Skeletal Health in Pituitary and Neuroendocrine Diseases: Prevention and Treatments of Bone Fragility
Abstract
1. Introduction
2. Methods
3. Skeletal Health in Pituitary and Neuroendocrine Diseases: Osteopenia, Osteoporosis, and Fractures
3.1. Osteopenia
3.2. Osteoporosis
Authors | Year of Publication | Disease Model | Animal/Cell Models | Mechanistic Pathways | Main Results |
---|---|---|---|---|---|
Sjögren et al. [17] | 2002 | GHD | Mice transgenic model (IGF-I-/-) | liver-specific IGF-I inactivation on skeletal growth and adult bone metabolism | Reduced periosteal bone formation, and adult axial skeletal growth, osteopenia. |
Ogata et al. [19] | 2000 | GHD | Mice transgenic Model IRS-1(-/-) | deletions of the signaling molecules IRS-1 and -2 | Impaired osteoblast proliferation, differentiation, and support of osteoclastogenesis, resulting in low-turnover osteopenia. |
Bataille-Simoneau et al. [74] | 1996 | Hyperprolactinemia | Human osteosarcoma cell lines (MG-63 and Saos-2) | PRL-R transcript enhanced in cultured cells | Prolactin may exert a direct inhibitory impact on the functioning of osteoblasts. |
3.3. Vertebral Fractures
4. Treatment with Bone-Active Drugs in Pituitary and Neuroendocrine Disorders
5. Preventive Vitamin D Supplementation with Different Formulations in Skeletal Fragility of Pituitary and Neuroendocrine Diseases
6. Limitations, Future Direction and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiloiro, S.; Costanza, F.; Riccardi, E.; Giampietro, A.; De Marinis, L.; Bianchi, A.; Pontecorvi, A.; Giustina, A. Vitamin D in pituitary driven osteopathies. Pituitary 2024, 27, 847–859. [Google Scholar] [CrossRef]
- Mazziotti, G.; Frara, S.; Giustina, A. Pituitary Diseases and Bone. Endocr. Rev. 2018, 39, 440–488. [Google Scholar] [CrossRef] [PubMed]
- Uygur, M.M.; Frara, S.; di Filippo, L.; Giustina, A. New tools for bone health assessment in secreting pituitary adenomas. Trends Endocrinol. Metab. 2023, 34, 231–242. [Google Scholar] [CrossRef]
- Giustina, A. Acromegaly and Bone: An Update. Endocrinol. Metab. 2023, 38, 655–666. [Google Scholar] [CrossRef]
- Bioletto, F.; Barale, M.; Prencipe, N.; Berton, A.M.; Parasiliti-Caprino, M.; Gasco, V.; Ghigo, E.; Procopio, M.; Grottoli, S. Trabecular Bone Score as an Index of Bone Fragility in Patients with Acromegaly: A Systematic Review and Meta-Analysis. Neuroendocrinology 2023, 113, 395–405. [Google Scholar] [CrossRef]
- Mazziotti, G.; Bilezikian, J.; Canalis, E.; Cocchi, D.; Giustina, A. New understanding and treatments for osteoporosis. Endocrine 2012, 41, 58–69. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Schousboe, J.T.; Shepherd, J.A.; Bilezikian, J.P.; Baim, S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2013, 16, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Wengander, S.; Trimpou, P.; Papakokkinou, E.; Ragnarsson, O. The incidence of endogenous Cushing’s syndrome in the modern era. Clin. Endocrinol. 2019, 91, 263–270. [Google Scholar] [CrossRef]
- Pivonello, R.; Isidori, A.M.; De Martino, M.C.; Newell-Price, J.; Biller, B.M.; Colao, A. Complications of Cushing’s syndrome: State of the art. Lancet Diabetes Endocrinol. 2016, 4, 611–629. [Google Scholar] [CrossRef]
- Minetto, M.; Reimondo, G.; Osella, G.; Ventura, M.; Angeli, A.; Terzolo, M. Bone loss is more severe in primary adrenal than in pituitary-dependent Cushing’s syndrome. Osteoporos. Int. 2004, 15, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, N.; Nomura, K.; Ohmori, K.; Kato, Y.; Itoh, T.; Takano, K. Osteoporosis is more prevalent in adrenal than in pituitary Cushing’s syndrome. Endocr. J. 2003, 50, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pecori Giraldi, F.; Moro, M.; Cavagnini, F. Study Group on the Hypothalamo–Pituitary–Adrenal Axis of the Italian Society of E. Gender-related differences in the presentation and course of Cushing’s disease. J. Clin. Endocrinol. Metab. 2003, 88, 1554–1558. [Google Scholar] [CrossRef]
- Canalis, E.; Mazziotti, G.; Giustina, A.; Bilezikian, J.P. Glucocorticoid-induced osteoporosis: Pathophysiology and therapy. Osteoporos. Int. 2007, 18, 1319–1328. [Google Scholar] [CrossRef]
- van der Eerden, A.W.; den Heijer, M.; Oyen, W.J.; Hermus, A.R. Cushing’s syndrome and bone mineral density: Lowest Z scores in young patients. Neth. J. Med. 2007, 65, 137–141. [Google Scholar]
- Giustina, A.; Mazziotti, G.; Canalis, E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 2008, 29, 535–559. [Google Scholar] [CrossRef]
- Sjogren, K.; Sheng, M.; Moverare, S.; Liu, J.L.; Wallenius, K.; Törnell, J.; Isaksson, O.; Jansson, J.O.; Mohan, S.; Ohlsson, C. Effects of liver-derived insulin-like growth factor I on bone metabolism in mice. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2002, 17, 1977–1987. [Google Scholar] [CrossRef]
- Wang, Y.; Nishida, S.; Elalieh, H.Z.; Long, R.K.; Halloran, B.P.; Bikle, D.D. Role of IGF-I signaling in regulating osteoclastogenesis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2006, 21, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xuan, S.; Bouxsein, M.L.; Long, R.K.; Halloran, B.P.; Bikle, D.D. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J. Biol. Chem. 2002, 277, 44005–44012. [Google Scholar] [CrossRef]
- Ogata, N.; Chikazu, D.; Kubota, N.; T Terauchi, Y.; Tobe, K.; Azuma, Y.; Ohta, T.; Kadowaki, T.; Nakamura, K.; Kawaguchi, H. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J. Clin. Investig. 2000, 105, 935–943. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ogata, N.; Shinoda, Y.; Akune, T.; Kamekura, S.; Terauchi, Y.; Kadowaki, T.; Hoshi, K.; Chung, U.I.; Nakamura, K.; et al. Insulin receptor substrate-1 is required for bone anabolic function of parathyroid hormone in mice. Endocrinology 2005, 146, 2620–2628. [Google Scholar] [CrossRef]
- Jones, J.I.; Clemmons, D.R. Insulin-like growth factors and their binding proteins: Biological actions. Endocr. Rev. 1995, 16, 3–34. [Google Scholar]
- Silha, J.V.; Mishra, S.; Rosen, C.J.; Beamer, W.G.; Turner, R.T.; Powell, D.R.; Murphy, L.J. Perturbations in bone formation and resorption in insulin-like growth factor binding protein-3 transgenic mice. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2003, 18, 1834–1841. [Google Scholar] [CrossRef]
- Monson, J.P.; Drake, W.M.; Carroll, P.V.; Weaver, J.U.; Rodriguez-Arnao, J.; Savage, M.O. Influence of growth hormone on accretion of bone mass. Horm. Res. 2002, 58 (Suppl. 1), 52–56. [Google Scholar] [CrossRef]
