Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = near-wall gas temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5672 KiB  
Article
Numerical Study of the Combustion-Flow-Thermo-Pyrolysis Process in an Innovative Externally Heated Oil Shale Retort
by Lixin Zhao, Yingxue Mei and Luwei Pan
Symmetry 2025, 17(7), 1055; https://doi.org/10.3390/sym17071055 - 3 Jul 2025
Viewed by 362
Abstract
A novel externally heated retort for Jimsar oil shale resources is proposed, and the symmetrical mathematical model of the transport process in the retort is established through intensively studying the mechanisms of shale gas flows, heat transfer, and pyrolysis reactions in the retort. [...] Read more.
A novel externally heated retort for Jimsar oil shale resources is proposed, and the symmetrical mathematical model of the transport process in the retort is established through intensively studying the mechanisms of shale gas flows, heat transfer, and pyrolysis reactions in the retort. The descriptions of axial and radial movements and temperature of oil shale and gases, and the distribution of pyrolysis reaction and yielding of gaseous products and semi-coke in various regions of the retort are simulated. The results show that oil shale can pyrolyze gradually from the region near the wall to the core region of the retorting chamber and pyrolyze completely at the bottom of the retorting zone through receiving the heat flux transferring from the combustion channels. The final pyrolysis temperature of oil shale is 821.05 K, and the outlet temperature of semi-coke cooled by cold recycled gas is 676.35 K, which are in agreement with the design requirements. In total, 75 toil shales can be retorted in one retorting chamber per day, and the productivity of the retort can be increased by increasing the number of retorting chambers. The fuel self-sufficiency rate of this externally heated oil shale retort can reach 82.83%. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

28 pages, 5919 KiB  
Article
Numerical Simulation of Two-Phase Boiling Heat Transfer in a 65 mm Horizontal Tube for Enhanced Heavy Oil Recovery
by Genying Gao, Zicheng Wang, Gaoqiao Li, Chizhong Wang and Lei Deng
Energies 2025, 18(12), 3100; https://doi.org/10.3390/en18123100 - 12 Jun 2025
Viewed by 305
Abstract
To enhance the steam parameters of steam injection boilers during the thermal recovery of heavy oil while ensuring the safe and stable operation of boiler pipelines, this study conducted two-phase flow boiling numerical simulations in a horizontal heated tube with an inner diameter [...] Read more.
To enhance the steam parameters of steam injection boilers during the thermal recovery of heavy oil while ensuring the safe and stable operation of boiler pipelines, this study conducted two-phase flow boiling numerical simulations in a horizontal heated tube with an inner diameter of 65 mm, using water and water vapor as working fluids. The analysis focused on the gas–liquid phase distribution, temperature profiles, near-wall fluid velocity, and pressure drop along both the axial and radial directions of the tube. Furthermore, the effects of heat flux density, mass flow rate, and inlet subcooling on these parameters were systematically investigated. The results reveal that higher heat fluxes intensify the velocity difference between the upper and lower tube walls and enlarge the temperature gradient across the wall surface. A reduction in mass flow rate increases the gas phase fraction within the tube and causes the occurrence of identical flow patterns at earlier axial positions. Additionally, the onset of nucleate boiling shifts upstream, accompanied by an increase and upstream movement of the wall’s maximum temperature. An increase in inlet subcooling prolongs the time required for the working fluid mixture to reach saturation, thereby decreasing the gas phase fraction and delaying the appearance of the same flow patterns. Finally, preventive and control strategies for ensuring the safe operation of steam injection boiler pipelines during heavy oil recovery are proposed from the perspective of flow pattern regulation. Full article
Show Figures

