Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (463)

Search Parameters:
Keywords = near-infrared fluorescence image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13443 KB  
Article
NIR Indocyanine–White Light Overlay Visualization for Neuro-Oto-Vascular Preservation During Anterior Transpetrosal Approaches: A Technical Note
by Leonardo Tariciotti, Alejandra Rodas, Erion De Andrade, Juan Manuel Revuelta Barbero, Youssef M. Zohdy, Roberto Soriano, Jackson R. Vuncannon, Justin Maldonado, Samir Lohana, Francesco DiMeco, Tomas Garzon-Muvdi, Camilo Reyes, C. Arturo Solares and Gustavo Pradilla
J. Clin. Med. 2025, 14(19), 6954; https://doi.org/10.3390/jcm14196954 - 1 Oct 2025
Viewed by 226
Abstract
Objectives: Anterior petrosectomy is a challenging neurosurgical procedure requiring precise identification and preservation of multiple critical structures. This technical note explores the feasibility of using real-time near-infrared indocyanine green (NIR-ICG) fluorescence with white light overlay to enhance visualization of the petrous internal [...] Read more.
Objectives: Anterior petrosectomy is a challenging neurosurgical procedure requiring precise identification and preservation of multiple critical structures. This technical note explores the feasibility of using real-time near-infrared indocyanine green (NIR-ICG) fluorescence with white light overlay to enhance visualization of the petrous internal carotid artery (ICA) during transpetrosal drilling. We aimed to assess its utility for planning and performing modified Dolenc–Kawase drilling. Methods: We integrated NIR-ICG and white light overlay using a robotic microscope with simultaneous visualization capabilities. This technique was applied to improve neurovascular preservation and skull base landmark identification. Intraoperative video frames and images were captured during an anterior transpetrosal approach for a petroclival meningioma, with technical details, surgical time, and feedback documented. Results: Real-time NIR-ICG with white light overlay successfully identified the posterior genu, horizontal petrosal segment, anterior genu, and superior petrosal sinus. It facilitated precise localization of cochlear landmarks, enabling tailored drilling of the Dolenc–Kawase rhomboid according to patient anatomy and accommodating potential anatomical variants. Conclusions: This approach could enhance intraoperative safety and improve exposure, possibly reducing neurovascular risks without extending operative time. It may serve as a valuable adjunct for complex skull base surgeries. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

17 pages, 4341 KB  
Systematic Review
The Role of Near-Infrared Fluorescence with Indocyanine Green in Robot-Assisted Partial Nephrectomy: Results from an Updated Systematic Review and Meta-Analyses of Controlled Studies
by Andrea Panunzio, Rossella Orlando, Federico Greco, Clara Cerrato, Serena Domenica D’Elia, Laura Marinaci, Federica Manno, Aliasger Shakir, Michele Battaglia, Willy Baccaglini, Antonio Benito Porcaro, Alessandro Antonelli, Andre Abreu and Alessandro Tafuri
Medicina 2025, 61(10), 1735; https://doi.org/10.3390/medicina61101735 - 24 Sep 2025
Viewed by 331
Abstract
Background and Objectives: Partial nephrectomy is the standard treatment for small renal tumors, balancing cancer control with renal function preservation. Robot-assisted partial nephrectomy (RAPN) has improved surgical precision and reduced morbidity. Near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG) improves intraoperative visualization [...] Read more.
Background and Objectives: Partial nephrectomy is the standard treatment for small renal tumors, balancing cancer control with renal function preservation. Robot-assisted partial nephrectomy (RAPN) has improved surgical precision and reduced morbidity. Near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG) improves intraoperative visualization of renal vasculature and tissue perfusion, potentially enabling selective arterial clamping to reduce ischemic injury. This study updates contemporary evidence on NIRF/ICG-guided RAPN, focusing on intraoperative, perioperative, and renal function outcomes. Materials and Methods: We systematically queried PubMed, Scopus, and Web of Science databases up to June 2025 for controlled prospective and retrospective studies comparing NIRF/ICG-guided RAPN (selective clamping or zero-ischemia) versus conventional RAPN with main artery clamping in adults with renal masses. Data were synthesized narratively, and random-effects meta-analyses were performed on warm ischemia time (WIT), operative time, estimated blood loss, transfusion rate, length of hospital stay, complication rate, positive surgical margins, and variation in renal function. Results: Eleven studies (10 full-text and one abstract), including two randomized controlled trials, encompassing a patient population of 893 patients (403 NIRF/ICG-guided RAPN and 490 conventional RAPN), were included. Ischemia strategies varied between no clamping, selective or super-selective clamping for NIRF/ICG, and main artery clamping for controls. ICG doses ranging from 3 to 7.5 mg or 0.5–7 mL. Most evidence was classified as level 2b or 3b, indicating a moderate to serious risk of bias. Meta-analysis showed that compared to conventional RAPN, NIRF/ICG-guided RAPN was associated with a shorter WIT (MD: −1.30 min, 95% CI: −2.51 to −0.09; p = 0.039), with no differences in other outcomes. Renal function favored NIRF/ICG at discharge and short-term follow-up, although the difference was not statistically significant. Conclusions: NIRF/ICG reduces WIT during RAPN without increasing perioperative risks. The technique shows promise for better preserving functional outcomes. However, further well-designed, large-scale trials with longer follow-up are needed to confirm these benefits and define clinical indications. Full article
Show Figures

