broadened, as has the acceptable disease burden for transplantation, particularly with the advent of new neoadjuvant therapies. Other current frontiers in the field include expanding the donor pool through living donors, extended criteria donors, machine perfusion and increasing access to LT for people from disadvantaged socioeconomic backgrounds. Expanding access to LT can offer renewed hope for long-term survival to patients with primary and secondary liver cancer. Full article
(This article belongs to the Special Issue Developments and Challenges in Liver Transplantation)
13 pages, 596 KiB  
Review
Drug Repurposing of New Treatments for Neuroendocrine Tumors
by Stefania Bellino, Daniela Lucente and Anna La Salvia
Cancers 2025, 17(15), 2488; https://doi.org/10.3390/cancers17152488 - 28 Jul 2025
Viewed by 482
Abstract
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for [...] Read more.
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for a rapid clinical translation in Phase II/III studies, especially for unmet medical needs and rare diseases. Neuroendocrine tumors (NETs) are a heterogeneous group of rare neoplasms arising from cells of the neuroendocrine system that, though often indolent, can be aggressive and metastatic. In this context, drug repurposing has emerged as a promising strategy to improve treatment options due to the limited number of effective treatments and the heterogeneity of the disease. Indeed, a large number of non-oncology drugs have the potential to address more than one target that could be therapeutic for cancer patients. Although many repurposed drugs are used off-label, efficacy for the new use must be demonstrated in clinical trials. Within regulatory frameworks, both the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have procedures to reduce the need for extensive new studies and to expedite the review of drugs for serious conditions when preliminary evidence indicates substantial clinical improvement over available therapy. In spite of several advantages, including reduced development time, lower costs, known safety profiles, and faster regulatory approval, difficulty in obtaining new patents for old drugs with limited protection for intellectual property may reduce commercial returns and disincentivize investments. This review aims to provide comprehensive information on some marketed drugs currently under investigation to be repurposed or used in clinical practice for NETs and to discuss the major clinical challenges. Although drug repurposing is a useful strategy for early access to medicines, the monitoring of the clinical benefit of oncologic drugs during the post-marketing authorization is crucial to support the safety and effectiveness of treatments. Full article
(This article belongs to the Special Issue Advances in Drug Repurposing to Overcome Cancers)
Show Figures