Figure 1

24 pages, 5920 KiB  
Article
Numerical Investigations on Boil-Off Gas Generation Characteristics of LCO2 in Type C Storage Tanks Under Different Sloshing Conditions
by Mengke Sun, Zhongchao Zhao and Jiwei Gong
Appl. Sci. 2025, 15(10), 5788; https://doi.org/10.3390/app15105788 - 21 May 2025
Viewed by 444
Abstract
Marine transportation of liquefied carbon dioxide (LCO2) is crucial for Carbon Capture, Transportation, Utilization, and Storage (CCTUS) technology, aiding in CO2 emission reduction and greenhouse effect control. This study investigates the thermodynamic and fluid dynamic characteristics of LCO2 in [...] Read more.
Marine transportation of liquefied carbon dioxide (LCO2) is crucial for Carbon Capture, Transportation, Utilization, and Storage (CCTUS) technology, aiding in CO2 emission reduction and greenhouse effect control. This study investigates the thermodynamic and fluid dynamic characteristics of LCO2 in Type C storage tanks using numerical simulations, focusing on heat transfer, flow phenomena, and boil-off gas (BOG) generation under varying storage pressures. Results show that heated liquid rises along the tank wall, forming vortices, while gas-phase vortices are driven by central upward airflow. Over time, liquid velocity near the wall increases, enhancing flow field mixing. Gas-phase temperatures rise significantly, while liquid-phase temperature gradients remain minimal. Higher storage pressures reduce fluid velocity, vortex range, and thermal response speed. BOG generation is higher at low pressures and decreases as pressure rises, slowing beyond 1.5 MPa. Under sloshing conditions, interfacial fluctuations enhance heat and mass transfer, reducing thermal stratification. Resonance periods amplify interfacial disturbances, improving thermal mixing and minimizing temperature gradients (ΔT ≈ 0.1 K). Higher filling rates suppress surface rupture, while lower rates exhibit gas-dominated instabilities and larger thermal gradients (ΔT ≈ 0.3 K). Full article
(This article belongs to the Special Issue Research on Heat Transfer Analysis in Fluid Dynamics)
Show Figures

Figure 1

21 pages, 33789 KiB  
Article
Numerical Simulation of the Gas Flow of Combustion Products from Ignition in a Solid Rocket Motor Under Conditions of Propellant Creep
by Yin Zhang, Zhensheng Sun, Yu Hu, Yujie Zhu, Xuefeng Xia, Huang Qu and Bo Tian
Aerospace 2025, 12(2), 153; https://doi.org/10.3390/aerospace12020153 - 17 Feb 2025
Cited by 2 | Viewed by 904
Abstract
The development of modern solid rocket technology with high-performance and high-loading ratio propellants places higher requirements on the safety and stability of the solid rocket motor. The propellant of the solid rocket motor will creep during long-term vertical storage, which may adversely affect [...] Read more.
The development of modern solid rocket technology with high-performance and high-loading ratio propellants places higher requirements on the safety and stability of the solid rocket motor. The propellant of the solid rocket motor will creep during long-term vertical storage, which may adversely affect its regular operation. The ignition transient process is a critical phase in the operation of solid rocket motors. The Abaqus v.2022 finite element simulation software is used to analyze the ignition transient under propellant creep conditions and obtain the deformed combustion chamber profile. Then, we use a high-precision finite volume solver developed independently to simulate the flow field during the ignition process. In the simulation, we adopt the surface temperature of the propellant column reaching the ignition threshold as the ignition criterion, considering the heat transfer process of the propellant column instead of using the near-wall gas temperature to obtain the set temperature. Simulation results under different creep conditions reveal that the deformation of the propellant grains progressively intensifies as the solid rocket motor’s storage duration increases. This leads to a delayed initial ignition time of the propellant, an advancement of the overall ignition transient process, and an increased pressurization rate during ignition, which can affect the structure and regular operation of the motor. The research results provide design guidance and theoretical support for the design and life prediction of solid rocket motors. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

