Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = natural anti-browning agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3781 KB  
Article
Coixol and Sinigrin from Coix lacryma-jobi L. and Raphanus sativus L. Promote Fat Browning in 3T3-L1 Adipocytes
by Seung Min Choi, Sung Ho Lim, Ho Seon Lee, Gayoung Choi, Myeong Ji Kim, Hyunwoo Kim and Chang-Ik Choi
Pharmaceuticals 2025, 18(12), 1843; https://doi.org/10.3390/ph18121843 - 2 Dec 2025
Viewed by 752
Abstract
Background/Objectives: Obesity, a metabolic disorder resulting from an energy imbalance, often leads to excess fat and related diseases. Browning of white adipose tissue, which increases energy expenditure, is a promising anti-obesity strategy. Herbal medicines are considered safer than conventional drugs, but their [...] Read more.
Background/Objectives: Obesity, a metabolic disorder resulting from an energy imbalance, often leads to excess fat and related diseases. Browning of white adipose tissue, which increases energy expenditure, is a promising anti-obesity strategy. Herbal medicines are considered safer than conventional drugs, but their fat browning mechanisms remain unclear. Therefore, this study aims to examine the effects of Coix lacryma-jobi L. and Raphanus sativus L., alongside their active compounds, coixol and sinigrin. Methods: Cytotoxicity in 3T3-L1 cells was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Lipid accumulation was quantified by the Oil Red O (ORO) staining. Immunofluorescence staining was employed to evaluate mitochondrial activity and uncoupling protein 1 (UCP1). Protein and mRNA expressions were analysed using western blot and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. Results: In 3T3-L1 adipocytes, ORO staining showed reduced lipid accumulation and droplet size after treatment. qRT-PCR, western blot, and immunostaining revealed that coixol and sinigrin upregulated browning markers (UCP1, PGC-1α, PRDM16) and beige fat genes (Cd137, Cidea, Cited, Fgf21, Tbx1, Tmem26). They also upregulated mitochondrial biogenesis genes (Cox4, Nrf1, Tfam), downregulated lipogenic genes (Fasn, Lpl, Srebf1, Acaca), and increased lipolytic (Atgl, Hsl, Plin1) and fatty acid oxidation genes (Aco1, Cpt1, Ppara). Mechanistic studies revealed that fat browning was associated with β3-adrenergic receptor activation and AMPK phosphorylation. Conclusions: Overall, coixol and sinigrin promote fat browning and metabolic improvement, highlighting their potential as natural anti-obesity agents. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

14 pages, 1278 KB  
Review
Therapeutic Potential of Ishige okamurae Yendo as a Multi-Target Inhibitor Against Dementia Symptoms
by Oh Yun Kwon and Seung Ho Lee
Life 2025, 15(11), 1699; https://doi.org/10.3390/life15111699 - 1 Nov 2025
Cited by 1 | Viewed by 598
Abstract
Ishige okamurae Yendo (I. okamurae) is a brown macroalga with diverse biological activities. Recently, its ameliorative effects against dementia progression have been demonstrated in various in vitro and in vivo models of Alzheimer’s disease (AD), glutamate excitotoxicity, and bacterial-driven neuroinflammation. I. [...] Read more.
Ishige okamurae Yendo (I. okamurae) is a brown macroalga with diverse biological activities. Recently, its ameliorative effects against dementia progression have been demonstrated in various in vitro and in vivo models of Alzheimer’s disease (AD), glutamate excitotoxicity, and bacterial-driven neuroinflammation. I. okamurae extract (IOE) inhibited AD progression by regulating amyloid beta–induced neuronal death and cognitive impairments. Moreover, IOE attenuated glutamate-induced neurodegeneration by modulating the mitogen-activated protein kinases/Nrf2/heme oxygenase-1 signaling pathway. Furthermore, IOE effectively suppressed lipopolysaccharide-mediated neuroinflammation and memory deficits by downregulating the Toll-like receptor 4/MyD88-dependent signaling pathway. Collectively, these findings highlight the potential of IOE as a natural multi-target, anti-dementia agent. In this review, we summarize the neuroprotective and cognition-enhancing properties of IOE, discuss the molecular mechanisms underlying its action, and consider the advantages of I. okamurae as a promising natural resource for effective therapeutic developments that are capable of targeting multiple pathogenic causes of dementia. Full article
Show Figures