- Rosen, T.; Hansson, T.; Granhed, H.; Szucs, J.; Bengtsson, B.A. Reduced bone mineral content in adult patients with growth hormone deficiency. Acta Endocrinol. 1993, 129, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Holmes, S.J.; Economou, G.; Whitehouse, R.W.; Adams, J.E.; Shalet, S.M. Reduced bone mineral density in patients with adult onset growth hormone deficiency. J. Clin. Endocrinol. Metab. 1994, 78, 669–674. [Google Scholar] [PubMed]
- Murray, R.D.; Columb, B.; Adams, J.E.; Shalet, S.M. Low bone mass is an infrequent feature of the adult growth hormone deficiency syndrome in middle-age adults and the elderly. J. Clin. Endocrinol. Metab. 2004, 89, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Toogood, A.A.; Adams, J.E.; O’Neill, P.A.; Shalet, S.M. Elderly patients with adult-onset growth hormone deficiency are not osteopenic. J. Clin. Endocrinol. Metab. 1997, 82, 1462–1466. [Google Scholar] [CrossRef]
- Beshyah, S.A.; Freemantle, C.; Thomas, E.; Rutherford, O.; Page, B.; Murphy, M.; Johnston, D.G. Abnormal body composition and reduced bone mass in growth hormone deficient hypopituitary adults. Clin. Endocrinol. 1995, 42, 179–189. [Google Scholar] [CrossRef]
- Murray, R.D.; Adams, J.E.; Shalet, S.M. A densitometric and morphometric analysis of the skeleton in adults with varying degrees of growth hormone deficiency. J. Clin. Endocrinol. Metab. 2006, 91, 432–438. [Google Scholar] [CrossRef]
- Colao, A.; Di Somma, C.; Pivonello, R.; Loche, S.; Aimaretti, G.; Cerbone, G.; Faggiano, A.; Corneli, G.; Ghigo, E.; Lombardi, G. Bone loss is correlated to the severity of growth hormone deficiency in adult patients with hypopituitarism. J. Clin. Endocrinol. Metab. 1999, 84, 1919–1924. [Google Scholar] [CrossRef]
- Corneli, G.; Di Somma, C.; Prodam, F.; Bellone, J.; Bellone, S.; Gasco, V.; Baldelli, R.; Rovere, S.; Schneider, H.J.; Gargantini, L.; et al. Cut-off limits of the GH response to GHRH plus arginine test and IGF-I levels for the diagnosis of GH deficiency in late adolescents and young adults. Eur. J. Endocrinol. 2007, 157, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Beckers, V.; Milet, J.; Legros, J.J. Prolonged treatment with recombined growth hormone improves bone measures: Study of body composition in 21 deficient adults on treatment. Ann. Endocrinol. 2001, 62, 507–515. [Google Scholar]
- Gómez, J.M.; Gómez, N.; Fiter, J.; Soler, J. Effects of long-term treatment with GH in the bone mineral density of adults with hypopituitarism and GH deficiency and after discontinuation of GH replacement. Horm. Metab. Res. 2000, 32, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Johanson, N.A.; Vigorita, V.J.; Goldman, A.B.; Salvati, E.A. Acromegalic arthropathy of the hip. Clin. Orthop. Relat. Res. 1983, 173, 130–139. [Google Scholar] [CrossRef]
- Auriemma, R.S.; Pirchio, R.; Pivonello, C.; Garifalos, F.; Colao, A.; Pivonello, R. Approach to the Patient With Prolactinoma. J. Clin. Endocrinol. Metab. 2023, 108, 2400–2423. [Google Scholar] [CrossRef]
- Barabash, N.; Tykhonova, T.; Dorosh, D.; Martymianova, L. Heterogeneity of clinical manifestations of hyperprolactinemia (review and own observations). Georgian Med. News 2022, 330, 32–36. [Google Scholar]
- Mancini, T.; Casanueva, F.F.; Giustina, A. Hyperprolactinemia and prolactinomas. Endocrinol. Metab. Clin. N. Am. 2008, 37, 67–99. [Google Scholar] [CrossRef]
- Di Somma, C.; Colao, A.; Di Sarno, A.; Klain, M.; Landi, M.L.; Facciolli, G.; Pivonello, R.; Panza, N.; Salvatore, M.; Lombardi, G. Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J. Clin. Endocrinol. Metab. 1998, 83, 807–813. [Google Scholar] [CrossRef]
- Naliato, E.C.; Farias, M.L.; Braucks, G.R.; Costa, F.S.; Zylberberg, D.; Violante, A.H. Prevalence of osteopenia in men with prolactinoma. J. Endocrinol. Investig. 2005, 28, 12–17. [Google Scholar] [CrossRef]
- Biller, B.M.; Baum, H.B.; Rosenthal, D.I.; Saxe, V.C.; Charpie, P.M.; Klibanski, A. Progressive trabecular osteopenia in women with hyperprolactinemic amenorrhea. J. Clin. Endocrinol. Metab. 1992, 75, 692–697. [Google Scholar]
- Cann, C.E.; Martin, M.C.; Genant, H.K.; Jaffe, R.B. Decreased spinal mineral content in amenorrheic women. Jama 1984, 251, 626–629. [Google Scholar] [CrossRef]
- Ragnarsson, O.; Nyström, H.F.; Johannsson, G. Glucocorticoid replacement therapy is independently associated with reduced bone mineral density in women with hypopituitarism. Clin. Endocrinol. 2012, 76, 246–252. [Google Scholar] [CrossRef]
- Miller, K.K.; Biller, B.M.; Hier, J.; Arena, E.; Klibanski, A. Androgens and bone density in women with hypopituitarism. J. Clin. Endocrinol. Metab. 2002, 87, 2770–2776. [Google Scholar] [CrossRef] [PubMed]
- Okinaga, H.; Matsuno, A.; Okazaki, R. High risk of osteopenia and bone derangement in postsurgical patients with craniopharyngiomas, pituitary adenomas and other parasellar lesions. Endocr. J. 2005, 52, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Laway, B.A.; Sahoo, J.; Dhiman, V.; Singh, P.; Rao, S.D.; Korbonits, M.; Bhadada, S.K.; Dutta, P. Bone mineral density, turnover, and microarchitecture assessed by second-generation high-resolution peripheral quantitative computed tomography in patients with Sheehan’s syndrome. Osteoporos. Int. 2024, 35, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Chihaoui, M.; Yazidi, M.; Chaker, F.; Belouidhnine, M.; Kanoun, F.; Lamine, F.; Ftouhi, B.; Sahli, H.; Slimane, H. Bone Mineral Density in Sheehan’s Syndrome; Prevalence of Low Bone Mass and Associated Factors. J. Clin. Densitom. 2016, 19, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Acibucu, F.; Kilicli, F.; Dokmetas, H.S. Assessment of bone mineral density in patients with Sheehan’s syndrome. Gynecol. Endocrinol. 2014, 30, 532–535. [Google Scholar] [CrossRef]
- Agarwal, P.; Gomez, R.; Bhatia, E.; Yadav, S. Decreased bone mineral density in women with Sheehan’s syndrome and improvement following oestrogen replacement and nutritional supplementation. J. Bone Miner. Metab. 2019, 37, 171–178. [Google Scholar] [CrossRef]
- Moura, M.D.; Navarro, P.A.; Silva de Sá, M.F.; Ferriani, R.A.; Unzer, S.M.; Reis, R.M. Hypogonadotropic hypogonadism: Retrospective analysis of 19 cases. Int. J. Gynaecol. Obstet. 2000, 71, 141–145. [Google Scholar] [CrossRef]
- Rigotti, N.A.; Neer, R.M.; Jameson, L. Osteopenia and bone fractures in a man with anorexia nervosa and hypogonadism. JAMA 1986, 256, 385–388. [Google Scholar] [CrossRef]