26 pages, 7119 KiB  
Article
High-Temperature Steam- and CO2-Assisted Gasification of Oil Sludge and Petcoke
by Sergey M. Frolov, Viktor A. Smetanyuk, Ilyas A. Sadykov, Anton S. Silantiev, Fedor S. Frolov, Vera Ya. Popkova, Jaroslav K. Hasiak, Anastasiya G. Buyanovskaya, Rina U. Takazova, Tatiana V. Dudareva, Valentin G. Bekeshev, Alexey B. Vorobyov, Alexey V. Inozemtsev and Jaroslav O. Inozemtsev
Clean Technol. 2025, 7(1), 17; https://doi.org/10.3390/cleantechnol7010017 - 14 Feb 2025
Cited by 1 | Viewed by 1279
Abstract
A new high-temperature allothermal gasification technology is used to process three types of oil waste: ground oil sludge (GOS), tank oil sludge (TOS), and petcoke. The gasifying agent (GA), mainly composed of H2O and CO2 at a temperature above 2300 [...] Read more.
A new high-temperature allothermal gasification technology is used to process three types of oil waste: ground oil sludge (GOS), tank oil sludge (TOS), and petcoke. The gasifying agent (GA), mainly composed of H2O and CO2 at a temperature above 2300 K and atmospheric pressure, is produced by pulsed detonations of a near-stochiometric methane-oxygen mixture. The gasification experiments show that the dry off-gas contains 80–90 vol.% combustible gas composed of 40–45 vol.% CO, 28–33 vol.% H2, 5–10 vol.% CH4, and 4–7 vol.% noncondensable C2–C3 hydrocarbons. The gasification process is accompanied by the removal of mass from a flow gasifier in the form of fine solid ash particles with a size of about 1 μm. The ash particles have a mesoporous structure with a specific surface area ranging from 3.3 to 15.2 m2/g and pore sizes ranging from 3 to 50 nm. The measured wall temperatures of the gasifier are in reasonable agreement with the calculated value of the thermodynamic equilibrium temperature of the off-gas. The measured CO content in the off-gas is in good agreement with the thermodynamic calculations. The reduced H2 content and elevated contents of CH4, CO2, and CxHy are apparently associated with the nonuniform distribution of the waste/GA mass ratio in the gasifier. To increase the H2 yield, it is necessary to improve the mixing of waste with the GA. It is proposed to mix crushed petcoke with oil sludge to form a paste and feed the combined waste into the gasifier using a specially designed feeder. Full article
(This article belongs to the Special Issue Gasification and Pyrolysis of Biomass and Waste)
Show Figures

Figure 1

19 pages, 11762 KiB  
Article
Diffusion of N2/CH4/CO2 in Heptane-Containing Nanoblind Ends
by Yiran Wang, Xinglong Chen, Nannan Liu and Hengchen Qi
Energies 2024, 17(21), 5363; https://doi.org/10.3390/en17215363 - 28 Oct 2024
Viewed by 873
Abstract
The prevalence of micropores and nanopores in low-permeability reservoirs is a cause for concern, as it results in a sizeable quantity of oil reserves being trapped within them. The water-gas dispersion system has the capacity to expand the reservoirs’ wave volume and enhance [...] Read more.
The prevalence of micropores and nanopores in low-permeability reservoirs is a cause for concern, as it results in a sizeable quantity of oil reserves being trapped within them. The water-gas dispersion system has the capacity to expand the reservoirs’ wave volume and enhance oil recovery. While the microscopic oil repulsion mechanism has been the center of attention, the oil repulsion effect of three distinct types of gases (N2, CH4, and CO2) is of particular importance in understanding the displacement mechanism of N2/CH4/CO2 on heptane at the blind end of the nanometer. A molecular dynamics simulation using the LAMMPS software was employed to construct a model of a blind end of heptane on a SiO2 wall and an interface model with different types of gas molecules. This was done to investigate the microscopic mechanism of heptane replacement by gas molecules. The temperature (50 °C) and pressure (30 MPa) of the reservoir in the Changqing oil field are selected as the parameters for analysis. The findings indicate that all three types of gas molecules can enter the blind end and displace heptane. However, supercritical CO2 forms a mixed phase with heptane, which is more prone to extruding oil molecules situated near the inner wall surface of the blind end and desorbing the oil film. The results demonstrate that, in the context of the blind end, gaseous CO2 exhibits a lower solvation ability but superior extrusion diffusion ability for heptane compared to N2 and CH4. Furthermore, the interaction energy indicates that the interactions between two states of CO2 and heptane, as well as the thickness of the interface, increase with increasing pressure and temperature. The findings of this study elucidate the microscopic mechanism underlying the replacement of oil droplets or oil films at the blind end by different gases under reservoir conditions at the molecular level and offer further guidance for the selection of the gas phase and the replacement state in the water-gas dispersive drive system. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery by the Digital Intelligence Sealaplugology)
Show Figures