Figure 1

29 pages, 1519 KB  
Review
Normalization of Immune Response via Chondroitin Sulfate and Fucoidan Targeting N-Acetylgalactosaminidase
by Jozef Zima, Eva Nováková, Miroslava Špaglová and Miroslava Šupolíková
Sci. Pharm. 2025, 93(4), 47; https://doi.org/10.3390/scipharm93040047 - 25 Sep 2025
Viewed by 2697
Abstract
This review explores the pharmacological potential of chondroitin sulfate and fucoidan as immunomodulatory agents targeting N-acetylgalactosaminidase (nagalase) to normalize immune responses. Nagalase, an enzyme produced by tumor and virus-infected cells, contributes to immune suppression by deactivating macrophage-activating factor. Both chondroitin sulfate and fucoidan, [...] Read more.
This review explores the pharmacological potential of chondroitin sulfate and fucoidan as immunomodulatory agents targeting N-acetylgalactosaminidase (nagalase) to normalize immune responses. Nagalase, an enzyme produced by tumor and virus-infected cells, contributes to immune suppression by deactivating macrophage-activating factor. Both chondroitin sulfate and fucoidan, as representatives of glycosaminoglycans and heteropolysaccharides, exhibit significant potential in inhibiting nagalase activity, thereby restoring immune functionality. Chondroitin sulfate, a key component of the extracellular matrix, demonstrates anti-inflammatory and tissue-regenerative properties by modulating nuclear factor (NF)-κB pathways and cytokine expression. Fucoidan, a sulfated polysaccharide derived from brown seaweed, enhances immune responses through macrophage and natural killer cell activation, while also exhibiting antiviral and anticancer activities. This dual action positions these compounds as promising agents for therapeutic interventions in chronic inflammatory conditions, cancer, and infectious diseases. The synergistic effects of chondroitin sulfate and fucoidan highlight their potential to address the root causes of immune dysregulation. This review aims to elucidate the underlying mechanisms of action and explore the clinical applications of these compounds within the framework of innovative immunotherapeutic strategies. However, current evidence is limited by the predominance of preclinical studies and variability in experimental models. Well-designed clinical trials are needed to validate their efficacy for therapeutic use. Full article
Show Figures

Figure 1

14 pages, 2235 KB  
Article
Comparison of Anti-Obesity Effects of Ginger Extract Alone and Mixed with Long Pepper Extract
by Gunju Song, Hyein Han, Heegu Jin, Jongwon Kim, Hyeongmin Kim, Yi-Seul Seo, Heewon Song and Boo-Yong Lee
Biomedicines 2025, 13(9), 2077; https://doi.org/10.3390/biomedicines13092077 - 26 Aug 2025
Viewed by 2297
Abstract
Background/Objectives: Obesity is a chronic metabolic disorder characterized by the excessive expansion of adipose tissue and impaired energy homeostasis. Natural products, such as plant extracts, are gaining attention as potential anti-obesity agents. This study aimed to evaluate and compare the anti-obesity effects of [...] Read more.
Background/Objectives: Obesity is a chronic metabolic disorder characterized by the excessive expansion of adipose tissue and impaired energy homeostasis. Natural products, such as plant extracts, are gaining attention as potential anti-obesity agents. This study aimed to evaluate and compare the anti-obesity effects of ginger (Zingiber officinale Roscoe) extract alone and as a mixture with long pepper (Piper longum L.) extract in a mouse model of high-fat diet-induced obesity. Methods: Male ICR mice were fed a high-fat diet to induce obesity and were orally administered ginger extract (60 mg/kg/day) or a 1:1 mixture of ginger and long pepper extracts (30 mg/kg/day each) for 8 weeks. Body weight, fat mass, glucose tolerance, and serum lipid levels were measured. Results: Ginger extract alone significantly reduced body weight gain and visceral and subcutaneous fat accumulation and improved glucose homeostasis and serum lipid profiles compared to the high-fat diet group. These effects were more pronounced than those observed with the mixture group. Ginger extract upregulated lipolytic markers via activation of the protein kinase A (PKA) signaling pathway and increased expression of uncoupling protein 1 (UCP1), indicating browning of white adipose tissue. Conclusions: Ginger extract alone exhibited significant anti-obesity effects compared to the mixture with long pepper extract. These findings suggest that ginger extract may serve as a promising natural agent for the prevention and management of obesity-related metabolic dysfunction. Full article
(This article belongs to the Special Issue Advanced Research in Metabolic Syndrome (2nd Edition))
Show Figures