- Quintos, J.B.; Krotz, S.; Vogiatzi, M.G.; Kralickova, M.; New, M.I. Partial hypogonadotropic hypogonadism associated with the Leu266Arg and Gln106Arg mutation of the gonadotropin-releasing hormone receptor. J. Pediatr. Endocrinol. Metab. 2009, 22, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Thienpont, E.; Bellemans, J.; Samson, I.; Fabry, G. Stress fracture of the inferior and superior pubic ramus in a man with anorexia nervosa and hypogonadism. Acta Orthop. Belg. 2000, 66, 297–301. [Google Scholar]
- Skarda, S.T.; Burge, M.R. Prospective evaluation of risk factors for exercise-induced hypogonadism in male runners. West. J. Med. 1998, 169, 9–12. [Google Scholar]
- Misra, M. Long-term skeletal effects of eating disorders with onset in adolescence. Ann. N. Y Acad. Sci. 2008, 1135, 212–218. [Google Scholar] [CrossRef]
- Lee, P.D. Effects of growth hormone treatment in children with Prader-Willi syndrome. Growth Horm. IGF Res. 2000, 10 (Suppl. B), S75–S79. [Google Scholar] [CrossRef]
- Sloboda, N.; Renard, E.; Lambert, L.; Bonnet, C.; Leheup, B.; Todosi, C.; Schmitt, E.; Feillet, F.; Feigerlova, E.; Piton, A.; et al. MAST1-related mega-corpus-callosum syndrome with central hypogonadism. Eur. J. Med. Genet. 2023, 66, 104853. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.Y.; Chen, R.; Ma, M.; Lin, S.Q.; Zhang, Y.W.; Wang, Y.P. Clinical characteristics of 138 Chinese female patients with idiopathic hypogonadotropic hypogonadism. Endocr. Connect. 2017, 6, 800–810. [Google Scholar] [CrossRef]
- Finkelstein, J.S.; Klibanski, A.; Neer, R.M.; Greenspan, S.L.; Rosenthal, D.I.; Crowley, W.F., Jr. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann. Intern. Med. 1987, 106, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Antonio, L.; Caerels, S.; Jardi, F.; Delaunay, E.; Vanderschueren, D. Testosterone replacement in congenital hypogonadotropic hypogonadism maintains bone density but has only limited osteoanabolic effects. Andrology 2019, 7, 302–306. [Google Scholar] [CrossRef]
- Ostertag, A.; Papadakis, G.E.; Collet, C.; Trabado, S.; Maione, L.; Pitteloud, N.; Bouligand, J.; De Vernejoul, M.C.; Cohen-Solal, M.; Young, J. Compromised Volumetric Bone Density and Microarchitecture in Men With Congenital Hypogonadotropic Hypogonadism. J. Clin. Endocrinol. Metab. 2021, 106, e3312–e3326. [Google Scholar] [CrossRef]
- Varimo, T.; Miettinen, P.J.; Laine, T.; Salonen, P.; Tenhola, S.; Voutilainen, R.; Huopio, H.; Hero, M.; Raivio, T. Bone structure assessed with pQCT in prepubertal males with delayed puberty or congenital hypogonadotropic hypogonadism. Clin. Endocrinol. 2021, 95, 107–116. [Google Scholar] [CrossRef]
- Lee, M.J.; Ryu, H.K.; An, S.Y.; Jeon, J.Y.; Lee, J.I.; Chung, Y.S. Testosterone replacement and bone mineral density in male pituitary tumor patients. Endocrinol. Metab. 2014, 29, 48–53. [Google Scholar] [CrossRef]
- Mirza, F.; Canalis, E. Management of endocrine disease: Secondary osteoporosis: Pathophysiology and management. Eur. J. Endocrinol. 2015, 173, R131–R151. [Google Scholar] [CrossRef] [PubMed]
- Navarranne, A.; Tabarin, A.; Lafage, M.H.; Roger, P. Isolated osteoporosis in a case with Cushing’s disease: Development after treatment. Ann. Endocrinol. 1991, 52, 113–118. [Google Scholar]
- Hong, A.R.; Kim, J.H.; Kim, S.W.; Kim, S.Y.; Shin, C.S. Trabecular bone score as a skeletal fragility index in acromegaly patients. Osteoporos. Int. 2016, 27, 1123–1129. [Google Scholar] [CrossRef]
- Godang, K.; Olarescu, N.C.; Bollerslev, J.; Heck, A. Treatment of acromegaly increases BMD but reduces trabecular bone score: A longitudinal study. Eur. J. Endocrinol. 2016, 175, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Dharmshaktu, P.; Aggarwal, A.; Gaurav, K.; Bansal, R.; Devru, N.; Garga, U.C.; Kulshreshtha, B. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss. J. Postgrad. Med. 2016, 62, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.S.; Klibanski, A.; Neer, R.M.; Doppelt, S.H.; Rosenthal, D.I.; Segre, G.V.; Crowley, W.F., Jr. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 1989, 69, 776–783. [Google Scholar] [CrossRef]
- Lubushitzky, R.; Front, D.; Iosilevsky, G.; Bettman, L.; Frenkel, A.; Kolodny, G.M.; Israel, O. Quantitative bone SPECT in young males with delayed puberty and hypogonadism: Implications for treatment of low bone mineral density. J. Nucl. Med. 1998, 39, 104–107. [Google Scholar]
- De Rosa, M.; Paesano, L.; Nuzzo, V.; Zarrilli, S.; Del Puente, A.; Oriente, P.; Lupoli, G. Bone mineral density and bone markers in hypogonadotropic and hypergonadotropic hypogonadal men after prolonged testosterone treatment. J. Endocrinol. Invest. 2001, 24, 246–252. [Google Scholar] [CrossRef]
- Al Mukaddam, M.; Rajapakse, C.S.; Bhagat, Y.A.; Wehrli, F.W.; Guo, W.; Peachey, H.; LeBeau, S.O.; Zemel, B.S.; Wang, C. Swerdloff RS et al. Effects of testosterone and growth hormone on the structural and mechanical properties of bone by micro-MRI in the distal tibia of men with hypopituitarism. J. Clin. Endocrinol. Metab. 2014, 99, 1236–1244. [Google Scholar] [CrossRef]
- Yun, S.J.; Sang, H.; Park, S.Y.; Chin, S.O. Effect of Hyperprolactinemia on Bone Metabolism: Focusing on Osteopenia/Osteoporosis. Int. J. Mol. Sci. 2024, 25, 1474. [Google Scholar] [CrossRef]
- Bataille-Simoneau, N.; Gerland, K.; Chappard, D.; Basle, M.F.; Mercier, L. Expression of prolactin receptors in human osteosarcoma cells. Biochem. Biophys. Res. Commun. 1996, 229, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Wongdee, K.; Tulalamba, W.; Thongbunchoo, J.; Krishnamra, N.; Charoenphandhu, N. Prolactin alters the mRNA expression of osteoblast-derived osteoclastogenic factors in osteoblast-like UMR106 cells. Mol. Cell Biochem. 2011, 349, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Suzuki, N.; Takagi, C.; Ikegame, M.; Yamamoto, T.; Takahashi, A.; Moriyama, S.; Hattori, A.; Sakamoto, T. Prolactin inhibits osteoclastic activity in the goldfish scale: A novel direct action of prolactin in teleosts. Zool. Sci. 2008, 25, 739–745. [Google Scholar] [CrossRef]
- Schlechte, J.; el-Khoury, G.; Kathol, M.; Walkner, L. Forearm and vertebral bone mineral in treated and untreated hyperprolactinemic amenorrhea. J. Clin. Endocrinol. Metab. 1987, 64, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Klibanski, A.; Neer, R.M.; Beitins, I.Z.; Ridgway, E.C.; Zervas, N.T.; McArthur, J.W. Decreased bone density in hyperprolactinemic women. N. Engl. J. Med. 1980, 303, 1511–1514. [Google Scholar] [CrossRef] [PubMed]
- Schlechte, J.; Walkner, L.; Kathol, M. A longitudinal analysis of premenopausal bone loss in healthy women and women with hyperprolactinemia. J. Clin. Endocrinol. Metab. 1992, 75, 698–703. [Google Scholar] [PubMed]