Figure 1

39 pages, 4595 KB  
Review
Recent Advances in Metal Nanoclusters: From Novel Synthesis to Emerging Applications
by Alexandru-Milentie Hada, Marc Lamy de la Chapelle, Monica Focsan and Simion Astilean
Molecules 2025, 30(19), 3848; https://doi.org/10.3390/molecules30193848 - 23 Sep 2025
Viewed by 501
Abstract
Metallic nanoclusters (NCs), composed of a few to a hundred atoms, occupy a unique space between molecules and nanoparticles, exhibiting discrete electronic states, strong photoluminescence, and size-dependent catalytic activity. Their ultrasmall cores (<3 nm) and ligand-controlled surfaces confer tunable optical, electronic, and catalytic [...] Read more.
Metallic nanoclusters (NCs), composed of a few to a hundred atoms, occupy a unique space between molecules and nanoparticles, exhibiting discrete electronic states, strong photoluminescence, and size-dependent catalytic activity. Their ultrasmall cores (<3 nm) and ligand-controlled surfaces confer tunable optical, electronic, and catalytic properties, making them attractive for diverse applications. In recent years, significant progress has been made toward developing faster, more reproducible, and scalable synthesis routes beyond classical wet-chemical reduction. Emerging strategies such as microwave-, photochemical-, sonochemical-, and catalytically assisted syntheses, together with smart, automation-driven platforms, have improved efficiency, structural control, and environmental compatibility. These advances have accelerated the deployment of NCs in imaging, sensing, and catalysis. Near-infrared emitting NCs enable deep-tissue, high-contrast fluorescence imaging, while theranostic platforms combine diagnostic precision with photothermal or photodynamic therapy, gene delivery, and anti-inflammatory treatment. NC-based sensors allow ultrasensitive detection of ions, small molecules, and pathogens, and atomically precise NCs have enabled efficient CO2 reduction, water splitting, and nitrogen fixation. Therefore, in this review, we highlight studies reported in the past five years on the synthesis and applications of metallic NCs, linking emerging methodologies to their functional potential in nanotechnology. Full article
(This article belongs to the Special Issue Metallic Nanoclusters and Their Interaction with Light)
Show Figures