Figure 1

16 pages, 16959 KiB  
Article
Application of High-Speed Self-Aligned Focusing Schlieren System for Supersonic Flow Velocimetry
by Philip A. Lax and Sergey B. Leonov
Aerospace 2024, 11(8), 603; https://doi.org/10.3390/aerospace11080603 - 24 Jul 2024
Cited by 4 | Viewed by 2407
Abstract
A self-aligned focusing schlieren (SAFS) system combines the field of view of a conventional schlieren system with the defocus blur of a focusing schlieren system away from the object plane. It can be assembled in a compact form, measuring 1.2 m (4 ft) [...] Read more.
A self-aligned focusing schlieren (SAFS) system combines the field of view of a conventional schlieren system with the defocus blur of a focusing schlieren system away from the object plane. It can be assembled in a compact form, measuring 1.2 m (4 ft) in length in the described case. The depth of field is sufficiently shallow to distinguish specific spanwise features in a supersonic flow field within a 76.2 mm (3 in) wide test section. As a result, the boundary-layer perturbations on windows and window-material defects and surface imperfections are blurred. Analytical forms are derived for depth of field and vignetting of the SAFS system. A laser spark velocity measurement in Mach 2 flow is performed by tracking the blast wave of a laser spark using 500 kHz SAFS imaging with a 200 ns optical pulse width. The flow Mach number and stagnation temperature are measured by comparing the blast-wave dynamics to an analytical solution. Additionally, schlieren image velocimetry is performed by analyzing natural flow perturbations in 500 kHz SAFS images using a self-correlation method. Comparing the spectra of gas density perturbations from the core flow and a near-wall region reveals a significant difference, with high-frequency prevalence at the boundary-layer location. Full article
(This article belongs to the Special Issue Advanced Flow Diagnostic Tools (2nd Edition))
Show Figures

Figure 1

25 pages, 8124 KiB  
Article
Study of Condensation during Direct Contact between Steam and Water in Pressure-Relief Tank
by Shasha Yin, Yingjie Wang, Yuan Yuan and Bei Li
Energies 2024, 17(11), 2772; https://doi.org/10.3390/en17112772 - 5 Jun 2024
Viewed by 1998
Abstract
Direct contact condensation (DCC) is a phenomenon observed when steam interacts with subcooled water, exhibiting higher heat and mass transfer rates compared to wall condensation. It has garnered significant interest across industries such as nuclear, chemical, and power due to its advantageous characteristics. [...] Read more.
Direct contact condensation (DCC) is a phenomenon observed when steam interacts with subcooled water, exhibiting higher heat and mass transfer rates compared to wall condensation. It has garnered significant interest across industries such as nuclear, chemical, and power due to its advantageous characteristics. In the context of pressure-relief tanks, understanding and optimizing the DCC process are critical for safety and efficiency. The efficiency of pressure-relief tanks depends on the amount of steam condensed per unit of time, which directly affects their operational parameters and design. This study focuses on investigating the direct gas–liquid contact condensation process in pressure-relief tanks using computational fluid dynamics (CFD). Through experimental validation and a sensitivity analysis, the study provides insights into the influence of inlet steam parameters and basin temperature on the steam plume characteristics. Furthermore, steady-state and transient calculation models are developed to simulate the behaviour of the pressure-relief tank, providing valuable data for safety analysis and design optimization. There is a relatively high-pressure area in the upper part of the bubble hole of the pressure-relief tube, and the value increases as it is closer to the holes. The steam velocity in the bubbling hole near the 90° elbow position is higher. This study contributes to the understanding of steam condensation dynamics in pressure-relief tanks. When the steam emission and pressure are fixed, the equilibrium temperature increases linearly as the initial temperature increases (where a = 1, b = 20 in y = a x+ b correlation), the equilibrium pressure increases nearly exponentially, and the equilibrium gas volume decreases. When the steam emission and initial temperature are fixed, the equilibrium temperature does not change as the steam discharge pressure increases. The correlations between the predicted equilibrium parameters and the inlet steam parameters and tank temperature provide valuable insights for optimizing a pressure-relief tank design and improving the operational safety in diverse industrial contexts. Full article
(This article belongs to the Special Issue Optimal Design and Analysis of Advanced Nuclear Reactors)
Show Figures