- Koppelman, M.C.; Kurtz, D.W.; Morrish, K.A.; Bou, E.; Susser, J.K.; Shapiro, J.R.; Loriaux, D.L. Vertebral body bone mineral content in hyperprolactinemic women. J. Clin. Endocrinol. Metab. 1984, 59, 1050–1053. [Google Scholar] [CrossRef]
- Bennett, C.N.; Longo, K.A.; Wright, W.S.; Suva, L.J.; Lane, T.F.; Hankenson, K.D.; MacDougald, O.A. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. USA 2005, 102, 3324–3329. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Bryant, H.U.; Macdougald, O.A. Regulation of bone mass by Wnt signaling. J. Clin. Investig. 2006, 116, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Bianchi, A.; Bonadonna, S.; Cimino, V.; Patelli, I.; Fusco, A.; Pontecorvi, A.; De Marinis, L.; Giustina, A. Prevalence of vertebral fractures in men with acromegaly. J. Clin. Endocrinol. Metab. 2008, 93, 4649–4655. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, A.; Sheppard, M.C.; Stephens, J.M.; Pulgar, S.; Melmed, S. Clinical, quality of life, and economic value of acromegaly disease control. Pituitary 2011, 14, 284–294. [Google Scholar] [CrossRef]
- Parfitt, A.M. The bone remodeling compartment: A circulatory function for bone lining cells. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2001, 16, 1583–1585. [Google Scholar] [CrossRef]
- Mazziotti, G.; Bianchi, A.; Porcelli, T.; Mormando, M.; Maffezzoni, F.; Cristiano, A.; Giampietro, A.; De Marinis, L.; Giustina, A. Vertebral fractures in patients with acromegaly: A 3-year prospective study. J. Clin. Endocrinol. Metab. 2013, 98, 3402–3410. [Google Scholar] [CrossRef]
- Frara, S.; Melin Uygur, M.; di Filippo, L.; Doga, M.; Losa, M.; Santoro, S.; Mortini, P.; Giustina, A. High Prevalence of Vertebral Fractures Associated With Preoperative GH Levels in Patients With Recent Diagnosis of Acromegaly. J. Clin. Endocrinol. Metab. 2022, 107, e2843–e2850. [Google Scholar] [CrossRef]
- Ueland, T.; Ebbesen, E.N.; Thomsen, J.S.; Mosekilde, L.; Brixen, K.; Flyvbjerg, A.; Bollerslev, J. Decreased trabecular bone biomechanical competence, apparent density, IGF-II and IGFBP-5 content in acromegaly. Eur. J. Clin. Investig. 2002, 32, 122–128. [Google Scholar] [CrossRef]
- Madeira, M.; Neto, L.V.; de Paula Paranhos Neto, F.; Barbosa Lima, I.C.; Carvalho de Mendonça, F.; Gadelha, M.R.; Fleiuss de Farias, M.L. Acromegaly has a negative influence on trabecular bone, but not on cortical bone, as assessed by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 2013, 98, 1734–1741. [Google Scholar] [CrossRef]
- Silva, P.P.B.; Amlashi, F.G.; Yu, E.W.; Pulaski-Liebert, K.J.; Gerweck, A.V.; Fazeli, P.K.; Lawson, E.; Nachtigall, L.B.; Biller, B.M.K.; Miller, K.K. Bone microarchitecture and estimated bone strength in men with active acromegaly. Eur. J. Endocrinol. 2017, 177, 409–420. [Google Scholar] [CrossRef]
- Battista, C.; Chiodini, I.; Muscarella, S.; Guglielmi, G.; Mascia, M.L.; Carnevale, V.; Scillitani, A. Spinal volumetric trabecular bone mass in acromegalic patients: A longitudinal study. Clin. Endocrinol. 2009, 70, 378–382. [Google Scholar] [CrossRef]
- Claessen, K.M.; Kroon, H.M.; Pereira, A.M.; Appelman-Dijkstra, N.M.; Verstegen, M.J. Kloppenburg M, Hamdy NA, Biermasz NR. Progression of vertebral fractures despite long-term biochemical control of acromegaly: A prospective follow-up study. J. Clin. Endocrinol. Metab. 2013, 98, 4808–4815. [Google Scholar] [CrossRef]
- Maffezzoni, F.; Maddalo, M.; Frara, S.; Mezzone, M.; Zorza, I.; Baruffaldi, F.; Doglietto, F.; Mazziotti, G.; Maroldi, R.; Giustina, A. High-resolution-cone beam tomography analysis of bone microarchitecture in patients with acromegaly and radiological vertebral fractures. Endocrine 2016, 54, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Carbonare, L.D.; Micheletti, V.; Cosaro, E.; Talenti, M.T.; Mottes, M.; Francia, G.; Davì, M.V. Bone histomorphometry in acromegaly patients with fragility vertebral fractures. Pituitary 2018, 21, 56–64. [Google Scholar] [CrossRef]
- Malgo, F.; Hamdy, N.A.; Rabelink, T.J.; Kroon, H.M.; Claessen, K.M.J.A.; Pereira, A.M.; Biermasz, N.R.; Appelman-Dijkstra, N.M. Bone material strength index as measured by impact microindentation is altered in patients with acromegaly. Eur. J. Endocrinol. 2017, 176, 339–347. [Google Scholar] [CrossRef]
- Godang, K.; Lekva, T.; Normann, K.R.; Olarescu, N.C.; Øystese, K.A.B.; Kolnes, A.; Ueland, T.; Bollerslev, J.; Heck, A. Hip Structure Analyses in Acromegaly: Decrease of Cortical Bone Thickness After Treatment: A Longitudinal Cohort Study. JBMR Plus 2019, 3, e10240. [Google Scholar] [CrossRef]
- Kužma, M.; Vaňuga, P.; Ságová, I.; Pávai, D.; Jackuliak, P.; Killinger, Z.; Binkley, N.; Winzenrieth, R.; Payer, J. Vertebral Fractures Occur Despite Control of Acromegaly and Are Predicted by Cortical Volumetric Bone Mineral Density. J. Clin. Endocrinol. Metab. 2021, 106, e5088–e5096. [Google Scholar] [CrossRef] [PubMed]
- Pelsma, I.C.M.; Biermasz, N.R.; Pereira, A.M.; van Furth, W.R.; Appelman-Dijkstra, N.M.; Kloppenburg, M.; Kroon, H.M.; Claessen, K.M.J.A. Progression of vertebral fractures in long-term controlled acromegaly: A 9-year follow-up study. Eur. J. Endocrinol. 2020, 183, 427–437. [Google Scholar] [CrossRef]
- Kwon, H.; Han, K.D.; Kim, B.S.; Moon, S.J.; Park, S.E.; Rhee, E.J.; Lee, W.Y. Acromegaly and the long-term fracture risk of the vertebra and hip: A national cohort study. Osteoporos. Int. 2023, 34, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, S.; Mazziotti, G.; Giampietro, A.; Bianchi, A.; Frara, S.; Mormando, M.; Pontecorvi, A.; Giustina, A.; De Marinis, L. Effects of pegvisomant and somatostatin receptor ligands on incidence of vertebral fractures in patients with acromegaly. Pituitary 2018, 21, 302–308. [Google Scholar] [CrossRef]
- Chiloiro, S.; Mormando, M.; Bianchi, A.; Giampietro, A.; Milardi, D.; Bima, C.; Grande, G.; Formenti, A.M.; Mazziotti, G.; Pontecorvi, A.; et al. Prevalence of morphometric vertebral fractures in “difficult” patients with acromegaly with different biochemical outcomes after multimodal treatment. Endocrine 2018, 59, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, S.; Giampietro, A.; Frara, S.; Bima, C.; Donfrancesco, F.; Fleseriu, C.M.; Pontecorvi, A.; Giustina, A.; Fleseriu, M.; De Marinis, L.; et al. Effects of Pegvisomant and Pasireotide LAR on Vertebral Fractures in Acromegaly Resistant to First-generation SRLs. J. Clin. Endocrinol. Metab. 2020, 105, e100–e107. [Google Scholar] [CrossRef]