Graphical abstract

16 pages, 1046 KB  
Review
How Can Technology Improve Burn Wound Care: A Review of Wound Imaging Technologies and Their Application in Burns—UK Experience
by Nawras Farhan, Zakariya Hassan, Mohammad Al Mahdi Ali, Zaid Alqalaf, Roeya E. Rasul and Steven Jeffery
Diagnostics 2025, 15(17), 2277; https://doi.org/10.3390/diagnostics15172277 - 8 Sep 2025
Viewed by 749
Abstract
Burn wounds are complex injuries that require timely and accurate assessment to guide treatment decisions and improve healing outcomes. Traditional clinical evaluations are largely subjective, often leading to delays in intervention and increased risk of complications. Imaging technologies have emerged as valuable tools [...] Read more.
Burn wounds are complex injuries that require timely and accurate assessment to guide treatment decisions and improve healing outcomes. Traditional clinical evaluations are largely subjective, often leading to delays in intervention and increased risk of complications. Imaging technologies have emerged as valuable tools that enhance diagnostic accuracy and enable objective, real-time assessment of wound characteristics. This review aims to evaluate the range of imaging modalities currently applied in burn wound care and assess their clinical relevance, diagnostic accuracy, and cost-effectiveness. It explores how these technologies address key challenges in wound evaluation, particularly related to burn depth, perfusion status, bacterial burden, and healing potential. A comprehensive narrative review was conducted, drawing on peer-reviewed journal articles, NICE innovation briefings, and clinical trial data. The databases searched included PubMed, Ovid MEDLINE, and the Cochrane Library. Imaging modalities examined include Laser Doppler Imaging (LDI), Fluorescence Imaging (FI), Near-Infrared Spectroscopy (NIR), Hyperspectral Imaging, Spatial Frequency Domain Imaging (SFDI), and digital wound measurement systems. The clinical application and integration of these modalities in UK clinical practice were also explored. Each modality demonstrated unique clinical benefits. LDI was effective in assessing burn depth and perfusion, improving surgical planning, and reducing unnecessary procedures. FI, particularly the MolecuLight i:X device (MolecuLight Inc., Toronto, ON, Canada), accurately identified bacterial burden and guided targeted interventions. NIR and Hyperspectral Imaging provided insights into tissue oxygenation and viability, while SFDI enabled early detection of infection and vascular compromise. Digital measurement tools offered accurate, non-contact assessment and supported telemedicine use. NICE recognized both LDI and MolecuLight as valuable tools with the potential to improve outcomes and reduce healthcare costs. Imaging technologies significantly improve the precision and efficiency of burn wound care. Their ability to offer objective, non-invasive diagnostics enhances clinical decision-making. Future research should focus on broader validation and integration into clinical guidelines to ensure widespread adoption. Full article
(This article belongs to the Special Issue Diagnostics in the Emergency and Critical Care Medicine)
Show Figures

