Circulating Biomarkers in Medullary Thyroid Carcinoma: Bridging Laboratory Complexities and Clinical Application Through Algorithm Design
Abstract
1. Introduction
1.1. Hereditary MTC and Related Syndromes
1.2. Sporadic Medullary Thyroid Carcinoma
1.3. Clinical Presentation and Course of the Disease
2. Biomarkers of Medullary Thyroid Carcinoma
2.1. Calcitonin
- Pre-analytical factors: Serum proteases can degrade the calcitonin molecule, necessitating rapid sample processing, refrigerated storage, or use of protease inhibitors [14].
- Biological confounders: Hypergastrinemia, chronic renal insufficiency, proton-pump inhibitor therapy, cigarette smoke, pregnancy, and lactation may elevate calcitonin in the absence of MTC [15].
- Inter-assay variability: Comparability across platforms remains imperfect; consistent laboratory/method use is critical for serial monitoring [18].
- Immunoassay interferences: Rare heterophilic antibodies may still skew results, underscoring the importance of selecting the appropriate assay and performing repeat testing. Serum pretreatment in heterophilic antibody blocking tubes may detect the interference by lowering the measured calcitonin [19].
- Hook effect: It may paradoxically under-report calcitonin in patients with very high levels; its mitigation requires serial serum dilution protocols in high-range samples [20].
2.1.1. Calcitonin Stimulation Testing
2.1.2. Calcitonin Thresholds and Clinical Decision Limits
2.1.3. The Diagnostic Performance of Circulating Calcitonin
2.1.4. The Role of Serum Calcitonin in Screening and Diagnosis of Medullary Thyroid Carcinoma
2.1.5. The Role of Serum Calcitonin in Postoperative Monitoring of Medullary Thyroid Carcinoma
2.2. Procalcitonin
Procalcitonin in Diagnosis and Monitoring of Medullary Thyroid Carcinoma
2.3. Carcinoembryonic Antigen
2.4. Pro-Gastrin-Releasing Peptide
2.5. Carbohydrate Antigen 19.9
3. Doubling Time of Calcitonin and Carcinoembryonic Antigen
4. Measurement of MTC Biomarkers in Fine-Needle Aspiration Washouts
5. Integrated Use of Circulating Markers of Medullary Thyroid Carcinoma
5.1. Screening and Diagnosis of MTC
5.2. Preoperative Assessment
5.3. Postoperative Monitoring
5.4. Analytical and Technical Challenges
6. Discussion
7. Integrated Approaches and Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wells, S.A.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; MacHens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association Guidelines for the Management of Medullary Thyroid Carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef]
- Matrone, A.; Gambale, C.; Prete, A.; Elisei, R. Sporadic Medullary Thyroid Carcinoma: Towards a Precision Medicine. Front. Endocrinol. 2022, 13, 864253. [Google Scholar] [CrossRef] [PubMed]
- Donis-keller, H.; Dou, S.; Chi, D.; Carlson, K.M.; Toshima, K.; Lairmore, T.C.; Howe, J.R.; Moley, J.F.; Goodfellow, P.; Wells, S.A. Mutations in the RET Proto-Oncogene Are Associated with MEN 2a and FMTC. Hum. Mol. Genet. 1993, 2, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, L.M.; Marsh, D.J.; Robinson, B.G.; Schuffenecker, I.; Zedenius, J.; Lips, C.J.M.; Gagel, R.F.; Takai, S.I.; Noll, W.W.; Fink, M.; et al. Genotype-Phenotype Correlation in Multiple Endocrine Neoplasia Type 2: Report of the International RET Mutation Consortium. J. Intern. Med. 1995, 238, 343–346. [Google Scholar] [CrossRef]
- Sanso, G.E.; Domene, H.M.; Garcia Rudaz, M.C.; Pusiol, E.; De Mondino, A.K.; Roque, M.; Ring, A.; Perinetti, H.; Elsner, B.; Iorcansky, S.; et al. Very Early Detection of RET Proto-Oncogene Mutation Is Crucial for Preventive Thyroidectomy in Multiple Endocrine Neoplasia Type 2 Children: Presence of C-Cell Malignant Disease in Asymptomatic Carriers. Cancer 2002, 94, 323–330. [Google Scholar] [CrossRef]
- Molinaro, E.; Romei, C.; Biagini, A.; Sabini, E.; Agate, L.; Mazzeo, S.; Materazzi, G.; Sellari-Franceschini, S.; Ribechini, A.; Torregrossa, L.; et al. Anaplastic Thyroid Carcinoma: From Clinicopathology to Genetics and Advanced Therapies. Nat. Rev. Endocrinol. 2017, 13, 644–660. [Google Scholar] [CrossRef]
