Antibiofilm Power of Basil Essential Oil Against Fish-Originated Multidrug-Resistant Salmonella and Bacillus spp.: Targeting Biofilms on Food Contact Surfaces
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.1.1. Isolation and Identification of Bacterial Strains
2.1.2. Antibiotic Resistance of the Strains
2.2. Origin and Composition of O. basilicum Essential Oils
2.3. Evaluation of the Antibacterial Activity
2.3.1. Preparation of Fish-Based Model System (FBMS)
2.3.2. Determination of Minimum Inhibitory Concentration (MIC)
2.3.3. Confocal Laser Scanning Microscopy (CLSM) Analysis
2.4. Biofilm Bioproduction
2.4.1. Biofilm Morphotype
2.4.2. Comparative Biofilm Production on Polystyrene Surface Using TSB and FBMS
2.4.3. Biofilm Formation on Stainless Steel (SS)
2.4.4. Efficacy of BEOI and Linalool on the Biofilm Inhibition
2.5. Effect of Basil Essential Oil and Linalool on Biofilm Production
2.6. Data Analysis
3. Results
3.1. Microorganisms
3.1.1. Bacterial Identification Using 16S rDNA Gene Sequences
3.1.2. Antibiotic Resistance of B. thuringensis, B. oceanisediminis, and S. enterica subsp. salamae, Strains
3.2. Essential Oils
3.2.1. Chemical Composition of the O. basilicum Essential Oils
3.2.2. Antimicrobial Activity of the Essential Oils
3.2.3. Cell Viability Analysis
3.3. Biofilm Production
3.3.1. Detection of the Biofilm Morphotype
3.3.2. Biofilm Formation Ability of B. oceanisediminis, B. thuringensis, and S. enterica subsp. salamae Strains in Two Different Growth Media Inoculated in Polystyrene Microplates
3.3.3. Comparison of Biofilm Formation in Polystyrene and Stainless Steel Surfaces
3.3.4. Inhibition of Biofilm Formation by Basil Essential Oil and Linalool
3.3.5. Comparison Between the Biofilm Formation Inhibition by Linalool and Sodium Hypochlorite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEOC | Essential oils of Ocimum basilicum L., from Colombia |
BEOI | Essential oils of Ocimum basilicum L., from Italy |
FBMS | Fish-based model system |
MIC | Minimum Inhibitory Concentration |
MBC | Minimum bactericidal concentration |
PI | Propidium iodide |
CFDA | Carboxyfluorescein diacetate |
BHI | Brain Heart Infusion Broth |
TSB | Tryptic soy broth |
TTC | 2,3,5-triphenyltetrazolium chloride |
CLSM | Confocal laser scanning microscopy |
E | Erythromicin |
AML | Amoxicillin |
CXM | Cefuroxime |
TE | Tetracycline |
TEC | Teicoplanin |
C | Chloramphenicol |
K | Kanamicyn |
DXT | Doxycyclin |
OX | Oxacillin |
CN | Gentamicin |
LNZ | Linezolid |
ENR | Enrofloxacin |
Na | Nalidixic acid |
CD | Clindamycin |
RD | Rifampicin |
AK | Amikacin |
KF | Cephalothin |
CIP | Ciprofloxacin |
SXT | Sulphamethoxalone |
B | Bacitracin |
UB | Flumequine |
SP | Spiramycin |
OL | Oleandomycin |
FD | Fusidic acid |
References
- Xiong, H.; Zhou, X.; Cao, Z.; Xu, A.; Dong, W.; Jiang, M. Microbial biofilms as a platform for diverse biocatalytic applications. Bioresour. Technol. 2024, 411, 131302. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry—A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef] [PubMed]
- Maggio, F.; Rossi, C.; Chaves-López, C.; Serio, A.; Valbonetti, L.; Pomilio, F.; Chiavaroli, A.P.; Paparella, A. Interactions between L. monocytogenes and P. fluorescens in Dual-Species Biofilms under Simulated Dairy Processing Conditions. Foods 2021, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Chaves-López, C.; Serio, A.; Casaccia, M.; Maggio, F.; Paparella, A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2172–2191. [Google Scholar] [CrossRef]
