Feasibility of Anti-CEA Dye Conjugate for Cancer-Specific Imaging in Gastric Cancer Cell Lines and Mouse Xenograft Models
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Fluorescent Dye-Labeled Anti-CEA Antibody; SGM-101 and Isotype Control-101
2.2. Cell Culture
2.3. Western Blotting
2.4. Flow Cytometry
2.5. Immunocytochemistry
2.6. Mouse Modeling
2.7. Fluorescence Tumor Detection Imaging
2.8. Histologic Evaluation
2.9. Statistical Analysis
3. Results
3.1. Different CEA Fluorescence Detection by SGM-101 at the Cell Surface of Each GC Cell Line
3.2. SGM-101 Detection in Subcutaneous Gastric Tumors According to Their CEA Expression and in a Time-Dependent Manner
3.3. The Bioluminescence and Fluorescence Tumor Imaging in Peritoneal Seeding Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GC | Gastric Cancer |
CEA | Carcinoembryonic antigen |
NIR | Near-infrared |
FGS | Fluorescence-guided surgery |
ICG | Indocyanine Green |
O.D. | Optical Density |
ROI | Region of Interest |
FFPE | Formalin-fixed paraffin-embedded |
H&E | Hematoxylin and eosin |
SD | Standard Deviation |
SC | Subcutaneous |
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.S.; Huang, J.; Chan, P.S.F.; Choi, P.; Lao, X.Q.; Chan, S.M.; Teoh, A.; Liang, P. Global Incidence and Mortality of Gastric Cancer, 1980–2018. JAMA Netw. Open 2021, 4, e2118457. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, I.H.; Kang, S.J.; Choi, M.; Kim, B.H.; Eom, B.W.; Kim, B.J.; Min, B.H.; Choi, C.I.; Shin, C.M.; et al. Korean Practice Guidelines for Gastric Cancer 2022: An Evidence-based, Multidisciplinary Approach. J. Gastric Cancer 2023, 23, 3–106. [Google Scholar] [CrossRef]
- Park, S.-H.; Suh, Y.-S.; Kim, T.-H.; Choi, Y.-H.; Choi, J.-H.; Kong, S.-H.; Park, D.J.; Lee, H.-J.; Yang, H.-K. Postoperative morbidity and quality of life between totally laparoscopic total gastrectomy and laparoscopy-assisted total gastrectomy: A propensity-score matched analysis. BMC Cancer 2021, 21, 538. [Google Scholar] [CrossRef]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up☆. Ann. Oncol. 2022, 33, 1005–1020. [Google Scholar] [CrossRef]
- Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021, 71, 264–279. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Shim, C.N.; Chung, S.H.; Park, W.; Chung, H.; Lee, H.; Shin, S.K.; Lee, S.K.; Lee, Y.C.; Park, J.C. Impact of tumor location on clinical outcomes of gastric endoscopic submucosal dissection. World J. Gastroenterol. WJG 2014, 20, 8631. [Google Scholar] [CrossRef]
- Park, J.-H.; Berlth, F.; Wang, C.; Wang, S.; Choi, J.-H.; Park, S.-H.; Suh, Y.-S.; Kong, S.-H.; Park, D.J.; Lee, H.-J. Mapping of the perigastric lymphatic network using indocyanine green fluorescence imaging and tissue marking dye in clinically advanced gastric cancer. Eur. J. Surg. Oncol. 2022, 48, 411–417. [Google Scholar] [CrossRef]