Figure 1

16 pages, 2909 KiB  
Article
Numerical Investigations on the Effects of Dome Cooling Air Flow on Combustion Characteristics and Emission Behavior in a Can-Type Gas Turbine Combustor
by Chenzhen Ji, Wentao Shi, Enlei Ke, Jiaying Cheng, Tong Zhu, Chao Zong and Xinyan Li
Aerospace 2024, 11(5), 338; https://doi.org/10.3390/aerospace11050338 - 25 Apr 2024
Cited by 3 | Viewed by 3033
Abstract
To meet the requirements of achieving higher efficiency and lower NOx pollution, the flame temperature in gas turbine combustors increases continually; thus, the effusion-cooling technology has been used to ensure the combustor liner remains within the allowed temperature, by which the combustion characteristics [...] Read more.
To meet the requirements of achieving higher efficiency and lower NOx pollution, the flame temperature in gas turbine combustors increases continually; thus, the effusion-cooling technology has been used to ensure the combustor liner remains within the allowed temperature, by which the combustion characteristics and emission behavior are possibly influenced. In order to investigate the effects of dome cooling air flow on combustion characteristics and NOx emissions, three-dimensional combustion simulations for a swirl-stabilized can-type gas turbine combustor are carried out in this work by using the computational fluid dynamics (CFD) method. Through adjusting the ratio of the dome cooling air flow and the dilution cooling air flow, the characteristics of flow field, temperature distribution and NOx emissions under each work condition are analyzed. At different ratios of the dome-cooling air flow to the total air flow, the flow velocity field in the region near the center of the combustion chamber is not changed much, while the velocity field near the chamber wall shows a more significant difference. The temperature in the outer recirculation zone within the combustion chamber is effectively reduced as the dome cooling air flow increases. By analyzing the distribution characteristics of the concentration of OH*, it is demonstrated that the dome cooling air flow does not have a direct effect on the reaction of combustion. It is also found that as the ratio of the dome cooling air flow to the total air flow increases from 0 to 0.15, the value of the NOx emissions drops from 28.4 to 26.3 ppmv, about a 7.4% decrease. The distribution of the NOx generation rate in the combustion chamber does not vary significantly with the increasing dome cooling air flow. Furthermore, by calculating the residence time in different stages, when the the ratio of the dome cooling air flow to the total air flow varies from 0 to 0.15, the residence time in the pilot stage decreases obviously, from 42 ms to 18 ms. This means that reduction in residence time is the main factor in the decrease of NOx emissions when the dome cooling air flow increases. Full article
(This article belongs to the Special Issue Progress in Turbomachinery Technology for Propulsion)
Show Figures