Figure 1

16 pages, 3377 KB  
Article
Feasibility of Anti-CEA Dye Conjugate for Cancer-Specific Imaging in Gastric Cancer Cell Lines and Mouse Xenograft Models
by Kyoungyun Jeong, Annie Eunhee Koo, Jaeun Yoo, Ji-Yeon Shin, Leena Lim, Hyun Myong Kim, Ji-Yong Park, Yun-Sang Lee, Yoon-Jin Kwak, Hye Seung Lee, Yie-Ri Yoo, Bérénice Framery, Karen Dumas, Françoise Cailler, André Pèlegrin, Do-Joong Park, Han-Kwang Yang, Seong-Ho Kong and Hyuk-Joon Lee
Cancers 2025, 17(17), 2937; https://doi.org/10.3390/cancers17172937 - 8 Sep 2025
Viewed by 666
Abstract
Purpose: Near-infrared fluorescence-guided surgery (FGS) using cancer-specific tracers is promising for tailored gastric cancer (GC) surgery. Carcinoembryonic antigen (CEA) is a potential target due to its high expression in various digestive cancers, including GC. Materials and Methods: SGM-101, a chimeric anti-CEA monoclonal antibody [...] Read more.
Purpose: Near-infrared fluorescence-guided surgery (FGS) using cancer-specific tracers is promising for tailored gastric cancer (GC) surgery. Carcinoembryonic antigen (CEA) is a potential target due to its high expression in various digestive cancers, including GC. Materials and Methods: SGM-101, a chimeric anti-CEA monoclonal antibody conjugated with the near-infrared dye BM-104, was evaluated in GC. CEA expression was identified in GC cell lines at the mRNA and protein levels. Xenograft models (MKN-45, SNU-16, SNU-668, 85As2mLuc) were established in mice and injected with SGM-101 or PBS. Biodistribution was monitored using in vivo fluorescence imaging. Tumors were further analyzed by immunofluorescence. In a peritoneal carcinomatosis model, 85As2mLuc cells were injected intraperitoneally, and tumors were evaluated by bioluminescence and fluorescence and histology. Results: MKN-45, SNU-16, and 85As2mLuc were CEA-positive, while SNU-668 was CEA-negative. Flow cytometry confirmed CEA expression: MKN-45 (98%), SNU-16 (85.6%), SNU-668 (6.42%) and 85As2mLuc (78.4%). SGM-101 selectively targeted CEA-expressing tumors, with fluorescence peaking at 48 h, and immunofluorescence verified localization in tumor cells. In the peritoneal models, SGM-101 enabled precise detection of CEA-positive tumors. Conclusions: This study provides the first evidence for the feasibility of SGM-101 in gastric cancer, demonstrating its novelty and translational potential as a cancer-specific imaging agent for fluorescence-guided surgery. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

22 pages, 3504 KB  
Article
New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera
by Ha Jong Nam, Se Young Kim and Hwan Jun Choi
Diagnostics 2025, 15(17), 2221; https://doi.org/10.3390/diagnostics15172221 - 1 Sep 2025
Viewed by 654
Abstract
Background: Timely and accurate identification of wound infections is essential for effective management, yet remains clinically challenging. This study evaluated the utility of a near-infrared autofluorescence imaging system (Fluobeam®, Fluoptics, Grenoble, France) and a thermal imaging system (FLIR®, Teledyne [...] Read more.
Background: Timely and accurate identification of wound infections is essential for effective management, yet remains clinically challenging. This study evaluated the utility of a near-infrared autofluorescence imaging system (Fluobeam®, Fluoptics, Grenoble, France) and a thermal imaging system (FLIR®, Teledyne LLC, Thousand Oaks, CA, USA) for detecting bacterial and fungal infections in chronic wounds. Fluobeam® enables real-time visualization of microbial autofluorescence without exogenous contrast agents, whereas FLIR® detects localized thermal changes associated with infection-related inflammation. Methods: This retrospective clinical study included 33 patients with suspected wound infections. All patients underwent autofluorescence imaging using Fluobeam® and concurrent thermal imaging with FLIR®. Imaging findings were compared with microbiological culture results, clinical signs of infection, and semi-quantitative microbial burdens. Results: Fluobeam® achieved a sensitivity of 78.3% and specificity of 80.0% in detecting culture-positive infections. Fluorescence signal intensity correlated strongly with microbial burden (r = 0.76, p < 0.01) and clinical indicators, such as exudate, swelling, and malodor. Pathogens with high metabolic fluorescence, including Pseudomonas aeruginosa and Candida spp., were consistently identified. Representative cases demonstrate the utility of fluorescence imaging in guiding targeted debridement and enhancing intraoperative decision-making. Conclusions: Near-infrared autofluorescence imaging with Fluobeam® and thermal imaging with FLIR® offer complementary, noninvasive diagnostic insights into microbial burden and host inflammatory response. The combined use of these modalities may improve infection detection, support clinical decision-making, and enhance wound care outcomes. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