- Christensen, S.B.; Ljungberg, O. Mortality from Thyroid Carcinoma in Malmö, Sweden 1960–1977. A Clinical and Pathologic Study of 38 Fatal Cases. Cancer 1984, 54, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Matrone, A.; Gambale, C.; Prete, A.; Piaggi, P.; Cappagli, V.; Bottici, V.; Romei, C.; Ciampi, R.; Torregrossa, L.; De Napoli, L.; et al. Impact of Advanced Age on the Clinical Presentation and Outcome of Sporadic Medullary Thyroid Carcinoma. Cancers 2021, 13, 94. [Google Scholar] [CrossRef]
- Gharib, H.; Mcconahey, W.M.; Tiegs, R.D.; Bergstralh, E.J.; Goellner, J.R.; Grant, C.S.; van Heerden, J.A.; Sizemore, G.W.; Hay, I.D. Medullary Thyroid Carcinoma: Clinicopathologic Features and Long-Term Follow-Up of 65 Patients Treated During 1946 Through 1970. Mayo Clin. Proc. 1992, 67, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Kebebew, E.; Ituarte, P.H.G.; Siperstein, A.E.; Duh, Q.Y.; Clark, O.H. Medullary Thyroid Carcinoma: Clinical Characteristics, Treatment, Prognostic Factors, and a Comparison of Staging Systems. Cancer 2000, 88, 1139–1148. [Google Scholar] [CrossRef]
- Bae, Y.J.; Schaab, M.; Kratzsch, J. Calcitonin as Biomarker for the Medullary Thyroid Carcinoma. Recent Results Cancer Res. 2015, 204, 117–137. [Google Scholar] [CrossRef]
- Bieglmayer, C.; Vierhapper, H.; Dudczak, R.; Niederle, B. Measurement of Calcitonin by Immunoassay Analyzers. Clin. Chem. Lab. Med. 2007, 45, 662–666. [Google Scholar] [CrossRef]
- Schiettecatte, J.; Strasser, O.; Anckaert, E.; Smitz, J. Performance Evaluation of an Automated Electrochemiluminescent Calcitonin (CT) Immunoassay in Diagnosis of Medullary Thyroid Carcinoma. Clin. Biochem. 2016, 49, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Ou, G.; Chen, Q.; Liu, W.; Li, X.; Chen, S.; Wu, X.; Chen, H. Study on the Degradation Rule of Calcitonin in Vitro in Patients with Medullary Thyroid Carcinoma. Biochem. Biophys. Res. Commun. 2018, 507, 106–109. [Google Scholar] [CrossRef]
- d’Herbomez, M.; Caron, P.; Bauters, C.; Do Cao, C.; Schlienger, J.L.; Sapin, R.; Baldet, L.; Carnaille, B.; Wémeau, J.L. Reference Range of Serum Calcitonin Levels in Humans: Influence of Calcitonin Assays, Sex, Age, and Cigarette Smoking. Eur. J. Endocrinol. 2007, 157, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Hypercalcitoninemia in Conditions Other than Medullary Cancers of the Thyroid. Available online: https://pubmed.ncbi.nlm.nih.gov/8734284/ (accessed on 27 June 2025).
- Cvek, M.; Punda, A.; Brekalo, M.; Plosnić, M.; Barić, A.; Kaličanin, D.; Brčić, L.; Vuletić, M.; Gunjača, I.; Torlak Lovrić, V.; et al. Presence or Severity of Hashimoto’s Thyroiditis Does Not Influence Basal Calcitonin Levels: Observations from CROHT Biobank. J. Endocrinol. Investig. 2022, 45, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Benfield, P.; Dhillo, W.S.; White, S.; Chapman, R.; Meeran, K.; Donaldson, M.; Martin, N.M. Need for Revision of Diagnostic Limits for Medullary Thyroid Carcinoma with a New Immunochemiluminometric Calcitonin Assay. Clin. Chem. 2009, 55, 2225–2226. [Google Scholar] [CrossRef]
- Papapetrou, P.D.; Polymeris, A.; Karga, H.; Vaiopoulos, G. Heterophilic Antibodies Causing Falsely High Serum Calcitonin Values. J. Endocrinol. Investig. 2006, 29, 919–923. [Google Scholar] [CrossRef]
- Leboeuf, R.; Langlois, M.F.; Martin, M.; Ahnadi, C.E.; Fink, G.D. “Hook Effect” in Calcitonin Immunoradiometric Assay in Patients with Metastatic Medullary Thyroid Carcinoma: Case Report and Review of the Literature. J. Clin. Endocrinol. Metab. 2006, 91, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Bǎetu, M.; Olariu, C.A.; Stancu, C.; Caragheorgheopol, A.; Ioachim, D.; Moldoveanu, G.; Corneci, C.; Badiu, C. Thresholds of Basal- And Calcium-Stimulated Calcitonin for Diagnosis of Thyroid Malignancy. Horm. Metab. Res. 2021, 53, 779–786. [Google Scholar] [CrossRef]
- Machens, A.; Hoffmann, F.; Sekulla, C.; Dralle, H. Importance of Gender-Specific Calcitonin Thresholds in Screening for Occult Sporadic Medullary Thyroid Cancer. Endocr. Relat. Cancer 2009, 16, 1291–1298. [Google Scholar] [CrossRef]
