New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Imaging System
2.3. Participants
2.4. Imaging Procedure
2.5. Microbiological Sampling and Pathogen Identification
2.6. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Diagnostic Accuracy of Fluorescence Imaging
3.3. Fluorescence Signal and Microbial Burden
3.4. Association with Clinical Signs of Infection
3.5. Thermal Imaging Findings
3.6. Microbiological Findings
3.7. Species-Specific Detection Limits and Autofluorescent Properties
3.7.1. Case 1
3.7.2. Case 2
3.7.3. Case 3
3.7.4. Case 4
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sandy-Hodgetts, K.; Anderson, C.A.; Al-Joudin, O.; Serena, L.; Teimouri, C.; Serena, T.E. Uncovering the high prevalence of microbial burden in surgical site wounds with point-of-care fluorescence imaging. Int. Wound J. 2022, 19, 1438–1448. [Google Scholar] [CrossRef]
- Oropallo, A.R.; Andersen, C.; Abdo, R.; Hurlow, J.; Kelso, M.; Melin, M.; Serena, T.E. Guidelines for point-of-care fluorescence imaging for detection of wound microbial burden based on Delphi consensus. Diagnostics 2021, 11, 1219. [Google Scholar] [CrossRef] [PubMed]
- Rennie, M.Y.; Lindvere-Teene, L.; Tapang, K.; Linden, R. Point-of-care fluorescence imaging predicts the presence of pathogenic bacteria in wounds: A clinical study. J. Wound Care 2017, 26, 452–460. [Google Scholar] [CrossRef]
- Li, S.; Renick, P.; Senkowsky, J.; Nair, A.; Tang, L. Diagnostics for wound infections. Adv. Wound Care 2021, 10, 317–327. [Google Scholar] [CrossRef]
- Price, N. Routine fluorescence imaging to detect wound bacteria reduces antibiotic use and antimicrobial dressing expenditure while improving healing rates: Retrospective analysis of 229 foot ulcers. Diagnostics 2020, 10, 927. [Google Scholar] [CrossRef]
- Cabredo, S.; Parra, A.; Anzano, J. Bacteria spectra obtained by laser induced fluorescence. J. Fluoresc. 2007, 17, 171–180. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Datta, R.; Gratton, E.; Hochbaum, A.I. Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy. Sci. Rep. 2017, 7, 3743. [Google Scholar] [CrossRef]
- Bhartia, R.; Salas, E.C.; Hug, W.F.; Reid, R.D.; Lane, A.L.; Edwards, K.J.; Nealson, K.H. Label-free bacterial imaging with deep-UV-laser-induced native fluorescence. Appl. Environ. Microbiol. 2010, 76, 7231–7237. [Google Scholar] [CrossRef]
- Qazi, F.; Verma, R.; Redmond, C.E.; Khalid, A.; O’Brien-Simpson, N.M.; Tomljenovic-Hanic, S. Real-time, label-free detection and identification of bacteria through non-invasive optical imaging. Microbes Infect. 2024, 26, 105263. [Google Scholar] [CrossRef]
- Guo, R.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. A rapid and low-cost estimation of bacteria counts in solution using fluorescence spectroscopy. Anal. Bioanal. Chem. 2017, 409, 3959–3967. [Google Scholar] [CrossRef]
- Müller, V.; Sousa, J.M.; Koydemir, H.C.; Veli, M.; Tseng, D.; Cerqueira, L.; Ozcan, A.; Azevedo, N.F.; Westerlund, F. Identification of pathogenic bacteria in complex samples using a smartphone-based fluorescence microscope. RSC Adv. 2018, 8, 36493–36502. [Google Scholar] [CrossRef]
- Farhan, N.; Jeffery, S. Diagnosing burn wounds infection: The practice gap and advances with MolecuLight bacterial imaging. Diagnostics 2021, 11, 268. [Google Scholar] [CrossRef]
- Raizman, R.; Little, W.; Smith, A.C. Rapid diagnosis of Pseudomonas aeruginosa in wounds with point-of-care fluorescence imaging. Diagnostics 2021, 11, 280. [Google Scholar] [CrossRef]