- Jeong, K.; Kong, S.H.; Bae, S.W.; Park, C.R.; Berlth, F.; Shin, J.H.; Lee, Y.S.; Youn, H.; Koo, E.; Suh, Y.S.; et al. Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer. J. Gastric Cancer 2021, 21, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Boerner, T.; Piso, P. Cytoreductive Surgery for Peritoneal Carcinomatosis from Gastric Cancer: Technical Details. J. Clin. Med. 2021, 10, 5263. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Bu, Z. Sentinel lymph node detection for gastric cancer: Promise or pitfall? Surg. Oncol. 2020, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ikoma, N.; Blum, M.; Chiang, Y.-J.; Estrella, J.S.; Roy-Chowdhuri, S.; Fournier, K.; Mansfield, P.; Ajani, J.A.; Badgwell, B.D. Yield of staging laparoscopy and lavage cytology for radiologically occult peritoneal carcinomatosis of gastric cancer. Ann. Surg. Oncol. 2016, 23, 4332–4337. [Google Scholar] [CrossRef]
- Yao, K.; Doyama, H.; Gotoda, T.; Ishikawa, H.; Nagahama, T.; Yokoi, C.; Oda, I.; Machida, H.; Uchita, K.; Tabuchi, M. Diagnostic performance and limitations of magnifying narrow-band imaging in screening endoscopy of early gastric cancer: A prospective multicenter feasibility study. Gastric Cancer 2014, 17, 669–679. [Google Scholar] [CrossRef]
- Kim, Y.W.; Min, J.S.; Yoon, H.M.; An, J.Y.; Eom, B.W.; Hur, H.; Lee, Y.J.; Cho, G.S.; Park, Y.K.; Jung, M.R.; et al. Laparoscopic Sentinel Node Navigation Surgery for Stomach Preservation in Patients With Early Gastric Cancer: A Randomized Clinical Trial. J. Clin. Oncol. 2022, 40, 2342–2351. [Google Scholar] [CrossRef]
- Kong, S.-H.; Noh, Y.-W.; Suh, Y.-S.; Park, H.S.; Lee, H.-J.; Kang, K.W.; Kim, H.C.; Lim, Y.T.; Yang, H.-K. Evaluation of the novel near-infrared fluorescence tracers pullulan polymer nanogel and indocyanine green/γ-glutamic acid complex for sentinel lymph node navigation surgery in large animal models. Gastric Cancer 2015, 18, 55–64. [Google Scholar] [CrossRef]
- Van Driel, P.B.; van der Vorst, J.R.; Verbeek, F.P.; Oliveira, S.; Snoeks, T.J.; Keereweer, S.; Chan, B.; Boonstra, M.; Frangioni, J.; Van Bergen En Henegouwen, P. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int. J. Cancer 2014, 134, 2663–2673. [Google Scholar] [CrossRef]
- Reja, S.I.; Minoshima, M.; Hori, Y.; Kikuchi, K. Near-infrared fluorescent probes: A next-generation tool for protein-labeling applications. Chem. Sci. 2021, 12, 3437–3447. [Google Scholar] [CrossRef]
- Shafirstein, G.; Bäumler, W.; Hennings, L.J.; Siegel, E.R.; Friedman, R.; Moreno, M.A.; Webber, J.; Jackson, C.; Griffin, R.J. Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma. Int. J. Cancer 2012, 130, 1208–1215. [Google Scholar] [CrossRef]
- Belia, F.; Biondi, A.; Agnes, A.; Santocchi, P.; Laurino, A.; Lorenzon, L.; Pezzuto, R.; Tirelli, F.; Ferri, L.; D’Ugo, D. The use of indocyanine green (ICG) and near-infrared (NIR) fluorescence-guided imaging in gastric cancer surgery: A narrative review. Front. Surg. 2022, 9, 880773. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Nakamura, Y.A.; Choyke, P.L.; Kobayashi, H. Fluorescence-Guided Surgery. Front. Oncol. 2017, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Gioux, S.; Choi, H.S.; Frangioni, J.V. Image-guided surgery using invisible near-infrared light: Fundamentals of clinical translation. Mol. Imaging 2010, 9, 237–255. [Google Scholar] [CrossRef] [PubMed]