- Song, E.; Jeon, M.J.; Yoo, H.J.; Bae, S.J.; Kim, T.Y.; Kim, W.B.; Shong, Y.K.; Kim, H.K.; Kim, W.G. Gender-Dependent Reference Range of Serum Calcitonin Levels in Healthy Korean Adults. Endocrinol. Metab. 2021, 36, 365. [Google Scholar] [CrossRef] [PubMed]
- Broecker-Preuss, M.; Simon, D.; Fries, M.; Kornely, E.; Weber, M.; Vardarli, I.; Gilman, E.; Herrmann, K.; Görges, R. Update on Calcitonin Screening for Medullary Thyroid Carcinoma and the Results of a Retrospective Analysis of 12,984 Patients with Thyroid Nodules. Cancers 2023, 15, 2333. [Google Scholar] [CrossRef]
- Vardarli, I.; Weber, M.; Weidemann, F.; Führer, D.; Herrmann, K.; Görges, R. Diagnostic Accuracy of Routine Calcitonin Measurement for the Detection of Medullary Thyroid Carcinoma in the Management of Patients with Nodular Thyroid Disease: A Meta-Analysis. Endocr. Connect. 2021, 10, 358–370. [Google Scholar] [CrossRef]
- Abaalkhail, M.; Alorainy, J.; Alotaibi, O.; Albuhayjan, N.; Alnuwaybit, A.; Alqaryan, S.; Alessa, M. Diagnostic Challenges in Calcitonin Negative Medullary Thyroid Carcinoma: A Systematic Review of 101 Cases. Gland. Surg. 2024, 13, 1785–1804. [Google Scholar] [CrossRef]
- Verbeek, H.H.; de Groot, J.W.B.; Sluiter, W.J.; Kobold, A.C.M.; van den Heuvel, E.R.; Plukker, J.T.; Links, T.P. Calcitonin Testing for Detection of Medullary Thyroid Cancer in People with Thyroid Nodules. Cochrane Database Syst. Rev. 2020, 3, CD010159. [Google Scholar] [CrossRef]
- Schmid, K.W.; Ensinger, C. “Atypical” Medullary Thyroid Carcinoma with Little or No Calcitonin Expression. Virchows Arch. 1998, 433, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Giovanella, L. Serum Calcitonin Negative Medullary Thyroid Carcinoma: A Systematic Review of the Literature. Clin. Chem. Lab. Med. 2015, 53, 1507–1514. [Google Scholar] [CrossRef]
- Costante, G.; Meringolo, D.; Durante, C.; Bianchi, D.; Nocera, M.; Tumino, S.; Crocetti, U.; Attard, M.; Maranghi, M.; Torlontano, M.; et al. Predictive Value of Serum Calcitonin Levels for Preoperative Diagnosis of Medullary Thyroid Carcinoma in a Cohort of 5817 Consecutive Patients with Thyroid Nodules. J. Clin. Endocrinol. Metab. 2007, 92, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Fugazzola, L. Medullary Thyroid Cancer—An Update. Best Pract. Res. Clin. Endocrinol. Metab. 2023, 37, 101655. [Google Scholar] [CrossRef]
- Costante, G.; Durante, C.; Francis, Z.; Schlumberger, M.; Filetti, S. Determination of Calcitonin Levels in C-Cell Disease: Clinical Interest and Potential Pitfalls. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 35–44. [Google Scholar] [CrossRef]
- Medullary Thyroid Carcinoma: Practice Essentials, Pathophysiology, Etiology. Available online: https://emedicine.medscape.com/article/282084-overview (accessed on 28 June 2025).
- Miyauchi, A.; Onishi, T.; Morimoto, S.; Takai, S.; Matsuzuka, F.; Kuma, K.; Maeda, M.; Kumahara, Y. Relation of Doubling Time of Plasma Calcitonin Levels to Prognosis and Recurrence of Medullary Thyroid Carcinoma. Ann. Surg. 1984, 199, 461–466. [Google Scholar] [CrossRef]
- Barbet, J.; Campion, L.; Kraeber-Bodéré, F.; Chatal, J.F. Prognostic Impact of Serum Calcitonin and Carcinoembryonic Antigen Doubling-Times in Patients with Medullary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2005, 90, 6077–6084. [Google Scholar] [CrossRef]
- Meisner, M.; Schmidt, J.; Hüttner, H.; Tschaikowsky, K. The Natural Elimination Rate of Procalcitonin in Patients with Normal and Impaired Renal Function. Intensive Care Med. 2000, 26, S212–S216. [Google Scholar] [CrossRef] [PubMed]
- Meisner, M.; Tschaikowsky, K.; Schnabel, S.; Schmidt, J.; Schüttler, J.; Katalinic, A. Procalcitonin—Influence of Temperature, Storage, Anticoagulation and Arterialor Venous Asservation of Blood Samples on Procalcitonin Concentrations. Clin. Chem. Lab. Med. 1997, 35, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Kratzsch, J.; Willenberg, A.; Frank-Raue, K.; Kempin, U.; Rocktäschel, J.; Raue, F. Procalcitonin Measured by Three Different Assays Is an Excellent Tumor Marker for the Follow-up of Patients with Medullary Thyroid Carcinoma. Clin. Chem. Lab. Med. 2021, 59, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Giordani, I.; Imperiali, M.; Orlandi, F.; Trimboli, P. Measuring Procalcitonin to Overcome Heterophilic-Antibody-Induced Spurious Hypercalcitoninemia. Clin. Chem. Lab. Med. 2018, 56, e191–e193. [Google Scholar] [CrossRef]