Graphical abstract

24 pages, 2082 KB  
Review
Exploring the Pharmacological Landscape of Undaria pinnatifida: Insights into Neuroprotective Actions and Bioactive Constituents
by Helena Machado, Jorge Pereira Machado, Christian Alves, Cristina Soares, Clara Grosso, Jorge Magalhães Rodrigues and Maria Begoña Criado
Nutraceuticals 2025, 5(3), 20; https://doi.org/10.3390/nutraceuticals5030020 - 24 Jul 2025
Cited by 1 | Viewed by 3060
Abstract
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional [...] Read more.
The marine seaweed Undaria pinnatifida belongs to the large group of brown macroalgae (Ochrophyta) and is valued both as a nutritious food and a source of pharmaceutical compounds. It has been widely consumed in East Asia as part of the traditional diet and is generally regarded as a “healthy longevity food.” Consequently, it represents one of the most promising natural sources of biomedicinal and bioactive products. This review aims to synthesize current scientific evidence on the pharmacologically active compounds of U. pinnatifida, emphasizing their mechanisms of action and therapeutic potential in neurodegenerative and chronic diseases. This narrative review is based on a comprehensive literature search of peer-reviewed articles from scientific databases, focusing on studies addressing the pharmacological properties of U. pinnatifida and its major bioactive constituents. Recent research highlights that compounds such as fucoxanthin (a carotenoid), fucosterol (a sterol), fucoidan (a polysaccharide), alginate, and dietary fiber found in U. pinnatifida possess significant potential for developing treatments for conditions including goitre, urinary diseases, scrofula, dropsy, stomach ailments, and hemorrhoids. Moreover, these compounds exhibit remarkable pharmacological properties, including immunomodulation, antitumor, antiviral, antioxidant, antidiabetic, anti-inflammatory, anticoagulant, antithrombotic, and antibacterial activities, all with low toxicity and minimal side effects. Additionally, U. pinnatifida shows promise in the treatment or prevention of neurodegenerative diseases such as Alzheimer’s and Parkinson’s, as well as neuropsychiatric conditions like depression, supported by its antioxidant effects against oxidative stress and neuroprotective activities. Numerous in vitro and in vivo studies have confirmed that U. pinnatifida polysaccharides (UPPs), particularly fucoidans, exhibit significant biological activities. Thus, accumulating evidence positions UPPs as promising therapeutic agents for a variety of diseases. Full article
Show Figures

Figure 1

26 pages, 5216 KB  
Article
Cystoseira spinosa Polysaccharide: A Promising Natural Source for Antioxidant, Pro-Angiogenic, and Wound Healing Applications: In Silico Study
by Mouhamed Ayad Berfad, Intissar Kammoun, Marwa Lakhrem, Zakaria Boujhoud, Malek Eleroui, Manel Mellouli, Saadia Makni, Majed Kammoun, Riadh Badraoui, Jean Marc Pujo, Hatem Kallel and Ibtissem Ben Amara
Pharmaceuticals 2025, 18(6), 774; https://doi.org/10.3390/ph18060774 - 23 May 2025
Cited by 1 | Viewed by 1158
Abstract
Background/Objectives: This study evaluated the potential of a polysaccharide (PCS) extracted from the brown alga Cystoseira spinosa as an antioxidant and anti-inflammatory agent. Collected off the coast of Alkhoms, Libya, PCS was investigated for its wound-healing and pro-angiogenic properties, addressing the need for [...] Read more.
Background/Objectives: This study evaluated the potential of a polysaccharide (PCS) extracted from the brown alga Cystoseira spinosa as an antioxidant and anti-inflammatory agent. Collected off the coast of Alkhoms, Libya, PCS was investigated for its wound-healing and pro-angiogenic properties, addressing the need for natural bioactive compounds in therapeutic applications. Methods: The monosaccharide composition of PCS was analyzed using HPLC-RID, identifying glucuronic acid and xylose as major components. In vitro tests assessed antioxidant activity, while in vivo experiments on 24 rats evaluated wound healing. Rats were divided into four groups: control (saline), standard drug (CYTOL CENTELLA cream), glycerol, and glycerol+PCS. Wound healing was analyzed macroscopically, histologically, and biochemically. The chick chorioallantoic membrane (CAM) model assessed pro-angiogenic effects, and computational analyses explored COX-2 and VEGF pathways. Pharmacokinetic properties were also evaluated. Results: PCS demonstrated significant antioxidant activity and accelerated wound healing after 16 days, with improved wound appearance scores and increased collagen content. Histological analysis confirmed PCS outperformed the standard drug. The CAM model showed PCS increased blood vessel density, length, and junctions while reducing lacunarity. Computational analyses supported involvement of COX-2 and VEGF pathways. Pharmacokinetic assessments indicated good bioavailability, non-inhibition of CYP enzymes, and favorable skin permeability. Conclusions: PCS shows promise as a natural bioactive polymer for wound healing and tissue regeneration. Its antioxidant, anti-inflammatory, and pro-angiogenic properties, combined with favorable pharmacokinetics, highlight its therapeutic potential. This study provides new insights into the mechanisms of C. spinosa polysaccharides and their application in promoting tissue repair. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