30 pages, 2129 KB  
Review
Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma (HNSCC)
by Albrecht Blosse, Markus Pirlich, Andreas Dietz, Christin Möser, Katrin Arnold, Jessica Freitag, Thomas Neumuth, David M. Smith, Hans Kubitschke and Maximilian Gaenzle
Int. J. Transl. Med. 2025, 5(3), 40; https://doi.org/10.3390/ijtm5030040 - 22 Aug 2025
Viewed by 1607
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a surgical challenge with room for improvements. Because tumor cells express highly specific surface molecules serving as receptors for ligands, specific targeting ligands can be conjugated to fluorescent molecules in order to better visualize tumor borders. Targeted fluorescence-guided surgery (T-FGS) as well as tumor-targeted and near-infrared (NIR) fluorescence imaging are emerging techniques for real-time intraoperative cancer imaging. Targeting agents include nanodots or fluorophores, which have been conjugated to specific ligands like antibodies, peptides, or other synthetic moieties. This article surveys tumor-targeted ligands in recent and current preclinical studies and clinical trials related to HNSCC, highlighting common NIRF dyes used for molecular imaging and their physical properties, working concentrations, and associated risks. Smaller ligands, nanodots, dual-modality NIR dyes, and activatable agents can enhance tumor-targeting processes, resulting in faster, more penetrable, and clearer imaging, which could lead to improved clinical applications and better tumor removal rates in the future. Full article
Show Figures

Figure 1

19 pages, 1779 KB  
Review
Current and Emerging Fluorescence-Guided Techniques in Glioma to Enhance Resection
by Trang T. T. Nguyen, Hayk Mnatsakanyan, Eunhee Yi and Christian E. Badr
Cancers 2025, 17(16), 2702; https://doi.org/10.3390/cancers17162702 - 19 Aug 2025
Viewed by 882
Abstract
Maximal safe surgical resection remains a critical component of glioblastoma (GBM) management, improving both survival and quality of life. However, complete tumor removal is hindered by the infiltrative nature of GBM and its proximity to eloquent brain regions. Fluorescence-guided surgery (FGS) has emerged [...] Read more.
Maximal safe surgical resection remains a critical component of glioblastoma (GBM) management, improving both survival and quality of life. However, complete tumor removal is hindered by the infiltrative nature of GBM and its proximity to eloquent brain regions. Fluorescence-guided surgery (FGS) has emerged as a valuable tool to enhance intraoperative tumor visualization and optimize resection outcomes. Currently used fluorophores such as 5-aminolevulinic acid (5-ALA), fluorescein sodium (FS), and indocyanine green (ICG) have distinct advantages but are limited by suboptimal specificity, shallow tissue penetration, and technical constraints. 5-ALA and SF often yield unreliable signals in low-grade tumors or infiltrative regions and also pose challenges such as phototoxicity and poor depth resolution. In contrast, near-infrared (NIR) fluorescence imaging represents a promising next-generation approach, providing superior tissue penetration, reduced autofluorescence, and real-time delineation of tumor margins. This review explores the mechanisms, clinical applications, and limitations of currently approved FGS agents and highlights future directions in image-guided neurosurgery. Full article
(This article belongs to the Special Issue Research on Fluorescence-Guided Surgery in Cancer Treatment)
Show Figures

Figure 1

13 pages, 9916 KB  
Article
Near-Infrared Dye-Loaded Thermosensitive Hydrogels as Novel Fluorescence Tissue Markers
by Seon Sook Lee and Yongdoo Choi
Gels 2025, 11(8), 649; https://doi.org/10.3390/gels11080649 - 15 Aug 2025
Viewed by 623
Abstract
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and [...] Read more.
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and evaluated four thermosensitive injectable hydrogel systems incorporating indocyanine green-human serum albumin (ICG-HSA) complexes: (1) hexanoyl glycol chitosan (HGC), (2) Pluronic F-127, (3) PCL–PEG–PCL, and (4) PLA–PEG–PLA. All hydrogel formulations exhibited sol–gel transitions at physiological temperatures, facilitating in situ dye entrapment and prolonged fluorescence retention. In vivo fluorescence imaging revealed that HGC and Pluronic F-127 hydrogels retained signals for up to five and two days, respectively. In contrast, polyester-based hydrogels (PCL–PEG–PCL and PLA–PEG–PLA) preserved fluorescence for up to 21–30 days. PLA–PEG–PLA showed the highest signal-to-background ratios and sustained intensity, while PCL–PEG–PCL also achieved long-term retention. These findings suggest that thermosensitive hydrogels incorporating ICG-HSA complexes represent promising tissue marker platforms for real-time, minimally invasive, and long-term fluorescence-guided lesion tracking. Full article
Show Figures