- Giovanella, L.; Imperiali, M.; Ferrari, A.; Palumbo, A.; Lippa, L.; Peretti, A.; Graziani, M.S.; Castello, R.; Verburg, F.A. Thyroid Volume Influences Serum Calcitonin Levels in a Thyroid-Healthy Population: Results of a 3-Assay, 519 Subjects Study. Clin. Chem. Lab. Med. 2012, 50, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Salvagno, G.L.; Gelati, M.; Pucci, M.; Lo Cascio, C.; Demonte, D.; Faggian, D.; Plebani, M. Two-Center Comparison of 10 Fully-Automated Commercial Procalcitonin (PCT) Immunoassays. Clin. Chem. Lab. Med. 2020, 58, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Algeciras-Schimnich, A.; Preissner, C.M.; Theobald, J.P.; Finseth, M.S.; Grebe, S.K. Procalcitonin: A Marker for the Diagnosis and Follow-up of Patients with Medullary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2009, 94, 861–868. [Google Scholar] [CrossRef]
- Giovanella, L.; Verburg, F.A.; Imperiali, M.; Valabrega, S.; Trimboli, P.; Ceriani, L. Comparison of Serum Calcitonin and Procalcitonin in Detecting Medullary Thyroid Carcinoma among Patients with Thyroid Nodules. Clin. Chem. Lab. Med. 2013, 51, 1477–1481. [Google Scholar] [CrossRef]
- Giovanella, L.; Imperiali, M.; Piccardo, A.; Taborelli, M.; Verburg, F.A.; Daurizio, F.; Trimboli, P. Procalcitonin Measurement to Screen Medullary Thyroid Carcinoma: A Prospective Evaluation in a Series of 2705 Patients with Thyroid Nodules. Eur. J. Clin. Investig. 2018, 48, e12934. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Lauretta, R.; Barnabei, A.; Valabrega, S.; Romanelli, F.; Giovanella, L.; Appetecchia, M. Procalcitonin as a Postoperative Marker in the Follow-up of Patients Affected by Medullary Thyroid Carcinoma. Int. J. Biol. Markers 2018, 33, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Censi, S.; Manso, J.; Benvenuti, T.; Piva, I.; Iacobone, M.; Mondin, A.; Torresan, F.; Basso, D.; Crivellari, G.; Zovato, S.; et al. The Role of Procalcitonin in the Follow-up of Medullary Thyroid Cancer. Eur. Thyroid. J. 2023, 12, e220161. [Google Scholar] [CrossRef] [PubMed]
- Giovanella, L.; Garo, M.L.; Ceriani, L.; Paone, G.; Campenni’, A.; D’Aurizio, F. Procalcitonin as an Alternative Tumor Marker of Medullary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2021, 106, 3634–3643. [Google Scholar] [CrossRef]
- Clausi, C.; Censi, S.; Zanin, E.; Messina, G.; Piva, I.; Basso, D.; Merante Boschin, I.; Bertazza, L.; Torresan, F.; Iacobone, M.; et al. Combining Procalcitonin and Calcitonin for the Diagnosis of Medullary Thyroid Cancer: A Two-Step Approach. Clin. Endocrinol. 2025; early view. [Google Scholar] [CrossRef]
- Giovanella, L.; Fontana, M.; Keller, F.; Verburg, F.A.; Ceriani, L. Clinical Performance of Calcitonin and Procalcitonin Elecsys ® Immunoassays in Patients with Medullary Thyroid Carcinoma. Clin. Chem. Lab. Med. 2020, 59, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.A.; Meier, C.; Radimerski, T.; Iten, F.; Kränzlin, M.; Müller-Brand, J.; De Groot, J.W.B.; Kema, I.P.; Links, T.P.; Müller, B. Procalcitonin Levels Predict Clinical Course and Progression-Free Survival in Patients with Medullary Thyroid Cancer. Cancer 2010, 116, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Chambliss, A.B.; Patel, K.; Colón-Franco, J.M.; Hayden, J.; Katz, S.E.; Minejima, E.; Woodworth, A. AACC Guidance Document on the Clinical Use of Procalcitonin. J. Appl. Lab. Med. 2023, 8, 598–634. [Google Scholar] [CrossRef]
- Schuetz, P. How to Best Use Procalcitonin to Diagnose Infections and Manage Antibiotic Treatment. Clin. Chem. Lab. Med. 2023, 61, 822–828. [Google Scholar] [CrossRef]
- Kankanala, V.L.; Zubair, M.; Mukkamalla, S.K.R. Carcinoembryonic Antigen; StatPearls, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK578172/ (accessed on 7 July 2025).