- Tadielo, L.E.; dos Santos, E.A.R.; Possebon, F.S.; Schmiedt, J.A.; Juliano, L.C.B.; Cerqueira-Cézar, C.K.; de Oliveira, J.P.; Sampaio, A.N.d.C.E.; Melo, P.R.L.; Caron, E.F.F.; et al. Characterization of microbial ecology, Listeria monocytogenes, and Salmonella sp. on equipment and utensil surfaces in Brazilian poultry, pork, and dairy industries. Food Res. Int. 2023, 173, 113422. [Google Scholar] [CrossRef]
- Sheng, L.; Wang, L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 738–786. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Q.; Gu, W.; Zeng, X.-A. A review of bacterial biofilm control by physical strategies. Crit. Rev. Food Sci. Nutr. 2022, 62, 3453–3470. [Google Scholar] [CrossRef]
- Fernandes, S.; Gomes, I.B.; Simões, M.; Simões, L.C. Novel chemical-based approaches for biofilm cleaning and disinfection. Curr. Opin. Food Sci. 2024, 55, 101124. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef]
- Verma, N.; Agarwal, V. A Review on Current Strategies for Biofilm Control in Food Industry BT. In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), Prayagrai, India, 10–12 March 2022; Atlantis Press: Dordrecht, The Netherlands, 2022; pp. 123–132. [Google Scholar]
- Elafify, M.; Liao, X.; Feng, J.; Ahn, J.; Ding, T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res. Int. 2024, 190, 114650. [Google Scholar] [CrossRef]
- González-Rivas, F.; Ripolles-Avila, C.; Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Rodríguez-Jerez, J.J. Biofilms in the Spotlight: Detection, Quantification, and Removal Methods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, F.; Arslan, S. Biofilm Production and Antimicrobial Susceptibility Profiles of Bacillus spp. from Meats. Sak. Univ. J. Sci. 2018, 22, 1674–1682. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, A.Y.; Kim, H.J.; Cho, Y.S.; Koo, M. Prevalence and characterization of toxigenic Bacillus cereus group isolated from low-moisture food products. Food Sci. Biotechnol. 2022, 31, 1615–1629. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—12th ed. M02-A13; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Chaves-López, C.; Serio, A.; Gianotti, A.; Sacchetti, G.; Ndagijimana, M.; Ciccarone, C.; Stellarini, A.; Corsetti, A.; Paparella, A. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. J. Appl. Microbiol. 2015, 119, 487–499. [Google Scholar] [CrossRef]
- Pilevar, Z.; Hosseini, H.; Abdollahzadeh, E.; Shojaee-Aliabadi, S.; Tajedin, E.; Yousefi, M.; Bahrami, A.; Khosroshahi, N.K. Effect of Zataria multiflora Boiss. Essential oil, time, and temperature on the expression of Listeria monocytogenes virulence genes in broth and minced rainbow trout. Food Control 2020, 109, 106863. [Google Scholar] [CrossRef]
- Moore, S.; Stein, W.H. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 1948, 176, 367–388. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Zheng, Y.; VanderGheynst, J.S. Rapid Quantitative Analysis of Lipids Using a Colorimetric Method in a Microplate Format. Lipids 2011, 46, 95–103. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. CLSI 448 Supplement M100S, 26th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Molina-Hernandez, J.B.; Aceto, A.; Bucciarelli, T.; Paludi, D.; Valbonetti, L.; Zilli, K.; Scotti, L.; Chaves-López, C. The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death. Sci. Rep. 2021, 11, 21557. [Google Scholar] [CrossRef]