- Boogerd, L.S.F.; Hoogstins, C.E.S.; Schaap, D.P.; Kusters, M.; Handgraaf, H.J.M.; van der Valk, M.J.M.; Hilling, D.E.; Holman, F.A.; Peeters, K.; Mieog, J.S.D.; et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: A dose-escalation pilot study. Lancet Gastroenterol. Hepatol. 2018, 3, 181–191. [Google Scholar] [CrossRef]
- Hoogstins, C.E.; Boogerd, L.S.; Sibinga Mulder, B.G.; Mieog, J.S.D.; Swijnenburg, R.J.; van de Velde, C.J.; Farina Sarasqueta, A.; Bonsing, B.A.; Framery, B.; Pèlegrin, A. Image-guided surgery in patients with pancreatic cancer: First results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann. Surg. Oncol. 2018, 25, 3350–3357. [Google Scholar] [CrossRef]
- Framery, B.; Gutowski, M.; Dumas, K.; Evrard, A.; Muller, N.; Dubois, V.; Quinonero, J.; Scherninski, F.; Pelegrin, A.; Cailler, F. Toxicity and pharmacokinetic profile of SGM-101, a fluorescent anti-CEA chimeric antibody for fluorescence imaging of tumors in patients. Toxicol. Rep. 2019, 6, 409–415. [Google Scholar] [CrossRef]
- Warmerdam, M.I.; Creemers, D.M.J.; Kusters, M.; Peeters, K.; Holman, F.A.; Mieog, J.S.D.; Cailler, F.; Burger, P.; Burggraaf, J.; Rutten, H.J.T.; et al. Long-term Local Control Following CEA-targeted Fluorescence-guided Surgery in Patients With Locally Advanced and Recurrent Rectal Cancer. Mol. Imaging Biol. 2025, 27, 629–637. [Google Scholar] [CrossRef]
- Yim, J.J.; Harmsen, S.; Flisikowski, K.; Flisikowska, T.; Namkoong, H.; Garland, M.; van den Berg, N.S.; Vilches-Moure, J.G.; Schnieke, A.; Saur, D. A protease-activated, near-infrared fluorescent probe for early endoscopic detection of premalignant gastrointestinal lesions. Proc. Natl. Acad. Sci. USA 2021, 118, e2008072118. [Google Scholar] [CrossRef]
- Jang, B.; Lee, S.H.; Dovirak, I.; Kim, H.; Srivastava, S.; Teh, M.; Yeoh, K.G.; So, J.B.; Tsao, S.K.K.; Khor, C.J.; et al. CEACAM5 and TROP2 define metaplastic and dysplastic transitions in human antral gastric precancerous lesions and tumors. Gastric Cancer 2024, 27, 263–274. [Google Scholar] [CrossRef]
- Luan, F.; Xu, S.; Chen, K.; Chen, K.; Kang, M.; Chen, G.; Chen, J. Prognostic effect of CEA, AFP, CA19-9 and CA242 for recurrence/metastasis of gastric cancer following radical gastrectomy. Mol. Clin. Oncol. 2025, 22, 17. [Google Scholar] [CrossRef]
- Han, S.U.; Kwak, T.H.; Her, K.H.; Cho, Y.H.; Choi, C.; Lee, H.J.; Hong, S.; Park, Y.S.; Kim, Y.S.; Kim, T.A.; et al. CEACAM5 and CEACAM6 are major target genes for Smad3-mediated TGF-beta signaling. Oncogene 2008, 27, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- de Gouw, D.; Rijpkema, M.; de Bitter, T.J.J.; Baart, V.M.; Sier, C.F.M.; Hernot, S.; van Dam, G.M.; Nagtegaal, I.D.; Klarenbeek, B.R.; Rosman, C.; et al. Identifying Biomarkers in Lymph Node Metastases of Esophageal Adenocarcinoma for Tumor-Targeted Imaging. Mol. Diagn. Ther. 2020, 24, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.E.; Amirfakhri, S.; Lwin, T.M.; Hosseini, M.; Ghosh, P.; Obonyo, M.; Hoffman, R.M.; Yazaki, P.J.; Bouvet, M. A new locoregional mouse model of gastric cancer for identifying probes for fluorescence guided surgery. Surgery 2025, 181, 109270. [Google Scholar] [CrossRef]