- Rennie, M.Y.; Dunham, D.; Lindvere-Teene, L.; Raizman, R.; Hill, R.; Linden, R. Understanding real-time fluorescence signals from bacteria and wound tissues observed with the MolecuLight i:X™. Diagnostics 2019, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.M. Pyoverdines: Pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol. 2000, 174, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.M.; Dunham, D.; Rennie, M.Y.; Kirman, J.; Lopez, A.J.; Keim, K.C.; Little, W.; Gomez, A.; Bourke, J.; Ng, H.; et al. In vitro detection of porphyrin-producing wound bacteria with real-time fluorescence imaging. Future Microbiol. 2020, 15, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Pham, E.; Reynolds-Reber, L.; Navarro, S.; Hamood, A.; Jones-Donaldson, L.M.; Smith, A.C. Determination of the course of cyan fluorescence of Pseudomonas aeruginosa with a handheld bacterial imaging device. Diagnostics 2024, 14, 1474. [Google Scholar] [CrossRef]
- Dartnell, L.R.; Roberts, T.A.; Moore, G.; Ward, J.M.; Muller, J.P. Fluorescence characterization of clinically-important bacteria. PLoS ONE 2013, 8, e75270. [Google Scholar] [CrossRef]
- Hirche, C.; Engel, H.; Kolios, L.; Cognie, J.; Hünerbein, M.; Lehnhardt, M.; Kremer, T. An experimental study to evaluate the Fluobeam 800 imaging system for fluorescence-guided lymphatic imaging and sentinel node biopsy. Surg. Innov. 2013, 20, 516–523. [Google Scholar] [CrossRef]
- Tange, F.; Verduijn, P.; Mulder, B.S.; van Capelle, L.; Koning, S.; Driessen, C.; Mureau, M.; Vahrmeijer, A.; van der Vorst, J. Near-infrared fluorescence angiography with indocyanine green for perfusion assessment of DIEP and msTRAM flaps: A Dutch multicenter randomized controlled trial. Contemp. Clin. Trials Commun. 2023, 33, 101128. [Google Scholar] [CrossRef]
- Demarchi, M.S.; Karenovics, W.; Bédat, B.; Triponez, F. Near-infrared fluorescent imaging techniques for the detection and preservation of parathyroid glands during endocrine surgery. Innov. Surg. Sci. 2021, 7, 87–98. [Google Scholar] [CrossRef]
- Pace-Asciak, P.; Russell, J.; Solorzano, C.; Berber, E.; Singer, M.; Shaha, A.R.; Khafif, A.; Angelos, P.; Nixon, I.; Tufano, R.P. The utility of parathyroid autofluorescence as an adjunct in thyroid and parathyroid surgery. Head Neck 2023, 45, 3157–3167. [Google Scholar] [CrossRef]
- Falco, J.; Dip, F.; Quadri, P.; de la Fuente, M.; Rosenthal, R. Cutting edge in thyroid surgery: Autofluorescence of parathyroid glands. J. Am. Coll. Surg. 2016, 223, 374–380. [Google Scholar] [CrossRef]
- Woo, K.Y.; Brandys, T.M.; Marin, J.A. Assessing chronic wound perfusion in the lower extremity: Current and emerging approaches. Chronic Wound Care Manag. Res. 2015, 2, 149–157. [Google Scholar] [CrossRef]
- Landsman, A.S.; Barnhart, D.; Sowa, M. Near-infrared spectroscopy imaging for assessing skin and wound oxygen perfusion. Clin. Podiatr. Med. Surg. 2018, 35, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.S.; Castro, J.N.F.; Costa, F.J.M.D.; Neto, R.M.; Lima, K.M.G. Near-infrared spectroscopy and variable selection techniques to discriminate Pseudomonas aeruginosa strains in clinical samples. Microchem. J. 2016, 124, 306–310. [Google Scholar] [CrossRef]
- DaCosta, R.S.; Kulbatski, I.; Lindvere-Teene, L.; Starr, D.; Blackmore, K.; Silver, J.I.; Opoku, J.; Wu, Y.C.; Medeiros, P.J.; Xu, W.; et al. Point-of-care autofluorescence imaging for real-time sampling and treatment guidance of bioburden in chronic wounds: First-in-human results. PLoS ONE 2015, 10, e0116623. [Google Scholar] [CrossRef]
- Petruzzi, M.; Della Vella, F.; Cassandro, A.; Mosca, A.; Di Comite, M.; Contaldo, M.; Grassi, F.R.; Lauritano, D. Dorsal tongue porphyrin autofluorescence and Candida saprophytism: A prospective observational study. PLoS ONE 2019, 14, e0223072. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Du, A.; Dong, M.; Wang, Y.; Zhang, Y.; Zhang, Y.; Huang, Y.; Huang, X.; Liu, Y.; et al. Autofluorescence properties of wound-associated bacteria cultured under various temperature, salinity, and pH conditions. BMC Microbiol. 2025, 25, 511. [Google Scholar] [CrossRef]