Figure 1

17 pages, 7143 KiB  
Article
Research on Wellbore Stability in Deepwater Hydrate-Bearing Formations during Drilling
by Ting Sun, Zhiliang Wen and Jin Yang
Energies 2024, 17(4), 823; https://doi.org/10.3390/en17040823 - 9 Feb 2024
Cited by 1 | Viewed by 2086
Abstract
Marine gas hydrate formations are characterized by considerable water depth, shallow subsea burial, loose strata, and low formation temperatures. Drilling in such formations is highly susceptible to hydrate dissociation, leading to gas invasion, wellbore instability, reservoir subsidence, and sand production, posing significant safety [...] Read more.
Marine gas hydrate formations are characterized by considerable water depth, shallow subsea burial, loose strata, and low formation temperatures. Drilling in such formations is highly susceptible to hydrate dissociation, leading to gas invasion, wellbore instability, reservoir subsidence, and sand production, posing significant safety challenges. While previous studies have extensively explored multiphase flow dynamics between the formation and the wellbore during conventional oil and gas drilling, a clear understanding of wellbore stability under the unique conditions of gas hydrate formation drilling remains elusive. Considering the effect of gas hydrate decomposition on formation and reservoir frame deformation, a multi-field coupled mathematical model of seepage, heat transfer, phase transformation, and deformation of near-wellbore gas hydrate formation during drilling is established in this paper. Based on the well logging data of gas hydrate formation at SH2 station in the Shenhu Sea area, the finite element method is used to simulate the drilling conditions of 0.1 MPa differential pressure underbalance drilling with a borehole opening for 36 h. The study results demonstrate a significant tendency for wellbore instability during the drilling process in natural gas hydrate formations, largely due to the decomposition of hydrates. Failure along the minimum principal stress direction in the wellbore wall begins to manifest at around 24.55 h. This is accompanied by an increased displacement velocity of the wellbore wall towards the well axis in the maximum principal stress direction. By 28.07 h, plastic failure is observed around the entire circumference of the well, leading to wellbore collapse at 34.57 h. Throughout this process, the hydrate decomposition extends approximately 0.55 m, predominantly driven by temperature propagation. When hydrate decomposition is taken into account, the maximum equivalent plastic strain in the wellbore wall is found to increase by a factor of 2.1 compared to scenarios where it is not considered. These findings provide crucial insights for enhancing the safety of drilling operations in hydrate-bearing formations. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development)
Show Figures

Figure 1

23 pages, 114049 KiB  
Article
Base Flow and Drag Characteristics of a Supersonic Vehicle with Cold and Hot Jet Flows of Nozzles
by Yongchan Kim, Junyeop Nam, Tae-Seong Roh and Hyoung Jin Lee
Aerospace 2023, 10(10), 836; https://doi.org/10.3390/aerospace10100836 - 25 Sep 2023
Viewed by 2641
Abstract
Base drag has a significant effect on the overall drag of a projectile in a supersonic flow. Herein, the base drag and flow characteristics of cold and hot gas flow in a supersonic flow are analyzed via numerical simulations. The hot gas flow [...] Read more.
Base drag has a significant effect on the overall drag of a projectile in a supersonic flow. Herein, the base drag and flow characteristics of cold and hot gas flow in a supersonic flow are analyzed via numerical simulations. The hot gas flow is simulated using a chemical equilibrium application code based on hydrogen combustion. Two types of nozzle configurations, namely conical and contoured, are chosen for the simulation. The simulation results reveal that the change in base drag is 5–85% according to the injection gases. In the over-expanded and slightly under-expanded conditions, the base drag decreases in the hot gas flow, owing to the weak expansion fan caused by the high-temperature nozzle flow expansion, whereas in the highly under-expanded condition, the base drag decreases, owing to the strong shock wave near the base caused by the deflection of the recirculation region toward the body wall. In addition, the variations in base flow structures are observed differently compared with the cold flow; for example, a weak oblique shock wave at the nozzle exit, an increase in the distance between the shock wave and base, and deflection of the recirculation region based on the body wall are observed. Full article
(This article belongs to the Special Issue Jet Flows)
Show Figures