- Cristaudo, A.T.; Morris, D.L. Prognostic value of carcinoembryonic antigen in colorectal adenocarcinoma: Expanding hypotheses into clinical practice. Clin. Exp. Med. 2025, 25, 30. [Google Scholar] [CrossRef]
- Houvast, R.D.; van Duijvenvoorde, M.; Thijse, K.; de Steur, W.O.; de Geus-Oei, L.F.; Crobach, A.; Burggraaf, J.; Vahrmeijer, A.L.; Kuppen, P.J.K. Selecting Targets for Molecular Imaging of Gastric Cancer: An Immunohistochemical Evaluation. Mol. Diagn. Ther. 2025, 29, 213–227. [Google Scholar] [CrossRef]
- Huang, S.C.; Chang, S.C.; Liao, T.T.; Yang, M.H. Detection and clinical significance of CEACAM5 methylation in colorectal cancer patients. Cancer Sci. 2024, 115, 270–282. [Google Scholar] [CrossRef]
- Lin, E.; Lo, Y.C.; Subbiah, V.; Thawani, R.; Desai, A. Advancing precision antibody-drug conjugate therapy: Unique proteogenomic profiles of tumor subsets in non-small cell lung cancer. Exp. Hematol. Oncol. 2025, 14, 96. [Google Scholar] [CrossRef]
- Carvalho, E.; Canberk, S.; Schmitt, F.; Vale, N. Molecular Subtypes and Mechanisms of Breast Cancer: Precision Medicine Approaches for Targeted Therapies. Cancers 2025, 17, 1102. [Google Scholar] [CrossRef]
- Hatano, T.; Tanei, T.; Seno, S.; Sota, Y.; Masunaga, N.; Mishima, C.; Tsukabe, M.; Yoshinami, T.; Miyake, T.; Shimoda, M.; et al. High HER2 Intratumoral Heterogeneity Is Resistant to Anti-HER2 Neoadjuvant Chemotherapy in Early Stage and Locally Advanced HER2-Positive Breast Cancer. Cancers 2025, 17, 2126. [Google Scholar] [CrossRef]
- Nishino, H.; Turner, M.A.; Amirfakhri, S.; Hollandsworth, H.M.; Lwin, T.M.; Hosseini, M.; Framery, B.; Cailler, F.; Pèlegrin, A.; Hoffman, R.M. Proof of concept of improved fluorescence-guided surgery of colon cancer liver metastasis using color-coded imaging of a tumor-labeling fluorescent antibody and indocyanine green restricted to the adjacent liver segment. Surgery 2022, 172, 1156–1163. [Google Scholar] [CrossRef]
- Schaap, D.; Valk, K.; Deken, M.; Meijer, R.; Burggraaf, J.; Vahrmeijer, A.; Kusters, M.; Kusters, M.; Boogerd, L.; Schaap, D. Carcinoembryonic antigen-specific, fluorescent image-guided cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. J. Br. Surg. 2020, 107, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Tiernan, J.; Perry, S.; Verghese, E.; West, N.; Yeluri, S.; Jayne, D.; Hughes, T. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br. J. Cancer 2013, 108, 662–667. [Google Scholar] [CrossRef] [PubMed]
- de Valk, K.S.; Deken, M.M.; Schaap, D.P.; Meijer, R.P.; Boogerd, L.S.; Hoogstins, C.E.; van der Valk, M.J.; Kamerling, I.M.; Bhairosingh, S.S.; Framery, B. Dose-finding study of a CEA-targeting agent, SGM-101, for intraoperative fluorescence imaging of colorectal cancer. Ann. Surg. Oncol. 2021, 28, 1832–1844. [Google Scholar] [CrossRef]