26 pages, 1899 KB  
Article
Antibiofilm Power of Basil Essential Oil Against Fish-Originated Multidrug-Resistant Salmonella and Bacillus spp.: Targeting Biofilms on Food Contact Surfaces
by Valentina Pavone, Francisco Emilio Argote-Vega, Waleed Butt, Junior Bernardo Molina-Hernandez, Domenico Paludi, Johannes Delgado-Ospina, Luca Valbonetti, José Ángel Pérez-Álvarez and Clemencia Chaves-López
Foods 2025, 14(10), 1830; https://doi.org/10.3390/foods14101830 - 21 May 2025
Cited by 1 | Viewed by 1574
Abstract
The antimicrobial and antibiofilm efficacy of two Ocimum basilicum L., essential oils sourced from Colombia (BEOC) and Italy (BEOI), was evaluated against multidrug-resistant fish isolates of Salmonella enterica subsp. salamae, Bacillus thuringiensis, and Bacillus oceanisediminis—species for which such activity has [...] Read more.
The antimicrobial and antibiofilm efficacy of two Ocimum basilicum L., essential oils sourced from Colombia (BEOC) and Italy (BEOI), was evaluated against multidrug-resistant fish isolates of Salmonella enterica subsp. salamae, Bacillus thuringiensis, and Bacillus oceanisediminis—species for which such activity has not been previously reported. Using a fish-based model system (FBMS), we found that BEOI, rich in linalool (69.86%), exhibited stronger antimicrobial activity than camphor-dominated BEOC (24.61%). The antimicrobial effects of both EOs were strain- and concentration-dependent, with minimum bactericidal concentration (MBC) 3.75–15.0 µL/mL for BEOI and 15.0–30.0 µL/mL for BEOC. Pure linalool showed even greater potency (MBC: 0.0125 to 0.025 µL/mL). Confocal laser scanning microscopy revealed that BEOI induced severe membrane damage (27% of the cells within 1 h), ultimately leading to the death of 96% of the cells after 24 h. Biofilm formation, assessed in both FBMS and tryptone soy broth (TSB), was strain-dependent, with FBMS promoting higher biofilm production than TSB. Moreover, significant differences in biofilm morphotypes were observed, with the morphotype PDAR (pink dry and rough), characterized by only cellulose, being the most frequently exhibited by the strains (7/15), while BDAR (brown dry and rough), characterized by only curli, was the least expressed (7/15); the remaining strains presented morphotype RDAR. In addition, the strains in polystyrene surfaces accumulated more biomass than stainless steel 304. Notably, BEOI and linaool significantly reduced biofilm formation across all strains, with a reduction of 90% in S. enterica subsp. salamae strains (TJC19 and TJC21. These strains with the RDAR phenotype likely contribute to their strong biofilm-forming capacity. Our findings highlight BEOI’s potential as a natural anti-biofilm agent in food processing environments, offering a promising strategy to combat multidrug-resistant bacteria biofilm-related challenges in the food industry. Full article
Show Figures

Figure 1

16 pages, 3455 KB  
Article
Amelioration of Particulate Matter-Induced Oxidative Stress by a Bioactive Hizikia fusiformis Extract: A Functional Biomaterial for Cosmeceutical Applications
by Jeong Won Ahn, Hyun Soo Kim, So Hui Kim, Hye Soo Yang, Kongara Damodar, Yeong-Min Yoo, Jin Tae Hong and Seong Soo Joo
Mar. Drugs 2025, 23(3), 135; https://doi.org/10.3390/md23030135 - 20 Mar 2025
Cited by 1 | Viewed by 1202
Abstract
Air pollution-related skin damage has heightened the demand for natural protective agents. Hizikia fusiformis, a brown seaweed rich in fucoidan and bioactive fatty acids (α-linolenic acid, eicosatetraenoic acid, and palmitic acid), possesses antioxidant and anti-inflammatory properties. This study investigated the protective effects [...] Read more.
Air pollution-related skin damage has heightened the demand for natural protective agents. Hizikia fusiformis, a brown seaweed rich in fucoidan and bioactive fatty acids (α-linolenic acid, eicosatetraenoic acid, and palmitic acid), possesses antioxidant and anti-inflammatory properties. This study investigated the protective effects of H. fusiformis ethanol extract (HFE) against particulate matter (PM)-induced oxidative stress, inflammation, and apoptosis in human keratinocytes. Antioxidant activity was assessed using DPPH and hydroxyl radical scavenging assays, while PM-induced cytotoxicity, ROS generation, inflammatory markers, and apoptotic pathways were evaluated using the WST-8 assay, DCFH2-DA, qPCR, western blotting, and Hoechst staining. HFE significantly reduced ROS levels, enhanced antioxidant enzyme activity, and mitigated PM-induced cytotoxicity. These effects were mediated by fucoidan and fatty acids, which modulated inflammatory pathways (NF-κB and MAPK), stabilized membranes, and inhibited apoptosis (Bcl-2, Bax, and caspase-3). Collectively, these findings highlight HFE’s potential as a natural anti-pollution skincare ingredient, supporting further in vivo studies and formulation development. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds for Skin Health)
Show Figures