- Lee, W.; Kim, K.-J.; Lee, D.G. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. BioMetals 2014, 27, 1191–1201. [Google Scholar] [CrossRef]
- Choong, F.X.; Huzell, S.; Rosenberg, M.; Eckert, J.A.; Nagaraj, M.; Zhang, T.; Melican, K.; Otzen, D.E.; Richter-Dahlfors, A. A semi high-throughput method for real-time monitoring of curli producing Salmonella biofilms on air-solid interfaces. Biofilm 2021, 3, 100060. [Google Scholar] [CrossRef]
- Rossi, C.; Serio, A.; Chaves-López, C.; Anniballi, F.; Auricchio, B.; Goffredo, E.; Cenci-Goga, B.T.; Lista, F.; Fillo, S.; Paparella, A. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 2018, 86, 241–248. [Google Scholar] [CrossRef]
- Rossi, C.; Maggio, F.; Chaves-López, C.; Valbonetti, L.; Berrettoni, M.; Paparella, A.; Serio, A. Effectiveness of selected essential oils and one hydrolate to prevent and remove Listeria monocytogenes biofilms on polystyrene and stainless steel food-contact surfaces. J. Appl. Microbiol. 2022, 132, 1866–1876. [Google Scholar] [CrossRef]
- Lamas, A.; Miranda, J.M.; Regal, P.; Vázquez, B.; Franco, C.M.; Cepeda, A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol. Res. 2018, 206, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Baniga, Z.; Mdegela, R.H.; Lisa, B.; Kusiluka, L.J.M.; Dalsgaard, A. Prevalence and characterisation of Salmonella Waycross and Salmonella enterica subsp. salamae in Nile perch (Lates niloticus) of Lake Victoria, Tanzania. Food Control 2019, 100, 28–34. [Google Scholar] [CrossRef]
- EFSA. European Food Safety Authority. Salmonella. Available online: https://www.efsa.europa.eu/en/topics/topic/salmonella (accessed on 1 May 2025).
- Kyule, D.N.; Maingi, J.M.; Njeru, E.M.; Nyamache, A.K. Molecular Characterization and Diversity of Bacteria Isolated from Fish and Fish Products Retailed in Kenyan Markets. Int. J. Food Sci. 2022, 2022, 2379323. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Li, P.; Wang, X.; Che, Y.; Long, H.; Zhang, X.; Cai, X.; Huang, A.; Zeng, Y.; Xie, Z. Cross-habitat distribution pattern of Bacillus communities and their capacities of producing industrial hydrolytic enzymes in Paracel Islands: Habitat-dependent differential contributions of the environment. J. Environ. Manag. 2022, 323, 116252. [Google Scholar] [CrossRef]
- Dhayalan, A.; Velramar, B.; Govindasamy, B.; Ramalingam, K.R.; Dilipkumar, A.; Pachiappan, P. Isolation of a bacterial strain from the gut of the fish, Systomus sarana, identification of the isolated strain, optimized production of its protease, the enzyme purification, and partial structural characterization. J. Genet. Eng. Biotechnol. 2022, 20, 24. [Google Scholar] [CrossRef]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef]
- Nnadozie, C.F.; Odume, O.N. Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environ. Pollut. 2019, 254, 113067. [Google Scholar] [CrossRef]
- Czekalski, N.; Sigdel, R.; Birtel, J.; Matthews, B.; Bürgmann, H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environ. Int. 2015, 81, 45–55. [Google Scholar] [CrossRef]
- Carovic-Stanko, K.; Petek, M.; Grdisa, M.; Pintar, J.; Bedekovic, D.; Herak Custic, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef]
- Paulus, D.; Valmorbida, R.; Ferreira, S.B.; Zorzzi1, I.C.; Nava, G.A. Biomassa e composição do óleo essencial de manjericão cultivado sob malhas fotoconversoras e colhido em diferentes épocas. Hortic. Bras. 2016, 34, 46–53. [Google Scholar] [CrossRef]