- Gutowski, M.; Framery, B.; Boonstra, M.C.; Garambois, V.; Quenet, F.; Dumas, K.; Scherninski, F.; Cailler, F.; Vahrmeijer, A.L.; Pelegrin, A. SGM-101: An innovative near-infrared dye-antibody conjugate that targets CEA for fluorescence-guided surgery. Surg. Oncol. 2017, 26, 153–162. [Google Scholar] [CrossRef]
- Yanagihara, K.; Takigahira, M.; Mihara, K.; Kubo, T.; Morimoto, C.; Morita, Y.; Terawaki, K.; Uezono, Y.; Seyama, T. Inhibitory effects of isoflavones on tumor growth and cachexia in newly established cachectic mouse models carrying human stomach cancers. Nutr. Cancer 2013, 65, 578–589. [Google Scholar] [CrossRef]
- Chou, Y.J.; Chang, C.L.; Tsai, Y.C. Diagnostic Accuracy of Indocyanine Green-stained Sentinel Lymph Nodes in Prostate Cancer Patients: A Systematic Review and Meta-analysis. Eur. Urol. Open Sci. 2025, 74, 34–43. [Google Scholar] [CrossRef]
- Kalayarasan, R.; Chandrasekar, M.; Sai Krishna, P.; Shanmugam, D. Indocyanine green fluorescence in gastrointestinal surgery: Appraisal of current evidence. World J. Gastrointest. Surg. 2023, 15, 2693–2708. [Google Scholar] [CrossRef]
- Tichauer, K.M.; Deharvengt, S.J.; Samkoe, K.S.; Gunn, J.R.; Bosenberg, M.W.; Turk, M.J.; Hasan, T.; Stan, R.V.; Pogue, B.W. Tumor endothelial marker imaging in melanomas using dual-tracer fluorescence molecular imaging. Mol. Imaging Biol. 2014, 16, 372–382. [Google Scholar] [CrossRef]
- van Gennep, E.J.; Pisano, G.; KleinJan, G.H.; Rietbergen, D.D.D.; Hendricksen, K.; Mertens, L.S.; Vd Kamp, M.W.; Wit, E.M.K.; van Montfoort, M.L.; Donswijk, M.; et al. Prospective clinical study of sentinel node detection in bladder cancer using a hybrid tracer—Towards replacement of pelvic lymph node dissection in cases with sentinel node visualization on SPECT/CT? Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 3653–3661. [Google Scholar] [CrossRef]
- Wu, X.; Feng, S.; Chang, T.S.; Zhang, R.; Jaiswal, S.; Choi, E.K.; Duan, Y.; Jiang, H.; Wang, T.D. Detection of Hepatocellular Carcinoma in an Orthotopic Patient-Derived Xenograft with an Epithelial Cell Adhesion Molecule-Specific Peptide. Cancers 2024, 16, 2818. [Google Scholar] [CrossRef] [PubMed]
- Zonoobi, E.; Neijenhuis, L.K.A.; Lemij, A.A.; Linders, D.G.J.; Nazemalhosseini-Mojarad, E.; Bhairosingh, S.S.; Dekker-Ensink, N.G.; van Vlierberghe, R.L.P.; Peeters, K.; Holman, F.A.; et al. Impact of Neoadjuvant Treatment on Target Expression in Rectal Cancer for Near-Infrared Tumor Imaging. Cancers 2025, 17, 1958. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, M.C.; De Geus, S.W.; Prevoo, H.A.; Hawinkels, L.J.; Van De Velde, C.J.; Kuppen, P.J.; Vahrmeijer, A.L.; Sier, C.F. Selecting targets for tumor imaging: An overview of cancer-associated membrane proteins. Biomark. Cancer 2016, 8, BIC-S38542. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.; Kornfeld, L.; Lennartz, M.; Dwertmann Rico, S.; Kind, S.; Reiswich, V.; Viehweger, F.; Bawahab, A.A.; Fraune, C.; Gorbokon, N.; et al. Carcinoembryonic Antigen Expression in Human Tumors: A Tissue Microarray Study on 13,725 Tumors. Cancers 2024, 16, 4052. [Google Scholar] [CrossRef]
- Beauchemin, N.; Arabzadeh, A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013, 32, 643–671. [Google Scholar] [CrossRef]