Figure 1

20 pages, 4072 KB  
Article
Green Synthesis and Characterization of Silver Nanoparticles from Tinospora cordifolia Leaf Extract: Evaluation of Their Antioxidant, Anti-Inflammatory, Antibacterial, and Antibiofilm Efficacies
by Vijaya Durga V. V. Lekkala, Arun Vasista Muktinutalapati, Veeranjaneya Reddy Lebaka, Dakshayani Lomada, Mallikarjuna Korivi, Wei Li and Madhava C. Reddy
Nanomaterials 2025, 15(5), 381; https://doi.org/10.3390/nano15050381 - 1 Mar 2025
Cited by 12 | Viewed by 6090
Abstract
The use of metal nanoparticles is gaining popularity owing to their low cost and high efficacy. We focused on green synthesis of silver nanoparticles (AgNPs) using Tinospora cordifolia (Tc) leaf extracts. The structural characteristics of Tc nanoparticles (TcAgNPs) were determined using several advanced [...] Read more.
The use of metal nanoparticles is gaining popularity owing to their low cost and high efficacy. We focused on green synthesis of silver nanoparticles (AgNPs) using Tinospora cordifolia (Tc) leaf extracts. The structural characteristics of Tc nanoparticles (TcAgNPs) were determined using several advanced techniques. Pharmacological activities, including antioxidant, anti-inflammatory, and antibacterial properties, were evaluated through in vitro studies. In the results, the change in sample color from yellow to brown after adding silver nitrate revealed the synthesis of TcAgNPs, and the UV–visible spectrum confirmed their formation. X-ray diffraction studies showed the presence of reducing agents and the crystalline nature of the nanoparticles. Fourier-transform infrared spectra revealed the existence of essential secondary metabolites, which act as reducing/capping agents and stabilize the nanoparticles. The size of the TcAgNPs was small (range 36–168 nm) based on the measurement method. Their negative zeta potential (−32.3 mV) ensured their stability in water suspensions. The TcAgNPs were predominantly spherical, as evidenced from scanning electron microscopy and transmission electron microscopy. Atomic absorption spectroscopy data further revealed the conversion of silver nitrate into silver nanoparticles, and thermogravimetric analysis data showed their thermal stability. The TcAgNPs showed significant DPPH/ABTS radical scavenging ability in a concentration-dependent manner (25–100 µg/mL). Membrane lysis assays showed an effective anti-inflammatory activity of the TcAgNPs. Furthermore, the TcAgNPs showed potent antibacterial effects against multidrug-resistant bacteria (Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, and Staphylococcus aureus). The TcAgNPs treatment also exhibited antibiofilm activity against bacterial strains, in a concentration-dependent manner. Our findings demonstrate the structural characteristics of green-synthesized TcAgNPs using advanced techniques. TcAgNPs can be developed as potential antioxidant, anti-inflammatory, and antibacterial drugs. Full article
Show Figures