- de Azevedo Oliveira, B.; Araujo, B.; Dos Santos, T.M.; Ongaratti, B.R.; Rech, C.G.S.L.; Ferreira, N.P.; Pereira-Lima, J.F.S.; da Costa Oliveira, M. The acromegalic spine: Fractures, deformities and spinopelvic balance. Pituitary 2019, 22, 601–606. [Google Scholar] [CrossRef]
- Mormando, M.; Nasto, L.A.; Bianchi, A.; Mazziotti, G.; Giampietro, A.; Pola, E.; Pontecorvi, A.; Giustina, A.; De Marinis, L. GH receptor isoforms and skeletal fragility in acromegaly. Eur. J. Endocrinol. 2014, 171, 237–245. [Google Scholar] [CrossRef]
- Chiloiro, S.; Costanza, F.; Giampietro, A.; Infante, A.; Mattogno, P.P.; Angelini, F.; Gullì, C.; Lauretti, L.; Rigante, M.; Olivi, A.; et al. GH receptor polymorphisms guide second-line therapies to prevent acromegaly skeletal fragility: Preliminary results of a pilot study. Front. Endocrinol. 2024, 15, 1414101. [Google Scholar] [CrossRef]
- Costanza, F.; Chiloiro, S.; Giampietro, A.; Angelini, F.; Infante, A.; Pontecorvi, A.; De Marinis, L.; Bianchi, A. The Role of the GH Receptor Polymorphisms as a Prognostic Factor of Vertebral Fractures in Acromegalic Patients Resistant to First-generation SSAs and Treated with Pegvisomant or Pasireotide LAR. Endocr Metab Immune Disord Drug Targets. 2024, 24, 11. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Bianchi, A.; Bonadonna, S.; Nuzzo, M.; Cimino, V.; Fusco, A.; De Marinis, L.; Giustina, A. Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: Influence of GH replacement therapy. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2006, 21, 520–528. [Google Scholar] [CrossRef]
- van Varsseveld, N.C.; van Bunderen, C.C.; Franken, A.A.; Koppeschaar, H.P.; van der Lely, A.J.; Drent, M.L. Fractures in pituitary adenoma patients from the Dutch National Registry of Growth Hormone Treatment in Adults. Pituitary 2016, 19, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, F.S.; Leone, V.J.; Fallon, M.D.; Haddad, J.G.; Brighton, C.T.; Steinberg, M.E. Multiple pathologic fractures of the appendicular skeleton in a patient with Cushing’s disease. Clin. Orthop. Relat. Res. 1987, 216, 171–175. [Google Scholar] [CrossRef]
- Scillitani, A.; Mazziotti, G.; Di Somma, C.; Moretti, S.; Stigliano, A.; Pivonello, R.; Giustina, A.; Colao, A.; ABC Group. Treatment of skeletal impairment in patients with endogenous hypercortisolism: When and how? Osteoporos. Int. 2014, 25, 441–446. [Google Scholar] [CrossRef]
- Frara, S.; di Filippo, L.; Doga, M.; Loli, P.; Casanueva, F.F.; Giustina, A. Novel approaches to bone comorbidity in Cushing’s disease: An update. Pituitary 2022, 25, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, O.M.; Horvath-Puho, E.; Jorgensen, J.O.; Cannegieter, S.C.; Ehrenstein, V.; Vandenbroucke, J.P.; Pereira, A.M.; Sørensen, H.T. Multisystem morbidity and mortality in Cushing’s syndrome: A cohort study. J. Clin. Endocrinol. Metab. 2013, 98, 2277–2284. [Google Scholar] [CrossRef]
- Apaydın, T.; Yavuz, D.G. Assessment of non-traumatic vertebral fractures in Cushing’s syndrome patients. J. Endocrinol. Invest. 2021, 44, 1767–1773. [Google Scholar] [CrossRef]
- Ferraù, F.; Giovinazzo, S.; Messina, E.; Tessitore, A.; Vinci, S.; Mazziotti, G.; Lania, A.; Granata, F.; Cannavò, S. High bone marrow fat in patients with Cushing’s syndrome and vertebral fractures. Endocrine 2020, 67, 172–179. [Google Scholar] [CrossRef]
- Mazziotti, G.; Mancini, T.; Mormando, M.; De Menis, E.; Bianchi, A.; Doga, M.; Porcelli, T.; Vescovi, P.P.; De Marinis, L.; Giustina, A. High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary 2011, 14, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Porcelli, T.; Mormando, M.; De Menis, E.; Bianchi, A.; Mejia, C.; Mancini, T.; De Marinis, L.; Giustina, A. Vertebral fractures in males with prolactinoma. Endocrine 2011, 39, 288–293. [Google Scholar] [CrossRef]
- D’Sylva, C.; Khan, T.; Van Uum, S.; Fraser, L.-A. Osteoporotic fractures in patients with untreated hyperprolactinemia vs. those taking dopamine agonists: A systematic review and meta-analysis. Neuroendocrinol. Lett. 2015, 36, 745–749. [Google Scholar]
- Giustina, A. Acromegaly and vertebral fractures: Facts and questions. Trends Endocrinol. Metab. 2020, 31, 274–275. [Google Scholar] [CrossRef]
- Frara, S.; Losa, M.; Doga, M.; Formenti, A.M.; Mortini, P.; Mazziotti, G.; Giustina, A. High Prevalence of Radiological Vertebral Fractures in Patients With TSH-Secreting Pituitary Adenoma. J. Endocr. Soc. 2018, 2, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Tonk, C.H.; Shoushrah, S.H.; Babczyk, P.; Schulze, M.; Herten, M.; Tobiasch, E. Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad? Int. J. Mol. Sci. 2022, 23, 1393. [Google Scholar] [CrossRef]
- Di Somma, C.; Colao, A.; Pivonello, R.; Klain, M.; Faggiano, A.; Tripodi, F.S.; Merola, B.; Salvatore, M.; Lombardi, G. Effectiveness of chronic treatment with alendronate in the osteoporosis of Cushing’s disease. Clin. Endocrinol. 1998, 48, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, D.; Bonanno, M.R.; Russo, M.S.; Speciale, S.; Santangelo, A.; Curasì, M.P.; Panebianco, P. Use of alendronate in treatment of secondary osteoporosis from hypopituitarism: A case report. Eur. Rev. Med. Pharmacol. Sci. 2000, 4, 89–93. [Google Scholar] [PubMed]
- Valk, N.K.; Erdtsieck, R.J.; Algra, D.; Lamberts, S.W.; Pols, H.A. Combined treatment of growth hormone and the bisphosphonate pamidronate, versus treatment with GH alone, in GH-deficient adults: The effects on renal phosphate handling, bone turnover and bone mineral mass. Clin. Endocrinol. 1995, 43, 317–324. [Google Scholar] [CrossRef]
- Biermasz, N.R.; Hamdy, N.A.; Janssen, Y.J.; Roelfsema, F. Additional beneficial effects of alendronate in growth hormone (GH)-deficient adults with osteoporosis receiving long-term recombinant human GH replacement therapy: A randomized controlled trial. J. Clin. Endocrinol. Metab. 2001, 86, 3079–3085. [Google Scholar] [CrossRef] [PubMed]
- White, H.D.; Ahmad, A.M.; Durham, B.H.; Joshi, A.A.; Fraser, W.D.; Vora, J.P. Effect of oral phosphate and alendronate on bone mineral density when given as adjunctive therapy to growth hormone replacement in adult growth hormone deficiency. J. Clin. Endocrinol. Metab. 2011, 96, 726–736. [Google Scholar] [CrossRef]
- Mazziotti, G.; Battista, C.; Maffezzoni, F.; Chiloiro, S.; Ferrante, E.; Prencipe, N.; Grasso, L.; Gatto, F.; Olivetti, R.; Arosio, M.; et al. Treatment of Acromegalic Osteopathy in Real-life Clinical Practice: The BAAC (Bone Active Drugs in Acromegaly) Study. J Clin Endocrinol Metab 2020, 105, e3285–e3292. [Google Scholar] [CrossRef]