Figure 1

24 pages, 4650 KB  
Article
Microscopic Investigation of Coupled Mobilization and Blending Behaviors Between Virgin and Reclaimed Aged Asphalt Mastic
by Jiaying Zhang, Xin Qiu, Qinghong Fu, Zheyu Shen, Xuanqi Huang and Haoran Chen
Materials 2025, 18(16), 3739; https://doi.org/10.3390/ma18163739 - 10 Aug 2025
Viewed by 2647
Abstract
To meet the demand for sustainable pavement infrastructure, reclaimed asphalt pavement (RAP) has become a key strategy to enhance material circularity. This study investigates the coupled mobilization and blending behaviors between virgin and aged asphalt mastic in RAP systems. Fourier-Transform Infrared Spectroscopy (FTIR) [...] Read more.
To meet the demand for sustainable pavement infrastructure, reclaimed asphalt pavement (RAP) has become a key strategy to enhance material circularity. This study investigates the coupled mobilization and blending behaviors between virgin and aged asphalt mastic in RAP systems. Fourier-Transform Infrared Spectroscopy (FTIR) was utilized to quantify the mobilization rate (MR) of aged mastic on RAP aggregate surfaces using the Composite Aging Index (CAI). Scanning Electron Microscopy (SEM) and Fluorescence Microscopy (FM), combined with digital image analysis, were employed to assess the blending interface and quantify the degree of blending (DoB). A 3D model was developed to describe the nonlinear relationship between MR and DoB. The results show that regeneration is dominated by physical diffusion, while mixing temperature has a stronger effect on MR than time. The binder interface displays a smooth transition, whereas the mastic interface exhibits a gear-like structure. DoB in the binder system is higher than that in the mastic system under the same condition, with early-stage temperature elevation playing a key role. Even near 100%, MR does not lead to full blending due to interfacial saturation. These insights are valuable for guiding the design of RAP and optimizing mixing conditions to enhance recycling efficiency in practical applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