Figure 1

67 pages, 2138 KB  
Review
Antioxidants to Defend Healthy and Youthful Skin—Current Trends and Future Directions in Cosmetology
by Anna Budzianowska, Katarzyna Banaś, Jaromir Budzianowski and Małgorzata Kikowska
Appl. Sci. 2025, 15(5), 2571; https://doi.org/10.3390/app15052571 - 27 Feb 2025
Cited by 25 | Viewed by 17229
Abstract
Antioxidants are indispensable in protecting the skin from oxidative stress caused by environmental factors such as ultraviolet (UV) radiation, pollution, and lifestyle-related influences. This review examines the essential role of antioxidants in modern cosmetology, highlighting their dual functionality as protective agents and active [...] Read more.
Antioxidants are indispensable in protecting the skin from oxidative stress caused by environmental factors such as ultraviolet (UV) radiation, pollution, and lifestyle-related influences. This review examines the essential role of antioxidants in modern cosmetology, highlighting their dual functionality as protective agents and active components in skincare formulations. Oxidative stress, primarily driven by an imbalance between reactive oxygen species (ROS) production and the skin’s defense mechanisms, accelerates aging processes, damages cellular structures, and compromises skin integrity. Antioxidants, whether natural or synthetic, act by neutralizing ROS, reducing inflammation, and promoting cellular repair, effectively mitigating these harmful effects. This comprehensive analysis synthesizes findings from 280 studies accessed via key databases, including PubMed, Scopus, and ScienceDirect. It investigates the biochemical mechanisms of antioxidant activity, emphasizing compounds such as vitamins (C, E, A), carotenoids, polyphenols, peptides, and minerals, alongside bioactive extracts derived from algae, fungi, lichens, and plants. Carotenoids, including ꞵ-carotene, lutein, lycopene, and astaxanthin, demonstrate potent antioxidant activity, making them crucial for photoprotection and anti-aging. Phenolic compounds, such as ferulic acid, resveratrol, hesperidin, and xanthohumol, play a significant role in neutralizing oxidative stress and improving skin health. This review also highlights bioactives from algae, fungi, and lichens. Algae, particularly microalgae like Haematococcus pluvialis, known for astaxanthin production, are highlighted for their extraordinary photoprotective and anti-aging properties. Brown algae (Fucus vesiculosus) and red algae (Porphyra) provide polysaccharides and bioactive molecules that enhance hydration and barrier function. Fungi contribute a wealth of antioxidant and anti-inflammatory compounds, including polysaccharides, ꞵ-glucans, and enzymes, which support cellular repair and protect against oxidative damage. Lichens, through unique phenolic metabolites, offer potent free-radical-scavenging properties and serve as effective ingredients in formulations targeting environmental stress. Plant-derived antioxidants offer a diverse range of benefits. Plant-derived antioxidants, such as flavonoids, phenolic acids, and carotenoids, further amplify skin resilience, hydration, and repair mechanisms, aligning with the growing demand for nature-inspired solutions in cosmetics. The integration of these diverse natural sources into cosmetic formulations reflects the industry’s commitment to sustainability, innovation, and efficacy. By harnessing the synergistic potential of bioactives from algae, fungi, lichens, and plants, modern cosmetology is advancing toward multifunctional, health-conscious, and eco-friendly products. Future research directions include optimizing delivery systems for these bioactives, enhancing their stability and bioavailability, and expanding their applications to meet evolving dermatological challenges. Full article
(This article belongs to the Special Issue Cosmetics Ingredients Research - 2nd Edition)
Show Figures

Figure 1

14 pages, 7676 KB  
Article
Isoliquiritigenin Ameliorates High-Fat Diet-Induced Obesity in Mice by Activating Brown Adipose Tissue
by Le Zhao, Minhao Li, Qingjun Zhu, Xingqiang Fang, Haili Yang and Yongju Zhao
Int. J. Mol. Sci. 2025, 26(4), 1616; https://doi.org/10.3390/ijms26041616 - 14 Feb 2025
Cited by 1 | Viewed by 1978
Abstract
Brown adipose tissue (BAT) is a critical regulator of non-shivering thermogenesis and energy expenditure, offering significant potential for addressing obesity and associated metabolic disorders. Isoliquiritigenin (ISL), a natural flavonoid, has shown promising therapeutic effects in lipid metabolism-related diseases. This study aimed to explore [...] Read more.
Brown adipose tissue (BAT) is a critical regulator of non-shivering thermogenesis and energy expenditure, offering significant potential for addressing obesity and associated metabolic disorders. Isoliquiritigenin (ISL), a natural flavonoid, has shown promising therapeutic effects in lipid metabolism-related diseases. This study aimed to explore the effects of ISL on lipid metabolism and obesity using a high-fat-diet (HFD)-induced obesity model in mice. Mice were subjected to an HFD and treated with ISL via gavage. The results demonstrated that ISL treatment significantly reduced HFD-induced weight gain and upregulated the expression of key thermogenic genes, suggesting enhanced BAT activity and thermogenesis. In vitro experiments using C3H10-T1/2 cells further supported these findings, as ISL treatment markedly increased the expression of UCP1 and PPARGC1a, which are critical regulators of thermogenesis. To elucidate the molecular mechanisms underlying ISL’s effects, we conducted a transcriptomic analysis of BAT from ISL-treated mice. Pathway enrichment analysis revealed that differentially expressed genes were predominantly associated with metabolic processes, including the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and fatty acid degradation. These pathways are integral to energy metabolism and thermogenesis, providing mechanistic insights into ISL’s anti-obesity effects. Additionally, ISL treatment significantly downregulated the expression of NNAT and SGK1, genes implicated in lipid metabolism and energy homeostasis. These findings suggest that ISL modulates BAT function by regulating the expression of these genes, thereby influencing lipid deposition and thermogenic capacity. In summary, this study suggests that ISL treatment has the potential to mitigate HFD-induced obesity by promoting BAT thermogenesis and modulating lipid metabolism. The molecular mechanisms involve the regulation of key metabolic pathways and genes, such as NNAT and SGK1, highlighting ISL’s potential as a therapeutic agent for obesity and related metabolic disorders. Full article
Show Figures