- Pivonello, R.; Faggiano, A.; Di Somma, C.; Klain, M.; Filippella, M.; Salvatore, M.; Lombardi, G.; Colao, A. Effect of a short-term treatment with alendronate on bone density and bone markers in patients with central diabetes insipidus. J. Clin. Endocrinol. Metab. 1999, 84, 2349–2352. [Google Scholar] [CrossRef]
- Duarte, F.H.; Jallad, R.S.; Bronstein, M.D. Estrogens and selective estrogen receptor modulators in acromegaly. Endocrine 2016, 54, 306–314. [Google Scholar] [CrossRef]
- Kearns, A.E.; Khosla, S.; Kostenuik, P.J. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 2008, 29, 155–192. [Google Scholar] [CrossRef]
- Dore, R.K.; Cohen, S.B.; Lane, N.E.; Palmer, W.; Shergy, W.; Zhou, L.; Wang, H.; Tsuji, W.; Newmark, R.; Denosumab RA Study Group. Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann. Rheum. Dis. 2010, 69, 872–875. [Google Scholar] [CrossRef]
- Singh, S.; Dutta, S.; Khasbage, S.; Kumar, T.; Sachin, J.; Sharma, J.; Varthya, S.B. A systematic review and meta-analysis of efficacy and safety of Romosozumab in postmenopausal osteoporosis. Osteoporos. Int. 2022, 33, 1–12. [Google Scholar] [CrossRef]
- Nealy, K.L.; Harris, K.B. Romosozumab: A Novel Injectable Sclerostin Inhibitor With Anabolic and Antiresorptive Effects for Osteoporosis. Ann. Pharmacother. 2021, 55, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Bolster, M.B. Profile of romosozumab and its potential in the management of osteoporosis. Drug Des. Devel Ther. 2017, 11, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Claessen, K.M.J.A.; Pelsma, I.C.M.; Kroon, H.M.; van Lierop, A.H.; Pereira, A.M.; Biermasz, N.R.; Appelman-Dijkstra, N.M. Low sclerostin levels after long-term remission of acromegaly. Endocrine 2022, 75, 228–238. [Google Scholar] [CrossRef]
- Pekkolay, Z.; Kılınç, F.; Gozel, N.; Önalan, E.; Tuzcu, A.K. Increased Serum Sclerostin Levels in Patients With Active Acromegaly. J. Clin. Endocrinol. Metab. 2020, 105, dgz254. [Google Scholar] [CrossRef]
- Uygur, M.M.; Yazıcı, D.D.; Buğdaycı, O.; Yavuz, D.G. Prevalence of vertebral fractures and serum sclerostin levels in acromegaly. Endocrine 2021, 73, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.P.B.; Pereira, R.M.R.; Takayama, L.; Borba, C.G.; Duarte, F.H.; Trarbach, E.B.; Martin, R.M.; Bronstein, M.D.; Tritos, N.A.; Jallad, R.S. Impaired Bone Microarchitecture in Premenopausal Women With Acromegaly: The Possible Role of Wnt Signaling. J. Clin. Endocrinol. Metab. 2021, 106, 2690–2706. [Google Scholar] [CrossRef]
- Chen, H.; Huang, H.; Wang, Y.; Zhang, Y.; Liu, M.; Lou, Y.; Zhang, Z.; Zhu, D.; Li, P. Decreased Serum Wnt Antagonist Levels in Patients With Active Acromegaly. Endocr. Pract. 2022, 28, 515–520. [Google Scholar] [CrossRef]
- Halupczok-Żyła, J.; Jawiarczyk-Przybyłowska, A.; Bolanowski, M. Sclerostin and OPG/RANK-L system take part in bone remodeling in patients with acromegaly. Front. Endocrinol 2024, 17, 1472680. [Google Scholar] [CrossRef]
- Di Nisio, A.; De Toni, L.; Speltra, E.; Rocca, M.S.; Taglialavoro, G.; Ferlin, A.; Foresta, C. Regulation of Sclerostin Production in Human Male Osteocytes by Androgens: Experimental and Clinical Evidence. Endocrinology 2015, 156, 4534–4544. [Google Scholar] [CrossRef]
- van Lierop, A.H.; van der Eerden, A.W.; Hamdy, N.A.; Hermus, A.R.; den Heijer, M.; Papapoulos, S.E. Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J. Clin. Endocrinol. Metab. 2012, 97, E1953–E1957. [Google Scholar] [CrossRef]
- Athimulam, S.; Delivanis, D.; Thomas, M.; Young, W.F.; Khosla, S.; Drake, M.T.; Bancos, I. The Impact of Mild Autonomous Cortisol Secretion on Bone Turnover Markers. J. Clin. Endocrinol. Metab. 2020, 105, 1469–1477. [Google Scholar] [CrossRef]
- Belaya, Z.E.; Rozhinskaya, L.Y.; Melnichenko, G.A.; Solodovnikov, A.G.; Dragunova, N.V.; Iljin, A.V.; Dzeranova, L.K.; Dedov, I.I. Serum extracellular secreted antagonists of the canonical Wnt/β-catenin signaling pathway in patients with Cushing’s syndrome. Osteoporos. Int. 2013, 24, 2191–2199. [Google Scholar] [CrossRef] [PubMed]
- Belaya, Z.E.; Grebennikova, T.A.; Melnichenko, G.A.; Nikitin, A.G.; Solodovnikov, A.G.; Brovkina, O.I.; Grigoriev, A.U.; Rozhinskaya, L.Y.; Dedov, I.I. Effects of endogenous hypercortisolism on bone mRNA and microRNA expression in humans. Osteoporos. Int. 2018, 29, 211–221. [Google Scholar] [CrossRef]
- Giustina, A.; Bilezikian, J.P.; Adler, R.A.; Banfi, G.; Bikle, D.D.; Binkley, N.C.; Bollerslev, J.; Bouillon, R.; Brandi, M.L.; Casanueva, F.F.; et al. Consensus Statement on Vitamin D Status Assessment and Supplementation: Whys, Whens, and Hows. Endocr. Rev. 2024, 45, 625–654. [Google Scholar] [CrossRef]
- Lips, P.; van Schoor, N.M. The effect of vitamin D on bone and osteoporosis. Best. Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 585–591. [Google Scholar] [CrossRef]
- LeBoff, M.S.; Chou, S.H.; Ratliff, K.A.; Cook, N.R.; Khurana, B.; Kim, E.; Cawthon, P.M.; Bauer, D.C.; Black, D.; Gallagher, J.C.; et al. Supplemental Vitamin D and Incident Fractures in Midlife and Older Adults. N. Engl. J. Med. 2022, 387, 299–309. [Google Scholar] [CrossRef]
- Reid, I.R.; Bolland, M.J.; Grey, A. Effects of vitamin D supplements on bone mineral density: A systematic review and meta–Analysis. Lancet 2014, 383, 146–155. [Google Scholar] [CrossRef]
- Bolland, M.J.; Grey, A.; Avenell, A. Effects of vitamin D supplementation on musculoskeletal health: A systematic review, meta–analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018, 6, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, H.M.; Reid, I.R.; Gamble, G.D.; Fraser, W.D.; Tang, J.C.; Wood, A.D. 25-Hydroxyvitamin D Threshold for the Effects of Vitamin D Supplements on Bone Density: Secondary Analysis of a Randomized Controlled Trial. J. Bone Miner. Res. 2018, 33, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Horne, A.M.; Mihov, B.; Gamble, G.D.; Al-Abuwsi, F.; Singh, M.; Taylor, L.; Fenwick, S.; Camargo, C.A.; Stewart, A.W.; et al. Effect of monthly high-dose vitamin D on bone density in community–dwelling older adults substudy of a randomized controlled trial. J. Intern. Med. 2017, 282, 452–460. [Google Scholar] [CrossRef]
- di Filippo, L.; Bilezikian, J.P.; Canalis, E.; Terenzi, U.; Giustina, A. New insights into the vitamin D/PTH axis in endocrine-driven metabolic bone diseases. Endocrine 2024, 85, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Lazaretti-Castro, M.; Martineau, A.R.; Mason, R.S.; Rosen, C.J.; Schoenmakers, I. A view on vitamin D: A pleiotropic factor? Nat. Rev. Endocrinol. 2024, 20, 202–208. [Google Scholar] [CrossRef]