- Ji, Y.; Li, G.; Wang, J.; Piao, C.; Zhou, X. Recent progress in identifying bacteria with fluorescent probes. Molecules 2022, 27, 6440. [Google Scholar] [CrossRef]
- Batani, G.; Bayer, K.; Böge, J.; Hentschel, U.; Thomas, T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci. Rep. 2019, 9, 18618. [Google Scholar] [CrossRef]
- Ramirez-GarciaLuna, J.L.; Bartlett, R.; Arriaga-Caballero, J.E.; Fraser, R.D.J.; Saiko, G. Infrared thermography in wound care, surgery, and sports medicine: A review. Front. Physiol. 2022, 13, 838528. [Google Scholar] [CrossRef]
- Yoon, S.A.; Park, S.Y.; Cha, Y.; Gopala, L.; Lee, M.H. Strategies of detecting bacteria using fluorescence-based dyes. Front. Chem. 2021, 9, 743923. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Yang, D.; Yin, X. Rapid detection of three common bacteria based on fluorescence spectroscopy. Sensors 2022, 22, 1168. [Google Scholar] [CrossRef] [PubMed]
- Delgadillo-Guevara, M.; Halte, M.; Erhardt, M.; Popp, P.F. Fluorescent tools for the standardized work in Gram-negative bacteria. J. Biol. Eng. 2024, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-GarciaLuna, J.L.; Martinez-Jimenez, M.A.; Fraser, R.D.J.; Bartlett, R.; Lorincz, A.; Liu, Z.; Saiko, G.; Berry, G.K. Is my wound infected? A study on the use of hyperspectral imaging to assess wound infection. Front. Med. 2023, 10, 1165281. [Google Scholar] [CrossRef]
- Faus Camarena, M.; Izquierdo Renau, M.; Julian Rochina, I.; Arrébola, M.; Miralles, M. Update on the use of infrared thermography in the early detection of diabetic foot complications: A bibliographic review. Sensors 2024, 24, 252. [Google Scholar] [CrossRef]
- Nam, H.J.; Wee, S.Y.; Kim, S.Y.; Jeong, H.G.; Lee, D.W.; Byeon, J.Y.; Park, S.H.; Choi, H.J. The correlation between transcutaneous oxygen pressure (TcPO2) and forward-looking infrared (FLIR) thermography in the evaluation of lower extremity perfusion according to angiosome. Int. Wound J. 2024, 21, e14431. [Google Scholar] [CrossRef]
Wound Type | Number of Patients (%) |
---|---|
Diabetic foot ulcers | 13 (39.4%) |
Necrotic wounds | 8 (24.2%) |
Cancer-related wounds | 6 (18.2%) |
Burn wounds | 6 (18.2%) |
Total | 33 (100%) |
Culture Result | Fluorescence Positive | Fluorescence Negative | Total |
---|---|---|---|
Positive (Infected) | 18 (TP) | 5 (FN) | 23 |
Negative (No infection) | 2 (FP) | 8 (TN) | 10 |
Total | 20 | 13 | 33 |
Signal Intensity | Mean Microbial Burden (CFU/mL) | CFU Range | Clinical Severity | Number of Cases |
---|---|---|---|---|
High | 9.2 × 106 | 8.5 × 106–1.1 × 107 | Severe | 6 |
Moderate | 5.8 × 105 | 4.7 × 105–6.3 × 105 | Moderate | 10 |
Low | 2.9 × 104 | 2.0 × 104–3.5 × 104 | Mild | 2 |
Clinical Indicator | Correlation Coefficient (r) | p-Value |
---|---|---|
Exudate amount | 0.72 | 0.004 |
Swelling | 0.68 | 0.006 |
Foul odor | 0.68 | 0.008 |
Induration | 0.65 | 0.081 |
Pain | 0.59 | 0.137 |
Fluorescence Signal | Mean Temperature (°C) | Standard Deviation | Observed Thermal Pattern |
---|---|---|---|
Positive | 36.8 | ±0.3 | Localized hyperthermia or near fluorescent zones |
Negative | 36.5 | ±0.2 | No distinct thermal elevation |
Pathogen (Culture Positive) | Cases (n) | Detected by Fluorescence (n) | Detection Rate |
---|---|---|---|
Pseudomonas aeruginosa | 6 | 6 | 100% |
Staphylococcus aureus | 8 | 6 | 75.00% |
Enterococcus faecalis | 1 | 0 | 0% |
Klebsiella pneumoniae | 2 | 1 | 50.00% |
Escherichia coli | 2 | 1 | 50.00% |
Fungal isolates (e.g., Candida spp.) | 4 | 4 | 100% |
Pathogen | Classification | Detectability | Known Fluorescent Metabolites | References |
---|---|---|---|---|
Pseudomonas aeruginosa | Gram-negative aerobic rod | High (100%) | Pyoverdine, Pyocyanin | [17,27] |