Figure 1

17 pages, 974 KB  
Review
An Overview of Sargassum Seaweed as Natural Anticancer Therapy
by Kelly Johanna Muñoz-Losada, Manuela Gallego-Villada and Miguel Angel Puertas-Mejía
Future Pharmacol. 2025, 5(1), 5; https://doi.org/10.3390/futurepharmacol5010005 - 20 Jan 2025
Cited by 2 | Viewed by 3827
Abstract
Algae have great therapeutic value and have attracted a great deal of attention due to the abundance of bioactive compounds they contain, which may be the key to fighting diseases of various origins, such as skin cancer, breast cancer, or osteosarcoma. In this [...] Read more.
Algae have great therapeutic value and have attracted a great deal of attention due to the abundance of bioactive compounds they contain, which may be the key to fighting diseases of various origins, such as skin cancer, breast cancer, or osteosarcoma. In this regard, global trends indicate that cancer is likely to become the leading cause of death and the main obstacle to increased life expectancy in the 21st century, which is related to multiple factors, including the various effects of climate change, which will continue to cause afflictions to human health. Then, excess exposure to ultraviolet radiation (UVR) causes damage to DNA, proteins, enzymes, and various cellular structures and leads to the development of cancer, premature aging of the skin (wrinkles, dryness, dilation of blood vessels, and loss of collagen and elastin), or alterations of the immune system. In addition, multidrug resistance (MDR) is characterized by the overexpression of efflux pumps, such as P-glycoprotein or P-gp, that expel chemotherapeutic drugs out of the cancer cell being the main obstacle to their efficacy. Some molecules inhibit efflux pumps when co-administered with antineoplastic agents, such as glycolipids. Mycosporin-like amino acids and glycolipids isolated from Sargassum have shown an important role as potential anticancer agents. The results show that glycolipids and mycosporin-like amino acids present in brown algae of the genus Sargassum exhibit cytotoxic effects on different types of cancer, such as breast cancer, leukemia, and osteosarcoma, which is a key criterion to be considered as a natural anti-cancer strategy; but, more in-depth in vitro studies are needed to represent them at the in vivo level, as well as their validation in preclinical assays. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
Show Figures

Graphical abstract

16 pages, 2179 KB  
Article
Ishophloroglucin A Isolated from Ishige okamurae Protects Glomerular Cells from Methylglyoxal-Induced Diacarbonyl Stress and Inhibits the Pathogenesis of Diabetic Nephropathy
by Chi-Heung Cho, Min-Gyeong Kim, Bomi Ryu and Sang-Hoon Lee
Mar. Drugs 2025, 23(1), 48; https://doi.org/10.3390/md23010048 - 20 Jan 2025
Viewed by 1885
Abstract
Ishige okamurae (I. okamuare), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of [...] Read more.
Ishige okamurae (I. okamuare), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE–receptor for AGEs (RAGE) interaction. IPA (0.2, 1, and 5 μM) demonstrated anti-glycation ability by inhibiting the formation of glucose-fructose-BSA-derived AGEs by up to 54.63% compared to the untreated control, reducing the formation of irreversible cross-links between MGO-derived AGEs and collagen by 67.68% and the breaking down of existing cross-links by approximately 91% (p < 0.001). IPA protected cells from MGO-induced oxidative stress by inhibiting intracellular MGO accumulation (untreated cells: 1.62 μg/mL, MGO treated cells: 25.27 μg/mL, and IPA 5 μM: 11.23 μg/mL) (p < 0.001) and AGE generation and inhibited MGO-induced renal cell damage via the downregulation of MGO-induced RAGE protein expression (relative protein expression levels of MGO treated cells: 9.37 and IPA 5 μM:1.74) (p < 0.001). Overall, these results suggest that IPA has the potential to be utilized as a useful natural agent for the prevention and management of AGE-related diabetic nephropathy, owing to its strong anti-glycation activity. Full article
(This article belongs to the Special Issue Marine Natural Products in Anti-obesity and Metabolic Syndrome)
Show Figures