Graphical abstract

18 pages, 278 KiB  
Review
Biomarkers over Time: From Visual Contrast Sensitivity to Transcriptomics in Differentiating Chronic Inflammatory Response Syndrome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
by Ming Dooley
Int. J. Mol. Sci. 2025, 26(15), 7284; https://doi.org/10.3390/ijms26157284 - 28 Jul 2025
Viewed by 754
Abstract
Chronic inflammatory response syndrome (CIRS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are debilitating multisystem illnesses that share overlapping symptoms and molecular patterns, including immune dysregulation, mitochondrial impairment, and vascular dysfunction. This review provides a chronological synthesis of biomarker development in CIRS, tracing its [...] Read more.
Chronic inflammatory response syndrome (CIRS) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are debilitating multisystem illnesses that share overlapping symptoms and molecular patterns, including immune dysregulation, mitochondrial impairment, and vascular dysfunction. This review provides a chronological synthesis of biomarker development in CIRS, tracing its evolution from early functional tests such as visual contrast sensitivity (VCS) to advanced transcriptomic profiling. Drawing on peer-reviewed studies spanning two decades, we examine the layered integration of neuroendocrine, immunologic, metabolic, and genomic markers that collectively support a multisystem model of innate immune activation specific to environmentally acquired illness. Particular focus is given to the Gene Expression: Inflammation Explained (GENIE) platform’s use of transcriptomics to classify disease stages and distinguish CIRS from other fatiguing conditions. While ME/CFS research continues to explore overlapping pathophysiologic features, it has yet to establish a unified diagnostic model with validated biomarkers or exposure-linked mechanisms. As a result, many patients labeled with ME/CFS may, in fact, represent unrecognized CIRS cases. This review underscores the importance of structured biomarker timelines in improving differential diagnosis and guiding treatment in complex chronic illness and highlights the reproducibility of the CIRS framework in contrast to the diagnostic ambiguity surrounding ME/CFS. Full article
12 pages, 1018 KiB  
Systematic Review
Efficacy and Safety of Radioligand Therapy with Actinium-225 DOTATATE in Patients with Advanced, Metastatic or Inoperable Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis
by Alessio Rizzo, Alessio Imperiale, Salvatore Annunziata, Roberto C. Delgado Bolton, Domenico Albano, Francesco Fiz, Arnoldo Piccardo, Marco Cuzzocrea, Gaetano Paone and Giorgio Treglia
Medicina 2025, 61(8), 1341; https://doi.org/10.3390/medicina61081341 - 24 Jul 2025
Viewed by 698
Abstract
Background and Objectives: Peptide receptor radionuclide therapy (PRRT) using radiopharmaceuticals labelled with Lutetium-177 is currently a therapeutic option for patients with advanced neuroendocrine neoplasms overexpressing somatostatin receptors (SSTRs). One promising option that has gained interest for PRRT is using alpha-emitting radioisotopes such [...] Read more.
Background and Objectives: Peptide receptor radionuclide therapy (PRRT) using radiopharmaceuticals labelled with Lutetium-177 is currently a therapeutic option for patients with advanced neuroendocrine neoplasms overexpressing somatostatin receptors (SSTRs). One promising option that has gained interest for PRRT is using alpha-emitting radioisotopes such as Actinium-225. The aim of this study was to perform a systematic review and meta-analysis on the efficacy and safety of radioligand therapy with Actinium-225 DOTATATE in advanced, metastatic or inoperable neuroendocrine neoplasms. Materials and Methods: A comprehensive literature search of studies on radioligand therapy with Actinium-225 DOTATATE in neuroendocrine neoplasms was carried out. Three different bibliographic databases (Cochrane Library, Embase, and PubMed/MEDLINE) were screened up to May 2025. Eligible articles were selected, relevant data were extracted, and the main findings on efficacy and safety are summarized through a systematic review. Furthermore, proportional meta-analyses on the disease response rate and disease control rate were performed. Results: Five studies (153 patients) published from 2020 were included in the systematic review. The pooled disease response rate and disease control rate of radioligand therapy using Actinium-225 DOTATATE were 51.6% and 88%, respectively. This treatment was well-tolerated in most patients with advanced, metastatic or inoperable neuroendocrine neoplasms. Conclusions: Radioligand therapy with Actinium-225 DOTATATE in advanced, metastatic or inoperable neuroendocrine neoplasms is effective with an acceptable toxicity profile and potential advantages compared with SSTR-ligands labelled with Lutetium-177. Currently, the number of published studies on this treatment is still limited, and results from multicenter randomized controlled trials are needed to translate this therapeutic option into clinical practice. Full article
(This article belongs to the Special Issue Clinical Treatment of Neuroendocrine Neoplasm)
Show Figures

Figure 1

8 pages, 4055 KiB  
Case Report
Atypical Carcinoid of the Thymus: Early Diagnosis in a Case Report
by Antonio Mier-Briseño, Miguel Armando Benavides-Huerto, Ismael Padilla-Ponce and Francisco Alejandro Lagunas-Rangel
Med. Sci. 2025, 13(3), 96; https://doi.org/10.3390/medsci13030096 - 24 Jul 2025
Viewed by 339
Abstract
Background: Atypical carcinoid of the thymus is an exceptionally rare neuroendocrine tumor originating from neuroendocrine cells within the thymus. These tumors often present with no symptoms or with nonspecific clinical signs, making early diagnosis particularly challenging. Despite their rarity, atypical carcinoids are [...] Read more.
Background: Atypical carcinoid of the thymus is an exceptionally rare neuroendocrine tumor originating from neuroendocrine cells within the thymus. These tumors often present with no symptoms or with nonspecific clinical signs, making early diagnosis particularly challenging. Despite their rarity, atypical carcinoids are clinically significant due to their aggressive nature and relatively poor prognosis. Early detection and appropriate management are therefore crucial to improving patient outcomes. Results: In this report, we present the case of a 64-year-old patient in whom an atypical carcinoid of the thymus was incidentally discovered following a thoracic computed tomography scan performed for unrelated reasons. Imaging revealed a suspicious anterior mediastinal mass, which was subsequently surgically resected. Histopathological examination, supported by immunohistochemical analysis, confirmed the diagnosis of an atypical carcinoid of the thymus. The tumor demonstrated coexpression of epithelial and neuroendocrine markers, consistent with this rare entity. Conclusions: This case adds to the limited body of literature on atypical carcinoid of the thymus and highlights the importance of considering this diagnosis when evaluating anterior mediastinal masses. It also underscores the value of thorough radiological and pathological assessment in identifying early-stage disease, which may significantly influence prognosis and therapeutic strategies. Full article
Show Figures