Staphylococcus aureus | Gram-positive facultative anaerobic coccus | Moderate (75%) | Porphyrins (coproporphyrin, heme biosynthetic intermediates) | [2,27] |
Enterococcus faecalis | Gram-positive facultative anaerobic coccus | Low (0%) | None identified (minimal fluorophore production) | [18] |
Klebsiella pneumoniae | Gram-negative facultative anaerobic rod | Moderate (50%) | Porphyrins (protoporphyrin IX, coproporphyrin I) | [29] |
Escherichia coli | Gram-negative facultative anaerobic rod | Moderate (50%) | Porphyrins (protoporphyrin IX) | [29] |
Candida spp. (yeasts) | Fungus (yeast) | High (100%) | Unidentified (potentially porphyrin-related fluorophores) | [2,28] |
Tool/ Modality | What It Measures | Real-Time Spatial Map | Species Identification | Typical Turnaround | Key Advantages/Limitations | References |
---|---|---|---|---|---|---|
Fluobeam® + FLIR® (dual modality) | Near-infrared microbial autofluorescence (780 nm excitation/820 nm detection) and skin surface temperature (infrared) | Yes | No | Seconds | Advantages: Real-time bedside localization of microbial foci; adjunct mapping of perilesional spread. Limitations: Off-label for microbial detection; organism-dependent detectability; no spectral identification; small ΔT (~0.3 °C) without device-level thermal calibration; sensitive to ambient conditions and vascular status. | [2,32,37] |
MolecuLight® | Porphyrins (red) and pyoverdine (cyan) under 405 nm excitation | Yes | Limited | Seconds | Advantages: Portable POC workflow; robust clinical evidence for bacterial-burden mapping; guides debridement and targeted culture. Limitations: Detectability varies by organism (non-porphyrin/low-metabolic species less visible); ambient-light constraints; no species-level ID. | [12,14] |
PCR | Microbial nucleic acids | No | Yes | Hours | Advantages: High analytic sensitivity/specificity; species/target detection; potential resistance marker genotyping. Limitations: Cost/infrastructure needs; contamination risk; does not confirm viability; no spatial mapping; longer turnaround. | [4] |
Culture | Growth of viable organisms from tissue/swab | No | Yes | Days | Advantages: Organism identification with antimicrobial susceptibility; clinical reference standard. Limitations: Slow (days); false-negatives with fastidious/biofilm organisms; sampling error; no spatial map. | [4] |
Category | Species |
---|---|
Gram-negative aerobic species | Pseudomonas aeruginosa Escherichia coli Proteus mirabilis Proteus vulgaris Enterobacter cloacae Serratia marcescens Acinetobacter baumannii Klebsiella pneumoniae Klebsiella oxytoca Morganella morganii Stenotrophomonas maltophilia Citrobacter koseri Citrobacter freundii Aeromonas hydrophilia Alcaligenes faecalis Pseudomonas putida |
Gram-positive aerobic species | Staphylococcus aureus Staphylococcus epidermidis Staphylococcus lugdunensis Staphylococcus capitis Corynebacterium striatum Bacillus cereus Listeria monocytogenes |
Anaerobic species | Bacteroides fragilis Clostridium perfringens Peptostreptococcus anaerobius Propionibacterium acnes Veillonella parvula |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, H.J.; Kim, S.Y.; Choi, H.J. New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera. Diagnostics 2025, 15, 2221. https://doi.org/10.3390/diagnostics15172221
Nam HJ, Kim SY, Choi HJ. New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera. Diagnostics. 2025; 15(17):2221. https://doi.org/10.3390/diagnostics15172221
Chicago/Turabian StyleNam, Ha Jong, Se Young Kim, and Hwan Jun Choi. 2025. "New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera" Diagnostics 15, no. 17: 2221. https://doi.org/10.3390/diagnostics15172221
APA StyleNam, H. J., Kim, S. Y., & Choi, H. J. (2025). New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera. Diagnostics, 15(17), 2221. https://doi.org/10.3390/diagnostics15172221