- Morimoto, Y.; Takahashi, H.; Arita, A.; Itakura, H.; Fujii, M.; Sekido, Y.; Hata, T.; Fujino, S.; Ogino, T.; Miyoshi, N.; et al. High Postoperative Carcinoembryonic Antigen as an Indicator of High-Risk Stage II Colon Cancer. Oncol. Lett. 2021, 23, 167. [Google Scholar] [CrossRef]
- Machens, A.; Ukkat, J.; Hauptmann, S.; Dralle, H. Abnormal Carcinoembryonic Antigen Levels and Medullary Thyroid Cancer Progression: A Multivariate Analysis. Arch. Surg. 2007, 142, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Passos, I.; Stefanidou, E.; Meditskou-Eythymiadou, S.; Mironidou-Tzouveleki, M.; Manaki, V.; Magra, V.; Laskou, S.; Mantalovas, S.; Pantea, S.; Kesisoglou, I.; et al. A Review of the Significance in Measuring Preoperative and Postoperative Carcinoembryonic Antigen (CEA) Values in Patients with Medullary Thyroid Carcinoma (MTC). Medicina 2021, 57, 609. [Google Scholar] [CrossRef]
- Raue, F.; Frank-Raue, K. Long-Term Follow-Up in Medullary Thyroid Carcinoma Patients. Recent Results Cancer Res. 2025, 223, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Terroir, M.; Caramella, C.; Borget, I.; Bidault, S.; Dromain, C.; El Farsaoui, K.; Deandreis, D.; Grimaldi, S.; Lumbroso, J.; Berdelou, A.; et al. F-18-Dopa Positron Emission Tomography/Computed Tomography Is More Sensitive Than Whole-Body Magnetic Resonance Imaging for the Localization of Persistent/Recurrent Disease of Medullary Thyroid Cancer Patients. Thyroid 2019, 29, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- La Salvia, A.; Fanciulli, G. Progastrin-Releasing Peptide As a Diagnostic Biomarker of Pulmonary and Non-Pulmonary Neuroendocrine Neoplasms. Endocr. Res. 2024, 49, 243–250. [Google Scholar] [CrossRef]
- Sainz de Medrano, J.I.; Laguna, J.; Julian, J.; Filella, X.; Fabregat, A.; Luquin, M.; Hurtado, H.H.; García Humanes, A.; Morales-Ruiz, M.; Fernández-Galán, E. Comparison of Two Automated Immunoassays for Quantifying ProGRP, SCC and HE4 in Serum: Impact on Diagnostic Accuracy. Scand. J. Clin. Lab. Investig. 2025, 85, 116–124. [Google Scholar] [CrossRef]
- Han, X.; Lu, R.; Hu, H.; Guo, L. Application of Serum Markers in Medullary Thyroid Carcinoma. Chin. J. Prev. Med. 2021, 55, 1468–1474. [Google Scholar] [CrossRef]
- Giovanella, L.; Fontana, M.; Keller, F.; Campenni’, A.; Ceriani, L.; Paone, G. Circulating Pro-Gastrin Releasing Peptide (ProGRP) in Patients with Medullary Thyroid Carcinoma. Clin. Chem. Lab. Med. 2021, 59, 1569–1573. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, J.; Cai, M.; Dai, Z.; Fang, L.; Chen, H.; Yu, L.; Lin, Y.; Lin, E.; Wu, G. ProGRP as a Novel Biomarker for the Differential Diagnosis of Medullary Thyroid Carcinoma in Patients with Thyroid Nodules. Endocr. Pract. 2020, 26, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Parra-Robert, M.; Orois, A.; Augé, J.M.; Halperin, I.; Filella, X.; Molina, R. Utility of ProGRP as a Tumor Marker in the Medullary Thyroid Carcinoma. Clin. Chem. Lab. Med. 2017, 55, 441–446. [Google Scholar] [CrossRef]
- Torsetnes, S.B.; Broughton, M.N.; Paus, E.; Halvorsen, T.G.; Reubsaet, L. Determining ProGRP and Isoforms in Lung and Thyroid Cancer Patient Samples: Comparing an MS Method with a Routine Clinical Immunoassay. Anal. Bioanal. Chem. 2014, 406, 2733–2738. [Google Scholar] [CrossRef]
- Miao, Q.; Lv, X.; Luo, L.; Zhang, J.; Cai, B. Exploring the Application Value of Pro-Gastrin-Releasing Peptide in the Clinical Diagnosis and Surgical Treatment of Medullary Thyroid Carcinoma. Cancer Med. 2023, 12, 19576–19582. [Google Scholar] [CrossRef]
- Martins, F.A.; Batista, M.; Augusto, S.L.; Rita, E.A.; Couto, J.; Martins, R.G.; Santos, J.; Martins, T.; Cunha, N.; Rodrigues, F. The Role of Procalcitonin and ProGRP in the Follow-up of Medullary Thyroid Carcinoma. Endocr. Abstr. 2025, 110, e220161. [Google Scholar] [CrossRef]
- Schonebaum, L.; van Balkum, M.; Edward, V.W.; van den Berg, S.; Peeters, R. PRO-Gastrin-Releasing Peptide as an Additional Screening Marker in the Diagnostic Work up for Medullary Thyroid Carcinoma. Endocr. Abstr. 2023, 92. [Google Scholar] [CrossRef]
- Alencar, R.; Kendler, D.B.; Andrade, F.; Nava, C.; Bulzico, D.; Cordeiro De Noronha Pessoa, C.; Corbo, R.; Vaisman, F. CA19-9 as a Predictor of Worse Clinical Outcome in Medullary Thyroid Carcinoma. Eur. Thyroid. J. 2019, 8, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Codrich, M.; Biasotto, A.; D’Aurizio, F. Circulating Biomarkers of Thyroid Cancer: An Appraisal. J. Clin. Med. 2025, 14, 1582. [Google Scholar] [CrossRef] [PubMed]
- Elisei, R.; Lorusso, L.; Romei, C.; Bottici, V.; Mazzeo, S.; Giani, C.; Fiore, E.; Torregrossa, L.; Insilla, A.C.; Basolo, F.; et al. Medullary Thyroid Cancer Secreting Carbohydrate Antigen 19-9 (Ca 19-9): A Fatal Case Report. J. Clin. Endocrinol. Metab. 2013, 98, 3550–3554. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, L.; Romei, C.; Piaggi, P.; Fustini, C.; Molinaro, E.; Agate, L.; Bottici, V.; Viola, D.; Pellegrini, G.; Elisei, R. Ca19.9 Positivity and Doubling Time Are Prognostic Factors of Mortality in Patients with Advanced Medullary Thyroid Cancer with No Evidence of Structural Disease Progression According to Response Evaluation Criteria in Solid Tumors. Thyroid 2021, 31, 1050–1055. [Google Scholar] [CrossRef]
- Kuma Hospital—Tools. Available online: https://en.kuma-h.or.jp/tools (accessed on 28 June 2025).