16 pages, 2511 KB  
Article
Brightly Visualizing Pancreatic Cancer Margins in Orthotopic Mouse Models with an Anti-CA19-9 Antibody Conjugated to a Near-Infrared Fluorophore
by Kristin E. Cox, Javier Bravo, Sunidhi Jaiswal, Siamak Amirfakhri, Thinzar M. Lwin, Abhijit Aithal, Sumbal Talib, Lily J. Jih, Aylin Din Parast Saleh, Keita Kobayashi, Kavita Mallya, Maneesh Jain, Robert M. Hoffman, Aaron M. Mohs, Surinder K. Batra and Michael Bouvet
Cancers 2025, 17(16), 2617; https://doi.org/10.3390/cancers17162617 - 10 Aug 2025
Viewed by 893
Abstract
Background/Purpose: The only potentially curative procedure for pancreatic cancer is R0 resection, which is difficult to achieve due to poorly defined tumor margins. In the present study, we used an anti-CA19-9 antibody conjugated to a near-infrared fluorophore in orthotopic mouse models to target [...] Read more.
Background/Purpose: The only potentially curative procedure for pancreatic cancer is R0 resection, which is difficult to achieve due to poorly defined tumor margins. In the present study, we used an anti-CA19-9 antibody conjugated to a near-infrared fluorophore in orthotopic mouse models to target and visualize pancreatic cancer. Methods: Orthotopic models of the human pancreatic cancer cell lines SW1990 and BxPC3 were established by implanting tumor fragments into the pancreas of athymic nude mice. Anti-CA19-9 and control IgG were conjugated with IRDye800CW. Mice received 50 µg of CA19-9–IRDye800CW or IgG-IRDye800CW via tail-vein injection and were imaged after 72 h. MIA PaCa-2, a CA19-9-negative cell line, was used in subcutaneous models to assess targeting specificity. Results: Using the LI-COR Pearl imaging system in the SW1990 model, the tumor-to-pancreas ratio (TPR) was 4.51 (±0.74), and the tumor to the liver ratio (TLR) was 3.05 (±0.60) with CA19-9-IRDye800CW, while the TPR was 1.67 (±0.16) and the TLR was 0.95 (±0.05) for the non-specific control IgG–IRDye800CW. Using a clinically available fluorescence laparoscope, CA19-9-1RDye800CW demonstrated a TPR of 2.34 (±0.44) and a TLR of 2.23 (±0.49), compared to 1.11 (±0.13) and 0.69 (±0.07), respectively, for IgG-IRDye800CW in the SW1990 orthotopic model. In the BxPC3 models, the TPR was 3.82 (±0.55) and the TLR was 4.13 (±0.77) for CA19-9-IRDye800CW compared to 2.40 (±0.31) and 1.49 (±0.23), respectively, for IgG-IRDye800CW. Conclusions: CA19-9-IRDye800CW provided specific in vivo targeting of two human pancreatic cancer cell lines in orthotopic nude mouse models with superior TPRs and TLRs compared to IgG-IRDye800CW. This tumor-specific fluorescent CA19-9 antibody is a promising clinical tool for improved visualization of pancreatic cancer. Full article
(This article belongs to the Special Issue Research on Fluorescence-Guided Surgery in Cancer Treatment)
Show Figures

Figure 1

23 pages, 3243 KB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 780
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

25 pages, 5899 KB  
Review
Non-Invasive Medical Imaging in the Evaluation of Composite Scaffolds in Tissue Engineering: Methods, Challenges, and Future Directions
by Samira Farjaminejad, Rosana Farjaminejad, Pedram Sotoudehbagha and Mehdi Razavi
J. Compos. Sci. 2025, 9(8), 400; https://doi.org/10.3390/jcs9080400 - 1 Aug 2025
Viewed by 1128
Abstract
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities [...] Read more.
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities capable of monitoring scaffold integration, degradation, and tissue regeneration in real-time has become critical. This review summarizes current non-invasive imaging techniques used to evaluate tissue-engineered constructs, including optical methods such as near-infrared fluorescence imaging (NIR), optical coherence tomography (OCT), and photoacoustic imaging (PAI); magnetic resonance imaging (MRI); X-ray-based approaches like computed tomography (CT); and ultrasound-based modalities. It discusses the unique advantages and limitations of each modality. Finally, the review identifies major challenges—including limited imaging depth, resolution trade-offs, and regulatory hurdles—and proposes future directions to enhance translational readiness and clinical adoption of imaging-guided tissue engineering (TE). Emerging prospects such as multimodal platforms and artificial intelligence (AI) assisted image analysis hold promise for improving precision, scalability, and clinical relevance in scaffold monitoring. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