- di Filippo, L.; Ulivieri, F.M.; Nuti, R.; Giustina, A. Use of vitamin D with anti-osteoporotic drugs: Are available clinical trials telling us the whole story? Endocrine 2024, 83, 342–348. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Willett, W.C.; Wong, J.B.; Stuck, A.E.; Staehelin, H.B.; Orav, E.J.; Thoma, A.; Kiel, D.P.; Henschkowski, J. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: A meta-analysis of randomized controlled trials. Arch. Intern. Med. 2009, 169, 551–561. [Google Scholar] [CrossRef]
- De Martinis, M.; Allegra, A.; Sirufo, M.M.; Tonacci, A.; Pioggia, G.; Raggiunti, M.; Ginaldi, L.; Gangemi, S. Vitamin D Deficiency, Osteoporosis and Effect on Autoimmune Diseases and Hematopoiesis: A Review. Int. J. Mol. Sci. 2021, 22, 8855. [Google Scholar] [CrossRef]
- Chiloiro, S.; Frara, S.; Gagliardi, I.; Bianchi, A.; Giampietro, A.; Medici, M.; Allora, A.; di Filippo, L.; Ambrosio, M.R.; Pontecorvi, A.; et al. Cholecalciferol Use Is Associated With a Decreased Risk of Incident Morphometric Vertebral Fractures in Acromegaly. J. Clin. Endocrinol. Metab. 2023, 109, e58–e68. [Google Scholar] [CrossRef] [PubMed]
- Povaliaeva, A.A.; Bogdanov, V.P.; Zhukov, A.Y.; Pigarova, E.A.; Dzeranova, L.K.; Rozhinskaya, L.Y.; Mel’nichenko, G.A.; Mokrysheva, N.G. Characterization of vitamin D metabolism in active acromegaly in the setting of bolus (150,000 IU) cholecalciferol treatment. Endocrine 2022, 76, 407–418. [Google Scholar] [CrossRef]
- Guarnotta, V.; Di Gaudio, F.; Giordano, C. Vitamin D Deficiency in Cushing’s Disease: Before and After Its Supplementation. Nutrients 2022, 14, 973. [Google Scholar] [CrossRef] [PubMed]
- Povaliaeva, A.; Bogdanov, V.; Pigarova, E.; Zhukov, A.; Dzeranova, L.; Belaya, Z.; Rozhinskaya, L.; Mel’nichenko, G.; Mokrysheva, N. Assessment of Vitamin D Metabolism in Patients with Cushing’s Disease in Response to 150,000 IU Cholecalciferol Treatment. Nutrients 2021, 13, 4329. [Google Scholar] [CrossRef]
- Bolanowski, M.; Halupczok, J.; Jawiarczyk-Przybyłowska, A. Pituitary disorders and osteoporosis. Int. J. Endocrinol. 2015, 2015, 206853. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raisz, L.G. Pathogenesis of osteoporosis: Concepts, conflicts, and prospects. J. Clin. Investig. 2005, 115, 3318–3325. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, L.A. Secondary causes of osteoporosis. Mayo Clin. Proc. 2002, 77, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, G.; Makras, P. Skeletal diseases in Cushing’s syndrome: Osteoporosis versus arthropathy. Neuroendocrinology 2010, 92, 60–64. [Google Scholar] [CrossRef]
- Frara, S.; Acanfora, M.; Franzese, V.; Brandi, M.L.; Losa, M.; Giustina, A. Novel approach to bone comorbidity in resistant acromegaly. Pituitary 2024, 27, 813–823. [Google Scholar] [CrossRef]
Authors | Year of Publication | Disease Model | Research Type | Number of Subjects | Main Results |
---|---|---|---|---|---|
Van der Eerden et al. [15] | 2007 | Cushing’s disease | Clinical Trial | 77 | 82% of patients had osteopenia at one or both sites (T score lower than −1 SD or Z-score levels in lumbar spine −1.07 SD and in the femoral neck −0.81 SD), including 31% with osteoporosis (T score −2.5 SD or lower). |
Beckers et al. [33] | 2001 | GHD | Clinical Trial | 21 | After 12 months of GH replacement therapy, patients experienced bone mass and density gain, in particular in the axial skeleton. |
Gómez et al. [34] | 2000 | GHD | Clinical trial | 20 | The included patients had baseline low BMD values and, after prolonged GH replacement therapy, showed an increase in BMD and Z-score values that remained stable even after 12 months of GH treatment withdrawal. |
Johanson et al. [35] | 1983 | Acromegaly | Retrospective, observational | 11 | Patients with acromegaly showed diffused osteopenia and subverted bone structures. |
Naliato et al. [40] | 2005 | Hyperprolactinemia | Prospective, cross-sectional study | 30 | 80% percent of male patients with prolactinoma were affected by osteopenia or osteoporosis at lumbar spine, while only 30% showed a low BMD at the femoral neck, suggesting the early impairment of the trabecular bone than the cortical bone. |
Ragnarsson et al. [43] | 2012 | Hypopituitarism | Prospective, cross-sectional study | 365 | An independent association of glucorticoid replacement therapy with reduced BMD and higher prevalence of osteopenia was observed. |
Miller et al. [44] | 2002 | Hypopituitarism | Clinical trial | 16 | In women with hypopituitarism a strong correlation between androgen levels, lean body mass and BMD was found. |
Okinaga et al. [45] | 2005 | Postoperative patients after surgical removal of pituitary tumors, craniopharyngiomas, Ratke’s cleft cysts, and pituitary abscess | Retrospective, observational | 15 | An increased risk of osteopenia was found, especially in patients operated on for craniopharyngiomas, regardless of age at diagnosis or at surgery. |
Das et al. [46] | 2024 | Sheehan’s syndrome | Retrospective, observational | 35 | Reduced values of tibial cortical BMD were observed, even if adequately replaced for respective hormone deficiencies. |
Agarwal et al. [49] | 2019 | Sheehan’s syndrome | Prospective, cross-sectional study | 19 | Significantly lower BMD values were observed compared to controls in the lumbar spine, hip and femoral neck, with an improvement only in lumbar spine BMD after the replacement of estradiol and supplementation with calcium and cholecalciferol. |
Tang et al. [58] | 2017 | Hypogonadotropic hypogonadism | Retrospective, observational | 138 | The median Z scores at the lumbar spine and femur were –1.20 ± 0.87 and –1.70 ± 1.06, respectively, indicating that osteopenia was relatively common and that the BMD values increased significantly after treatment for hypogonadism. |
Finkelstein et al. [59] | 1987 | Hypogonadotropic hypogonadism | Retrospective, observational | 23 | Osteopenia was severe in men with both immature and mature bone ages, and cortical BMD was at least 2 SD below normal in more than half of patients. |
Antonio et al. [60] | 2019 | Hypogonadotropic hypogonadism | Retrospective observational | 25 | Stable on femoral and lumbar sites were observed BMD values, remaining in osteopenic/osteoporotic range, with only limited osteoanabolic effects given from the supplemental therapy. |
Ostertag et al. [61] | 2021 | Hypogonadotropic hypogonadism | Retrospective observational | 51 | Reduced BMD and cortical bone thickness were observed in patients with hypogonadism. |
Varimo et al. [62] | 2021 | Hypogonadotropic hypogonadism | Prospective, cross-sectional | 16 | Reduced cortical and trabecular BMD, as well as cortical thickness at the tibia and the radius, were revealed in patients with hypogonadism. |