- Yang, J.H.; Camacho, C.P.; Lindsey, S.C.; Valente, F.O.F.; Andreoni, D.M.; Yamaga, L.Y.; Wagner, J.; Biscolla, R.P.M.; Maciel, R.M.B. The Combined Use of Calcitonin Doubling Time and 18f-Fdg Pet/Ct Improves Prognostic Values in Medullary Thyroid Carcinoma: The Clinical Utility of 18f-Fdg Pet/Ct. Endocr. Pract. 2017, 23, 942–948. [Google Scholar] [CrossRef]
- Romero-Lluch, A.R.; Cuenca-Cuenca, J.I.; Guerrero-Vázquez, R.; Martínez-Ortega, A.J.; Tirado-Hospital, J.L.; Borrego-Dorado, I.; Navarro-González, E. Diagnostic Utility of PET/CT with 18F-DOPA and 18F-FDG in Persistent or Recurrent Medullary Thyroid Carcinoma: The Importance of Calcitonin and Carcinoembryonic Antigen Cutoff. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2004–2013. [Google Scholar] [CrossRef]
- Wang, B.; Huang, J.; Chen, L. Management of Medullary Thyroid Cancer Based on Variation of Carcinoembryonic Antigen and Calcitonin. Front. Endocrinol. 2024, 15, 1418657. [Google Scholar] [CrossRef]
- Trimboli, P.; D’Aurizio, F.; Tozzoli, R.; Giovanella, L. Measurement of Thyroglobulin, Calcitonin, and PTH in FNA Washout Fluids. Clin. Chem. Lab. Med. 2017, 55, 914–925. [Google Scholar] [CrossRef]
- Boi, F.; Maurelli, I.; Pinna, G.; Atzeni, F.; Piga, M.; Lai, M.L.; Mariotti, S. Calcitonin Measurement in Wash-out Fluid from Fine Needle Aspiration of Neck Masses in Patients with Primary and Metastatic Medullary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2007, 92, 2115–2118. [Google Scholar] [CrossRef] [PubMed]
- Kudo, T.; Miyauchi, A.; Ito, Y.; Takamura, Y.; Amino, N.; Hirokawa, M. Diagnosis of Medullary Thyroid Carcinoma by Calcitonin Measurement in Fine-Needle Aspiration Biopsy Specimens. Thyroid 2007, 17, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Diazzi, C.; Madeo, B.; Taliani, E.; Zirilli, L.; Romano, S.; Granata, A.R.M.; De Santis, M.C.; Simoni, M.; Cioni, K.; Carani, C.; et al. The Diagnostic Value of Calcitonin Measurement in Wash-out Fluid from Fine-Needle Aspiration of Thyroid Nodules in the Diagnosis of Medullary Thyroid Cancer. Endocr. Pract. 2013, 19, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Cremonini, N.; Ceriani, L.; Saggiorato, E.; Guidobaldi, L.; Romanelli, F.; Ventura, C.; Laurenti, O.; Messuti, I.; Solaroli, E.; et al. Calcitonin Measurement in Aspiration Needle Washout Fluids Has Higher Sensitivity than Cytology in Detecting Medullary Thyroid Cancer: A Retrospective Multicentre Study. Clin. Endocrinol. 2014, 80, 135–140. [Google Scholar] [CrossRef]
- De Crea, C.; Raffaelli, M.; Maccora, D.; Carrozza, C.; Canu, G.; Fadda, G.; Bellantone, R.; Lombardi, C.P. Calcitonin Measurement in Fine-Needle Aspirate Washouts vs. Cytologic Examination for Diagnosis of Primary or Metastatic Medullary Thyroid Carcinoma. Acta Otorhinolaryngol. Ital. 2014, 34, 399. [Google Scholar] [PubMed]
- Giovanella, L.; Ceriani, L.; Bongiovanni, M. Calcitonin Measurement on Fine Needle Washouts: Preanalytical Issues and Normal Reference Values. Diagn. Cytopathol. 2013, 41, 226–229. [Google Scholar] [CrossRef]
- Cho, H.W.; Kim, S.H.; Cho, Y.; Jeong, S.H.; Lee, S.G. Concordance of Three Automated Procalcitonin Immunoassays at Medical Decision Points. Ann. Lab. Med. 2021, 41, 419–423. [Google Scholar] [CrossRef]
- Huynh, H.H.; Bœuf, A.; Pfannkuche, J.; Schuetz, P.; Thelen, M.; Nordin, G.; Van Der Hagen, E.; Kaiser, P.; Kesseler, D.; Badrick, T.; et al. Harmonization Status of Procalcitonin Measurements: What Do Comparison Studies and EQA Schemes Tell Us? Clin. Chem. Lab. Med. 2021, 59, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Partyka, K.; Maupin, K.A.; Brand, R.E.; Haab, B.B. Diverse Monoclonal Antibodies against the CA 19-9 Antigen Show Variation in Binding Specificity with Consequences for Clinical Interpretation. Proteomics 2012, 12, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Kremser, M.; Weiss, N.; Kaufmann-Stoeck, A.; Vierbaum, L.; Schmitz, A.; Schellenberg, I.; Holdenrieder, S. Longitudinal Evaluation of External Quality Assessment Results for CA 15-3, CA 19-9, and CA 125. Front. Mol. Biosci. 2024, 11, 1401619. [Google Scholar] [CrossRef]