Figure 1

28 pages, 1763 KiB  
Review
Interaction Between Konjac Glucomannan and Gut Microbiota and Its Impact on Health
by Yufen Yu, Shuo Jin, Yi Yang, Xiaodong Han, Rongfa Guan and Hao Zhong
Biology 2025, 14(8), 923; https://doi.org/10.3390/biology14080923 - 23 Jul 2025
Viewed by 870
Abstract
Konjac glucomannan (KGM) is a natural polysaccharide polymer. It is degraded by gut microbiota-derived β-mannanase into small-molecule nutrients, which exert diverse physiological regulatory effects. As a prebiotic, KGM modulates gut microbiota composition. It selectively fosters the proliferation of beneficial commensals and suppresses potential [...] Read more.
Konjac glucomannan (KGM) is a natural polysaccharide polymer. It is degraded by gut microbiota-derived β-mannanase into small-molecule nutrients, which exert diverse physiological regulatory effects. As a prebiotic, KGM modulates gut microbiota composition. It selectively fosters the proliferation of beneficial commensals and suppresses potential pathogens, thereby alleviating microbiota-related disorders. Moreover, microbiota fermentation of KGM produces metabolites. Short-chain fatty acids (SCFAs) are particularly notable among these metabolites. They exert multifaceted beneficial effects, including metabolic regulation, intestinal barrier strengthening, and neuroprotective functions. These effects are mediated through inhibition of inflammatory pathways (e.g., NF-κB, MAPK), modulation of lipid metabolism genes (e.g., CD36), and regulation of neurotransmitters (e.g., GABA, 5-HT). This highlights KGM’s therapeutic potential for metabolic, inflammatory, and neurodegenerative diseases. Current clinical use is limited by dose-dependent adverse effects and interindividual response variability, which stem from different microbial communities. This necessitates personalized dosage strategies. Despite these limitations, KGM as a prebiotic polysaccharide exhibits multifaceted bioactivity. Current evidence suggests its potential to synergistically modulate metabolic pathways, gut microbiota composition, immune cell signaling, and neuroendocrine interactions. This highlights its promise for developing novel therapeutic interventions. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
Show Figures

Figure 1

10 pages, 615 KiB  
Article
The Impact of DDR Gene Mutations on the Efficacy of Etoposide Plus Cisplatin in Grade 3 Metastatic Gastroenteropancreatic (GEP)—Neuroendocrine Carcinoma (NEC)
by Ji Eun Shin, Minsuk Kwon, Sung Hee Lim, Jung Yong Hong and Seung Tae Kim
Cancers 2025, 17(15), 2436; https://doi.org/10.3390/cancers17152436 - 23 Jul 2025
Viewed by 256
Abstract
Purpose: Neuroendocrine carcinomas (NECs) are aggressive tumors treated with cisplatin-based chemotherapy, though responses vary. As DNA damage response (DDR) pathways influence cisplatin sensitivity, this single-center retrospective study evaluates the efficacy of first-line cisplatin in recurrent or metastatic NEC based on DDR mutation status. [...] Read more.
Purpose: Neuroendocrine carcinomas (NECs) are aggressive tumors treated with cisplatin-based chemotherapy, though responses vary. As DNA damage response (DDR) pathways influence cisplatin sensitivity, this single-center retrospective study evaluates the efficacy of first-line cisplatin in recurrent or metastatic NEC based on DDR mutation status. Materials and Methods: This study analyzed patients with grade 3 recurrent or metastatic NEC treated with first-line etoposide plus cisplatin at Samsung Medical Center between January 2019 and September 2023. All patients underwent next-generation sequencing to determine DDR mutation status, defined by pathogenic alterations in major DNA repair pathways. Clinical outcomes were assessed per RECIST v1.1. Survival analyses were conducted using Kaplan–Meier methods and Cox regression models, with significance set at p ≤ 0.05. Results: A total of 40 patients with NEC were included in this study. There were 16 patients with DDR wild-type (WT) and 24 patients with DDR mutant type (MT). The most common primary tumor sites were the pancreas (25.0%), stomach (20.0%), and gallbladder/duct (12.5%). Among 40 patients, those with DDR mutations (n = 24) showed significantly higher objective response (58.3% vs. 12.5%) and disease control rates (91.7% vs. 50.0%) compared to patients with DDR WT (n = 16). The median progression-free survival (PFS) showed the favorable trend in the DDR mutant group (8.0 vs. 4.3 months; p = 0.15), with similar trends observed across homologous recombination repair (HRR), Fanconi anemia (FA), and mismatch repair (MMR) subgroups. Conclusions: This study revealed that patients with DDR mutations had significantly higher response to first-line etoposide–cisplatin, suggesting DDR mutation status as a potential predictive marker to guide treatment and improve outcomes in recurrent or metastatic NEC. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

Back to TopTop