18 pages, 655 KB  
Systematic Review
Indocyanine Green Fluorescence Navigation in Pediatric Hepatobiliary Surgery: Systematic Review
by Carlos Delgado-Miguel, Javier Arredondo-Montero, Julio César Moreno-Alfonso, Isabella Garavis Montagut, Marta Rodríguez, Inmaculada Ruiz Jiménez, Noela Carrera, Pablo Aguado Roncero, Ennio Fuentes, Ricardo Díez and Francisco Hernández-Oliveros
Children 2025, 12(7), 950; https://doi.org/10.3390/children12070950 - 18 Jul 2025
Cited by 1 | Viewed by 691
Abstract
Introduction: Near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG) is now widely regarded as a valuable aid in decision-making for complex hepatobiliary procedures, with increasing support from recent studies. Methods: We performed a systematic review following PRISMA guidelines, utilizing PubMed, CINAHL, [...] Read more.
Introduction: Near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG) is now widely regarded as a valuable aid in decision-making for complex hepatobiliary procedures, with increasing support from recent studies. Methods: We performed a systematic review following PRISMA guidelines, utilizing PubMed, CINAHL, and EMBASE databases to locate studies on the perioperative use ICG in pediatric hepatobiliary surgeries. Two independent reviewers assessed all articles for eligibility based on predefined inclusion criteria. We collected data on study design, patient demographics, surgical indications, ICG dosing, timing of ICG injection, and perioperative outcomes. Results: Forty-three articles, including 930 pediatric patients, from 1989 to 2025 met the inclusion criteria for narrative synthesis in our systematic review, of which 22/43 (51.2%) were retrospective studies, 15/43 were case reports (34.9%), 3/43 (7.0%) were experimental studies, and the other three were prospective comparative studies (7.0%). The current clinical applications of ICG in hepatobiliary pediatric surgery include bile duct surgery (cholecystectomy, choledochal cyst, biliary atresia), reported in 17 articles (39.5%), liver tumor resection, reported in 15 articles (34.9%), liver transplantation, reported in 6 articles (14.6%), and liver function determination, reported in 5 articles (12.2%). Conclusions: ICG fluorescence navigation in pediatric hepatobiliary surgery is a highly promising and safe technology that allows for the intraoperative localization of anatomic biliary structures, aids in the identification and resection of liver tumors, and can accurately determine hepatic function. The lack of comparative and prospective studies, and the variability of the dose and timing of administration are the main limitations. Full article
Show Figures

Figure 1

36 pages, 1925 KB  
Review
Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers
by Zhichen Lun, Xiaohong Wu, Jiajun Dong and Bin Wu
Foods 2025, 14(13), 2350; https://doi.org/10.3390/foods14132350 - 2 Jul 2025
Cited by 4 | Viewed by 3080
Abstract
Nowadays, the development of the food industry and economic recovery have driven escalating consumer demands for high-quality, nutritious, and safe food products, and spectroscopic technologies are increasingly prominent as essential tools for food quality inspection. Concurrently, the rapid rise of artificial intelligence (AI) [...] Read more.
Nowadays, the development of the food industry and economic recovery have driven escalating consumer demands for high-quality, nutritious, and safe food products, and spectroscopic technologies are increasingly prominent as essential tools for food quality inspection. Concurrently, the rapid rise of artificial intelligence (AI) has created new opportunities for food quality detection. As a critical branch of AI, deep learning synergizes with spectroscopic technologies to enhance spectral data processing accuracy, enable real-time decision making, and address challenges from complex matrices and spectral noise. This review summarizes six cutting-edge nondestructive spectroscopic and imaging technologies, near-infrared/mid-infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, hyperspectral imaging (spanning the UV, visible, and NIR regions, to simultaneously capture both spatial distribution and spectral signatures of sample constituents), terahertz spectroscopy, and nuclear magnetic resonance (NMR), along with their transformative applications. We systematically elucidate the fundamental principles and distinctive merits of each technological approach, with a particular focus on their deep learning-based integration with spectral fusion techniques and hybrid spectral-heterogeneous fusion methodologies. Our analysis reveals that the synergy between spectroscopic technologies and deep learning demonstrates unparalleled superiority in speed, precision, and non-invasiveness. Future research should prioritize three directions: multimodal integration of spectroscopic technologies, edge computing in portable devices, and AI-driven applications, ultimately establishing a high-precision and sustainable food quality inspection system spanning from production to consumption. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

Back to TopTop