- Handling, C. Transport, Processing and Storage of Blood Specimens for Routine Laboratory Examinations; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; 84p. [Google Scholar]
- Fu, W.; Yue, Y.; Song, Y.; Zhang, S.; Shi, J.; Zhao, R.; Wang, Q.; Zhang, R. Comparable Analysis of Six Immunoassays for Carcinoembryonic Antigen Detection. Heliyon 2024, 10, e25158. [Google Scholar] [CrossRef] [PubMed]
- Wojtalewicz, N.; Vierbaum, L.; Kaufmann, A.; Schellenberg, I.; Holdenrieder, S. Longitudinal Evaluation of AFP and CEA External Proficiency Testing Reveals Need for Method Harmonization. Diagnostics 2023, 13, 2019. [Google Scholar] [CrossRef]
- La’ulu, S.L.; Roberts, W.L. Performance Characteristics of Five Automated CA 19-9 Assays. Am. J. Clin. Pathol. 2007, 127, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J.; Algeciras-Schimnich, A.; Davis, T.E.; Diana, T.; Feldkamp, J.; Karger, S.; König, J.; Lupo, M.A.; Raue, F.; Ringel, M.D.; et al. United States and European Multicenter Prospective Study for the Analytical Performance and Clinical Validation of a Novel Sensitive Fully Automated Immunoassay for Calcitonin. Clin. Chem. 2017, 63, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Kiriakopoulos, A.; Giannakis, P.; Menenakos, E. Calcitonin: Current Concepts and Differential Diagnosis. Ther. Adv. Endocrinol. Metab. 2022, 13, 20420188221099344. [Google Scholar] [CrossRef]
- Korse, C.M.; Holdenrieder, S.; Zhi, X.Y.; Zhang, X.; Qiu, L.; Geistanger, A.; Lisy, M.R.; Wehnl, B.; van den Broek, D.; Escudero, J.M.; et al. Multicenter Evaluation of a New Progastrin-Releasing Peptide (ProGRP) Immunoassay across Europe and China. Clin. Chim. Acta 2015, 438, 388–395. [Google Scholar] [CrossRef]
RET Codon/Exon | Syndrome | Clinical Features | Behavior |
---|---|---|---|
634 (Exon 11) | MEN2A | MTC, Pheochromocytoma, Hyperparathyroidism | Aggressive behavior |
609, 611, 618, 620 (Exon 10) | MEN2A, FMTC | MTC ± Pheochromocytoma | Moderate aggressiveness |
768 (Exon 13), 804 (Exon 14), 891 (Exon 15) | FMTC | MTC (only) | Low–moderate aggressiveness |
918 (Exon 16) | MEN2B | Early, aggressive, MTC mucosal neuromas, marfanoid habitus | Early onset, highly aggressive |
Follow-Up | ER | BIR | BIR | SIR |
---|---|---|---|---|
Early | Negative US Negative calcitonin | Negative US calcitonin ≤ 150 pg/mL | Calcitonin > 150 pg/mL | -Positive imaging -Positive biopsy |
Long-term | FU at 6 months -Negative: US/CT 1–2/yr -Positive: see BIR or SIR | Visit at 6 months US/CT 1/six months calcitonin DT -Negative: check 2/yr -Positive imaging (SIR) -Calcitonin > 150 pg/mL (BIR) | Imaging -CT/MR/PET/CT -Positive: (SIR) -Negative: Calcitonin, CEA, and calcitonin DT 2–4/yr | -Surgery -EBRT -Thermal ablations -Systemic therapies |
Reference | Study (No of Patients) | Patients Cohort | ProCT Cutoff | Sensitivity | Specificity |
---|---|---|---|---|---|
Algeciras 2009 [42] | Retrospective (835) | Mixed benign vs. active and inactive MTC | 0.10 pg/mL | 91% | 96% |
Giovanella 2013 [43] | Retrospective (1236) | Thyroid nodules | 0.10 pg/mL | 100% | 100% |
Giovanella 2018 [44] | Prospective (2705) | Thyroid nodules | 0.155 pg/mL | 100% | 99.7% |
Trimboli 2018 [45] | Retrospective (55) | Postoperative/follow-up | 0.32 pg/mL | 92% | 98% |
Censi 2023 [46] | Retrospective (90) | Postoperative/follow-up | 0.12 pg/mL | 100% | 84% |
Giovanella 2021 [47] | Meta-analysis (5817) | Diagnosis/follow-up | 0.10 pg/mL | 90% | 100% |
Screening/diagnosis | Most studies consistently showed similar sensitivity/specificity of calcitonin and ProCT, with better NPV of the latter. Other studies showed superior sensitivity of calcitonin with ProCT serving as a rule-out test in patients with calcitonin concentrations within the gray area (i.e., 10–100 pg/mL) |
Postoperative follow-up | Strong ability to detect residual/relapsing disease |
Prognosis/Prediction | The ProCT/calcitonin ratio correlates with outcomes (overall and disease-free survival) |