Lee et al. [63] | 2014 | Hypogonadotropic hypogonadism | Retrospective observational | 21 | Significant beneficial effects on lumbar BMD, with minimum changes in femur neck BMD or total femur BMD were observed. |
Hong et al. [66] | 2016 | Acromegaly | Retrospective observational | 33 | Lower values of TBS were found in 6% of this cohort. |
Godang et al. [67] | 2016 | Acromegaly | Retrospective observational | 48 | Active acromegaly naïve to any treatment presented, with TBS values partially degraded. |
Finkelstein et al. [69] | 1989 | Hypogonadotropic hypogonadism | Retrospective observational | 21 | An increase was found in cortical bone density during the treatment of men with idiopathic HH, particularly in those who were skeletally immature. |
De Rosa et al. [71] | 2001 | Hypogonadotropic hypogonadism | Retrospective observational | 12 | BMD of the spine was significantly lower, while bone markers were increased; half of patients were affected by osteoporosis and the remaining part by osteopenia. |
Schlechte et al. [77] | 1987 | Hyperprolactinemia | Retrospective observational | 24 | BMD values were 25% lower in women with hyperprolactinemia than in healthy women, while women who underwent successful transsphenoidal pituitary surgery for prolactin-secreting pituitary tumors, with regular menstrual cycles, had a slightly higher spinal bone mineral content than women with amenorrhea, but this was still lower compared to healthy women. |
Frara et al. [87] | 2022 | Acromegaly | Retrospective observational | 92 | A significantly higher prevalence of VFs (33.7%) in patients with acromegaly with recent diagnosis was found. |
Ueland et al. [88] | 2002 | Acromegaly | Retrospective, observational | 13 | Reduced trabecular biomechanical competence and apparent density were measured in iliac crest biopsies. |
Madeira et al. [89] | 2013 | Acromegaly | Retrospective, observational | 82 | Active disease appeared to have a negative influence on trabecular bone, but not on cortical bone, as assessed by high-resolution peripheral quantitative computed tomography. |
Silva et al. [90] | 2017 | Acromegaly, GHD | Prospective, cross-sectional | 48 | At the radius, patients with acromegaly had greater cortical area cortical thickness cortical pore volume and cortical porosity. At the tibia, patients with acromegaly had lower trabecular bone density. |
Godang et al. [96] | 2019 | Acromegaly | Retrospective, observational | 56 | A marked decline in cortical bone thickness was found 1 year after pituitary surgery compared to clinically nonfunctioning pituitary adenomas. |
Kužma et al. [97] | 2021 | Acromegaly | Prospective, longitudinal | 70 | Cortical BMD value appeared to be the most sensitive and specific predictor of incident VFs. |
Pelsma et al. [98] | 2020 | Acromegaly | Prospective, longitudinal | 31 | Despite the achievement of a longstanding remission, prevalence and progression of VFs were high in this cohort. |
de Azevedo Oliveira et al. [103] | 2019 | Acromegaly | Prospective | 58 | Increased number of vertebral fractures and high prevalence of spinal deformities related to sagittal imbalance, reaching a prevalence of fractures of 13.8%. Fractures were identified mostly in the thoracic spine, with mild and anterior wedge compressions. Increased number of vertebral fractures and high prevalence of spinal deformities related to sagittal imbalance were detected. |
Apaydın et al. [113] | 2021 | Cushing’s disease | Retrospective | 135 | VF frequency was higher in CS patients. Most of the patients with VFs had multiple fractures. Although low lumbar BMD was associated with VF, patients with CS with normal bone densitometry could experience VF. |
Mazziotti et al. [116] | 2011 | Hyperprolactinemia | Retrospective | 32 | In this cohort of male prolactinoma patient, morphometric VFs were found in 37.5%, a five-fold higher rate compared to age-matched controls. |
Frara et al. [119] | 2018 | TSH-omas | Retrospective, observational | 22 | A significantly higher prevalence of VFs in TSH-omas vs. nonfunctioning pituitary adenomas (59.1% vs. 22.7%) was found, also associated with older age and higher serum fT4 values. All not treated patients with somatostatin receptor ligands presented VFs, compared with treated patients who presented fractures in 25% of cases |
Pituitary Diseases | Bone Mineral Density (BMD) | Bone Turnover | Risk of Osteopenia, Osteoporosis and Vertebral Fractures | Risk of Hypovitaminosis D |
---|---|---|---|---|
Acromegaly | Moderate Decrease [35,83,84,85,86,87,88,89] | Moderate Increase [66,88] | Moderate Increase [96,97,98,99,100,101,102,103] | Mild Increase [157,158] |
Cushing’s Disease | Mild Decrease [15,109,110,111,112,113,114,115] | Mild Decrease [113,114,115,143] | Relevant Increase [109,110,111,112,113,114] | Mild Increase [159,160] |
Hyperprolactinemia | Moderate Decrease [78,79] | Mild Increase [40,73,74] | Moderate Increase [115,116,117,118] | Mild Increase [152] |
Hypogonadism | Moderate Decrease [69,70,71] | Moderate Increase [62,70,72] | Relevant Increase [58,59,60,61,62,63,64] | Relevant Increase [152] |
GH deficiency | Mild Decrease [33,34] | Mild Decrease [17,19] | Moderate Increase [107,108] | Mild Increase [152] |
Hypopituitarism | Mild Decrease [43,44] | Mild Decrease [46,72] | Moderate Increase [112,122] | Mild Increase [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costanza, F.; Giampietro, A.; De Marinis, L.; Bianchi, A.; Chiloiro, S.; Pontecorvi, A. Skeletal Health in Pituitary and Neuroendocrine Diseases: Prevention and Treatments of Bone Fragility. Targets 2025, 3, 26. https://doi.org/10.3390/targets3030026
Costanza F, Giampietro A, De Marinis L, Bianchi A, Chiloiro S, Pontecorvi A. Skeletal Health in Pituitary and Neuroendocrine Diseases: Prevention and Treatments of Bone Fragility. Targets. 2025; 3(3):26. https://doi.org/10.3390/targets3030026
Chicago/Turabian StyleCostanza, Flavia, Antonella Giampietro, Laura De Marinis, Antonio Bianchi, Sabrina Chiloiro, and Alfredo Pontecorvi. 2025. "Skeletal Health in Pituitary and Neuroendocrine Diseases: Prevention and Treatments of Bone Fragility" Targets 3, no. 3: 26. https://doi.org/10.3390/targets3030026
APA StyleCostanza, F., Giampietro, A., De Marinis, L., Bianchi, A., Chiloiro, S., & Pontecorvi, A. (2025). Skeletal Health in Pituitary and Neuroendocrine Diseases: Prevention and Treatments of Bone Fragility. Targets, 3(3), 26. https://doi.org/10.3390/targets3030026