Figure 1

21 pages, 10275 KiB  
Article
Influence of Cavitation on the Heat Transfer of High-Speed Mechanical Seal with Textured Side Wall
by Minfeng Yu, Xudong Peng, Xiangkai Meng, Jinbo Jiang and Yi Ma
Lubricants 2023, 11(9), 378; https://doi.org/10.3390/lubricants11090378 - 6 Sep 2023
Cited by 3 | Viewed by 1775
Abstract
By setting textures on the side walls of a rotor, based on SST k-ω turbulence and the mixture model, the effects of depth-to-diameter ratio, shape, and rotational speed on interface temperature are analyzed. Local Nu number, flow field in textures, and [...] Read more.
By setting textures on the side walls of a rotor, based on SST k-ω turbulence and the mixture model, the effects of depth-to-diameter ratio, shape, and rotational speed on interface temperature are analyzed. Local Nu number, flow field in textures, and gas distribution are used to verify the conclusion. When rotational speed increases, there are three different stages on the surface: liquid-dominated, mixed two-phase, and gas-dominated. This leads to a big difference in heat transfer on the side wall and causes the temperature on the seal face to increase when cavitation is considered. The distribution of the gas phase is explained through drag reduction, which has a high correlation with the velocity gradient near the surface. For several common shapes, heat transfer enhancement of textures is compared under high speed. The key influencing factor is the depth-to-diameter ratio, which causes flow stratification and reduces heat transfer. Flow stratification leads to different results of maximum temperature on the seal face when cavitation is considered. Results show that at high speed, a deep, circular texture is better when cavitation does not occur, and a shallow triangular texture is recommended when cavitation occurs; a textured side wall can reduce the maximum temperature of the seal face by about 10 °C. Full article
(This article belongs to the Special Issue Gas Lubrication and Dry Gas Seal)
Show Figures

Figure 1

17 pages, 5200 KiB  
Article
The Condensation Characteristics of Propane in Binary and Ternary Mixtures on a Vertical Plate
by Lili Zhang, Yongzhang Cui, Wenlong Mao, Xiangzhuo Sheng and Guanmin Zhang
Energies 2023, 16(16), 5873; https://doi.org/10.3390/en16165873 - 8 Aug 2023
Viewed by 1335
Abstract
Natural gas is one of the most common forms of energy in our daily life, and it is composed of multicomponent hydrocarbon gas mixtures (mainly of methane, ethane and propane). It is of great significant to reveal the condensation mechanism of multicomponent mixtures [...] Read more.
Natural gas is one of the most common forms of energy in our daily life, and it is composed of multicomponent hydrocarbon gas mixtures (mainly of methane, ethane and propane). It is of great significant to reveal the condensation mechanism of multicomponent mixtures for the development and utilization of natural gas. A numerical model was adopted to analyze the heat and mass transfer characteristics of propane condensation in binary and ternary gas mixtures on a vertical cold plate. Multicomponent diffusion equations and the volume of fluid method (VOF) are used to describe the in-phase and inter-phase transportation. The conditions of different wall sub-cooled temperatures (temperature difference between the wall and saturated gas mixture) and the inlet molar fraction of methane/ethane are discussed. The numerical results show that ethane gas is more likely to accumulate near the wall compared with the lighter methane gas. The thermal resistance in the gas boundary layer is one hundred times higher than that of the liquid film, revealing the importance of diffusion resistance. The heat transfer coefficients increased about 11% (at ΔT = 10 K) and 7% (at ΔT = 40 K), as the molar fraction of ethane increased from 0 to 40%. Meanwhile, the condensation heat transfer coefficient decreased by 53~56% as the wall sub-cooled temperature increased from 10 K to 40 K. Full article
(This article belongs to the Special Issue Fluid, Energy and Thermal Comfort in Buildings)
Show Figures