- Croce, A.C.; Bottiroli, G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014, 58, 2461. [Google Scholar] [CrossRef]
- Baugh, L.M.; Liu, Z.; Quinn, K.P.; Osseiran, S.; Evans, C.L.; Huggins, G.S.; Hinds, P.W.; Black, L.D., 3rd; Georgakoudi, I. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease. Nat. Biomed. Eng. 2017, 1, 914–924. [Google Scholar] [CrossRef]
- Cowles, E.A.; Kovar, J.L.; Curtis, E.T.; Xu, H.; Othman, S.F. Near-infrared optical imaging for monitoring the regeneration of osteogenic tissue-engineered constructs. Biores Open Access 2013, 2, 186–191. [Google Scholar] [CrossRef]
- Ohuchi, N.; Wunderlich, D.; Fujita, J.; Colcher, D.; Muraro, R.; Nose, M.; Schlom, J. Differential expression of carcinoembryonic antigen in early gastric adenocarcinomas versus benign gastric lesions defined by monoclonal antibodies reactive with restricted antigen epitopes. Cancer Res. 1987, 47, 3565–3571. [Google Scholar]
- Batra, P.; Narasannaiah, A.H.; Reddy, V.; Subramaniyan, V.; Manjunath, K.V.; Yeshwanth, R.; Arjunan, R.; Althaf, S.; Chunduri, S.; Anwar, A.Z. Prognostic Value of Tumor Markers in Gastric Cancer: A Tertiary Cancer Centre Experience. Cureus 2023, 15, e42328. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, X.; Hu, J.; Zhang, C.; Xie, X.; Liu, R.; Lv, Y. Single-Nanoparticle Differential Immunoassay for Multiplexed Gastric Cancer Biomarker Monitoring. Anal. Chem. 2022, 94, 12899–12906. [Google Scholar] [CrossRef]
- Zhou, J. Challenges and perspectives of CAR-T cell therapy in solid tumours: Insights from gastric cancer. Br. J. Cancer 2025, 1–18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, K.; Koo, A.E.; Yoo, J.; Shin, J.-Y.; Lim, L.; Kim, H.M.; Park, J.-Y.; Lee, Y.-S.; Kwak, Y.-J.; Lee, H.S.; et al. Feasibility of Anti-CEA Dye Conjugate for Cancer-Specific Imaging in Gastric Cancer Cell Lines and Mouse Xenograft Models. Cancers 2025, 17, 2937. https://doi.org/10.3390/cancers17172937
Jeong K, Koo AE, Yoo J, Shin J-Y, Lim L, Kim HM, Park J-Y, Lee Y-S, Kwak Y-J, Lee HS, et al. Feasibility of Anti-CEA Dye Conjugate for Cancer-Specific Imaging in Gastric Cancer Cell Lines and Mouse Xenograft Models. Cancers. 2025; 17(17):2937. https://doi.org/10.3390/cancers17172937
Chicago/Turabian StyleJeong, Kyoungyun, Annie Eunhee Koo, Jaeun Yoo, Ji-Yeon Shin, Leena Lim, Hyun Myong Kim, Ji-Yong Park, Yun-Sang Lee, Yoon-Jin Kwak, Hye Seung Lee, and et al. 2025. "Feasibility of Anti-CEA Dye Conjugate for Cancer-Specific Imaging in Gastric Cancer Cell Lines and Mouse Xenograft Models" Cancers 17, no. 17: 2937. https://doi.org/10.3390/cancers17172937
APA StyleJeong, K., Koo, A. E., Yoo, J., Shin, J.-Y., Lim, L., Kim, H. M., Park, J.-Y., Lee, Y.-S., Kwak, Y.-J., Lee, H. S., Yoo, Y.-R., Framery, B., Dumas, K., Cailler, F., Pèlegrin, A., Park, D.-J., Yang, H.-K., Kong, S.-H., & Lee, H.-J. (2025). Feasibility of Anti-CEA Dye Conjugate for Cancer-Specific Imaging in Gastric Cancer Cell Lines and Mouse Xenograft Models. Cancers, 17(17), 2937. https://doi.org/10.3390/cancers17172937