Technical advantages | Greater assay stability and less susceptible to pre-analytical issues |
Study | Patients | Sensitivity | Specificity | TP | FN | FP | TN |
---|---|---|---|---|---|---|---|
Han XD 2021 [61] | 360 | 96.2 | 99.3 | 101 | 4 | 2 | 253 |
Giovanella 2021 [62] | 254 | 75.9 | 97.9 | 51 | 16 | 4 | 183 |
Liang 2020 [63] | 2446 | 53.8 | 96.7 | 114 | 98 | 73 | 2161 |
Parra-Robert 2017 [64] | 38 | 88.9 | 76.9 | 20 | 2 | 4 | 12 |
Torsetnes 2014 [65] | 190 | 80.0 | 90.0 | 48 | 12 | 13 | 117 |
Miao 2023 [66] | 236 | 71.4 | 92.7 | 71 | 29 | 10 | 126 |
Martins Fernandes 2025 [67] | 64 | 88.9 | 97.9 | 17 | 2 | 1 | 44 |
Schonebaum 2023 [68] | 278 | 70.4 | 99.6 | 59 | 24 | 1 | 194 |
Doubling Time (Years) | Risk of Structural Recurrence | Prognosis |
---|---|---|
<1/2 | Present | Very poor, short survival times |
<1 | High/Present | Poor |
1–2 | Intermediate | Intermediate |
>2 | Low | Favorable |
Never doubling | Very low | Good |
Lesions (n) | Assay | Cutoff, ng/L | Sensitivity, % | Specificity, % | |
---|---|---|---|---|---|
Boi, 2007 [78] | 36 | CLIA | 36 | 100 | 100 |
Kudo, 2007 [79] | 14 | NR | 67 | 100 | NR |
Diazzi, 2013 [80] | 60 | CLIA | 17 | 100 | 88.8 |
Trimboli, 2014 [81] | 90 | CLIA | 39.6 | 100 | 100 |
De Crea, 2014 [82] | 62 | CLIA | 10.4 | 89 | 100 |
Sampling | Representative of the lesion [lymph node or thyroid nodule] |
Washing solution | 0.9% saline solution [1 mL] |
Collection | Rinse the needle ≥ 2 times, collect the amount of washout fluid and keep on ice |
Pre-treatment | Mix and centrifuge the sample |
Measurement | Consider interferences and perform dilution or batching to detect “hook effect” in case of undetectable FNA-calcitonin |
Interpretation | Use an assay-specific cutoff adapted to the local population |
Biomarker | Pre-Analytical Aspects | Analytical Aspects | Post-Analytical Aspects | ||
---|---|---|---|---|---|
Healthy Subject | Sample | Methods | WHO IS | Reference Interval Clinical Decision Cutoff | |
CA 19-9 | No peculiar preparation | No peculiar recommendations [88] | Immunoassay | Not available | Method-dependent [89,90] |
CEA | No peculiar preparation Blood levels influenced by smoking | No peculiar recommendations [88] | Immunoassay | WHO 1st IS 73/601 | Method-dependent [87,91] |
Calcitonin | No peculiar preparation Blood levels influenced by age, sex, BMI, and smoking | Instability at RT, ice-bath storage after blood collection Centrifuge and analyze preferably within 30 min of sampling | Immunoassay | WHO 2nd IS 89/620 | Method-dependent [92,93] |
ProCT | No peculiar preparation | Greater stability at RT than CT | Immunoassay | Not available | 0.1 ng/mL [44] |
proGRP | No peculiar preparation Blood levels influenced by age, BMI, and smoking | No peculiar recommendations [88] | Immunoassay | Not available | Method- and matrix-dependent [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovanella, L.; D’Aurizio, F.; Petranović Ovčariček, P. Circulating Biomarkers in Medullary Thyroid Carcinoma: Bridging Laboratory Complexities and Clinical Application Through Algorithm Design. J. Clin. Med. 2025, 14, 5645. https://doi.org/10.3390/jcm14165645
Giovanella L, D’Aurizio F, Petranović Ovčariček P. Circulating Biomarkers in Medullary Thyroid Carcinoma: Bridging Laboratory Complexities and Clinical Application Through Algorithm Design. Journal of Clinical Medicine. 2025; 14(16):5645. https://doi.org/10.3390/jcm14165645
Chicago/Turabian StyleGiovanella, Luca, Federica D’Aurizio, and Petra Petranović Ovčariček. 2025. "Circulating Biomarkers in Medullary Thyroid Carcinoma: Bridging Laboratory Complexities and Clinical Application Through Algorithm Design" Journal of Clinical Medicine 14, no. 16: 5645. https://doi.org/10.3390/jcm14165645
APA StyleGiovanella, L., D’Aurizio, F., & Petranović Ovčariček, P. (2025). Circulating Biomarkers in Medullary Thyroid Carcinoma: Bridging Laboratory Complexities and Clinical Application Through Algorithm Design. Journal of Clinical Medicine, 14(16), 5645. https://doi.org/10.3390/jcm14165645