Figure 1

22 pages, 6252 KiB  
Article
Influence of Central Air on Flow and Combustion Characteristics and Low-Load Stabilization Performance of a Babcock Burner
by Chunchao Huang, Zhengqi Li, Yufei Wang, Yue Lu, Huacai Liu and Zhichao Chen
Processes 2023, 11(7), 1916; https://doi.org/10.3390/pr11071916 - 26 Jun 2023
Cited by 8 | Viewed by 1652
Abstract
On a cold single-phase test stand, the effect of central air on the exit flow field of Babcock, Germany, burner was investigated. Industrial measurements were taken for a 700 MW wall-fired pulverized-coal utility boiler with above burners. Gas temperature, gas composition and concentration [...] Read more.
On a cold single-phase test stand, the effect of central air on the exit flow field of Babcock, Germany, burner was investigated. Industrial measurements were taken for a 700 MW wall-fired pulverized-coal utility boiler with above burners. Gas temperature, gas composition and concentration in the burner area were measured at 444 MW, 522 MW and 645 MW loads, respectively. Only when the central air mass flow was zero did a center reflux zone exist in the burner outlet area. The steady combustion of faulty coal was aided by early mixing of primary and secondary air, which was made possible by the decreased central air mass flow. At all different loads, the pulverized coal in center region took a long distance to ignite. The temperature in center steadily dropped as central air mass flow decreased, while the temperature in secondary air region gradually rose. Within 1.5 m from the primary air duct outlet, the highest CO concentration was 25 ppm and the highest O2 concentration was close to 21% under all loads. The gas concentration near sidewall was more influenced by load. With all valves opening of burner center air at 30%, the boiler was able to operate safely and stably without oil at a load of 262 MW. The furnace chamber temperature in burner area reached 1056.1 °C. Full article
Show Figures

Figure 1

50 pages, 8468 KiB  
Review
Advanced Gas Turbine Cooling for the Carbon-Neutral Era
by Kenichiro Takeishi and Robert Krewinkel
Int. J. Turbomach. Propuls. Power 2023, 8(3), 19; https://doi.org/10.3390/ijtpp8030019 - 24 Jun 2023
Cited by 17 | Viewed by 11557
Abstract
In the coming carbon-neutral era, industrial gas turbines (GT) will continue to play an important role as energy conversion equipment with high thermal efficiency and as stabilizers of the electric power grid. Because of the transition to a clean fuel, such as hydrogen [...] Read more.
In the coming carbon-neutral era, industrial gas turbines (GT) will continue to play an important role as energy conversion equipment with high thermal efficiency and as stabilizers of the electric power grid. Because of the transition to a clean fuel, such as hydrogen or ammonia, the main modifications will lie with the combustor. It can be expected that small and medium-sized gas turbines will burn fewer inferior fuels, and the scope of cogeneration activities they are used for will be expanded. Industrial gas turbine cycles including CCGT appropriate for the carbon-neutral era are surveyed from the viewpoint of thermodynamics. The use of clean fuels and carbon capture and storage (CCS) will inevitably increase the unit cost of power generation. Therefore, the first objective is to present thermodynamic cycles that fulfil these requirements, as well as their verification tests. One conclusion is that it is necessary to realize the oxy-fuel cycle as a method to utilize carbon-heavy fuels and biomass and not generate NOx from hydrogen combustion at high temperatures. The second objective of the authors is to show the required morphology of the cooling structures in airfoils, which enable industrial gas turbines with a higher efficiency. In order to achieve this, a survey of the historical development of the existing cooling methods is presented first. CastCool® and wafer and diffusion bonding blades are discussed as turbine cooling technologies applicable to future GTs. Based on these, new designs already under development are shown. Most of the impetus comes from the development of aviation airfoils, which can be more readily applied to industrial gas turbines because the operation will become more similar. Double-wall cooling (DWC) blades can be considered for these future industrial gas turbines. It will be possible in the near future to fabricate the DWC structures desired by turbine cooling designers using additive manufacturing (AM). Another conclusion is that additively manufactured DWC is the best cooling technique for these future gas turbines. However, at present, research in this field and the data generated are scattered, and it is not yet possible for heat transfer designers to fabricate cooling structures with the desired accuracy. Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
Show Figures

Figure 1

Back to TopTop