Graphical abstract

56 pages, 2136 KB  
Review
Unlocking the Potential of Hydrosols: Transforming Essential Oil Byproducts into Valuable Resources
by Heloísa H. S. Almeida, Isabel P. Fernandes, Joana S. Amaral, Alírio E. Rodrigues and Maria-Filomena Barreiro
Molecules 2024, 29(19), 4660; https://doi.org/10.3390/molecules29194660 - 30 Sep 2024
Cited by 23 | Viewed by 8666
Abstract
The global demand for sustainable and non-toxic alternatives across various industries is driving the exploration of naturally derived solutions. Hydrosols, also known as hydrolates, represent a promising yet underutilised byproduct of the extraction process of essential oils (EOs). These aqueous solutions contain a [...] Read more.
The global demand for sustainable and non-toxic alternatives across various industries is driving the exploration of naturally derived solutions. Hydrosols, also known as hydrolates, represent a promising yet underutilised byproduct of the extraction process of essential oils (EOs). These aqueous solutions contain a complex mixture of EO traces and water-soluble compounds and exhibit significant biological activity. To fully use these new solutions, it is necessary to understand how factors, such as distillation time and plant-to-water ratio, affect their chemical composition and biological activity. Such insights are crucial for the standardisation and quality control of hydrosols. Hydrosols have demonstrated noteworthy properties as natural antimicrobials, capable of preventing biofilm formation, and as antioxidants, mitigating oxidative stress. These characteristics position hydrosols as versatile ingredients for various applications, including biopesticides, preservatives, food additives, anti-browning agents, pharmaceutical antibiotics, cosmetic bioactives, and even anti-tumour agents in medical treatments. Understanding the underlying mechanisms of these activities is also essential for advancing their use. In this context, this review compiles and analyses the current literature on hydrosols’ chemical and biological properties, highlighting their potential applications and envisioning future research directions. These developments are consistent with a circular bio-based economy, where an industrial byproduct derived from biological sources is repurposed for new applications. Full article
(This article belongs to the Special Issue Featured Reviews in Applied Chemistry 2.0)
Show Figures

Graphical abstract

20 pages, 1756 KB  
Article
Optimization and Bioactive Evaluation of Bifurcaria bifurcata Antioxidant-Rich Extracts for Functional Food and Pharmaceutical Applications
by Aurora Silva, Maria Carpena, Lucia Cassani, Clara Grosso, Paula Garcia-Oliveira, Cristina Delerue-Matos, Jesus Simal-Gandara, Maria Fatima Barroso and Miguel A. Prieto
Antioxidants 2024, 13(10), 1189; https://doi.org/10.3390/antiox13101189 - 30 Sep 2024
Cited by 3 | Viewed by 2172
Abstract
In recent years, consumers have been increasingly interested in natural, healthier, functional foods, with a focus on sea-based products such as algae. Bifurcaria bifurcata (BB) is a macroalga that belongs to the Phaeophyceae class. These brown algae are recognized as the source of [...] Read more.
In recent years, consumers have been increasingly interested in natural, healthier, functional foods, with a focus on sea-based products such as algae. Bifurcaria bifurcata (BB) is a macroalga that belongs to the Phaeophyceae class. These brown algae are recognized as the source of bioactive molecules of great interest to the pharmaceutical and nutraceutical industries. The present work applied response surface methodology to optimize the microwave-assisted extraction of the poorly studied algae. The optimization variables were time, pressure, and solvent composition (ethanol/water) and the response parameters selected were yield, total phenolic and flavonoid content, and the antioxidant profile by evaluating DPPH•+, ABTS•+ scavenging activity, and β-carotene discoloration capacity. The results obtained reveal remarkable bioactivity of the crude extract of BB with positive results as an antioxidant and antimicrobial agent. Furthermore, the BB extract’s capacity to inhibit enzymes related to neurodegenerative diseases and its anti-inflammatory and anti-proliferation activity open the possibility of future food or pharmaceutical applications. Full article
Show Figures

Figure 1

Back to TopTop