- Tursun, A.O. Impact of soil types on chemical composition of essential oil of purple basil. Saudi J. Biol. Sci. 2022, 29, 103314. [Google Scholar] [CrossRef] [PubMed]
- Daneshian, A.; Gurbuz, B.; Cosge, B.; Ipek, A. Chemical Components of Essential Oils from Basil (Ocimum basilicum L.) Grown at Different Nitrogen Levels. Int. J. Nat. Eng. Sci. 2019, 3, 9–13. [Google Scholar]
- Cheliku, N.; Cvetkovikj Karanfilova, I.; Stefkov, G.; Karapandzova, M.; Bardhi, N.; Qjazimi, B.; Kulevanova, S. Essential oil composition of five Basil cultivars (Ocimum basilicum) from Albania. Maced. Pharm. Bull. 2015, 61, 11–18. [Google Scholar] [CrossRef]
- Amor, G.; Sabbah, M.; Caputo, L.; Idbella, M.; De Feo, V.; Porta, R.; Fechtali, T.; Mauriello, G. Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging. Foods 2021, 10, 121. [Google Scholar] [CrossRef]
- Massoud, H.Y.; Farag, A.A.; El-Gamal, S.M.A.; El-Nabawy, S.A.E. Effect of Different Drip Irrigation Rates and Potassium Silicate Spray on Growth and Essential Oil Production of French Basil. J. Plant Prod. 2024, 15, 1–9. [Google Scholar] [CrossRef]
- Viña, A.; Murillo, E. Essential Oil Composition from Twelve Varieties of Basil (Ocimum spp) Grown in Colombia. J. Braz. Chem. Soc. 2003, 14, 744–749. [Google Scholar] [CrossRef]
- Snoussi, M.; Dehmani, A.; Noumi, E.; Flamini, G.; Papetti, A. Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains. Microb. Pathog. 2016, 90, 13–21. [Google Scholar] [CrossRef]
- Rajaraman, S.K.; Jainu, M.; Dhakshinamoorthy, G. Ocimum basilicum L. essential oil coated biomaterial surfaces prevent bacterial adhesion and biofilm growth. Asian J. Pharm. Clin. Res. 2016, 9, 379–384. [Google Scholar]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Antimicrobial Activity of Basil (Ocimum basilicum) Oil against Salmonella enteritidis in Vitro and in Food. Biosci. Biotechnol. Biochem. 2010, 74, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, M.; Silva, B.P.d.; Weidlich, L.; Hoehne, L.; Flach, A.; Costa, L.A.M.A.d.; Ethur, E.M. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens. Braz. J. Microbiol. 2016, 47, 424–430. [Google Scholar] [CrossRef]
- Lv, F.; Liang, H.; Yuan, Q.; Li, C. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and Antimicrobial Activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. Essential Oils and Their Major Monoterpene Alcohols Alone and in Combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef]
- Guo, F.; Chen, Q.; Liang, Q.; Zhang, M.; Chen, W.; Chen, H.; Yun, Y.; Zhong, Q.; Chen, W. Antimicrobial Activity and Proposed Action Mechanism of Linalool Against Pseudomonas fluorescens. Front. Microbiol. 2021, 12, 562094. [Google Scholar] [CrossRef]
- Bua, A.; Usai, D.; Donadu, M.G.; Delgado Ospina, J.; Paparella, A.; Chaves-Lopez, C.; Serio, A.; Rossi, C.; Zanetti, S.; Molicotti, P. Antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) against intracellular and extracellular organisms. Nat. Prod. Res. 2018, 32, 2869–2871. [Google Scholar] [CrossRef]
- Silva, C.G.; Yudice, E.D.C.; Campini, P.A.L.; Rosa, D.S. The performance evaluation of Eugenol and Linalool microencapsulated by PLA on their activities against pathogenic bacteria. Mater. Today Chem. 2021, 21, 100493. [Google Scholar] [CrossRef]
- Li, Y.; Ren, F.; Chen, D.; Chen, H.; Chen, W. Antibacterial Mechanism of Linalool against Pseudomonas fragi: A Transcriptomic Study. Foods 2022, 11, 2058. [Google Scholar] [CrossRef]
- Krapež, P.; Lunder, M.; Oder, M.; Fink, R. Evaluation of the In Vitro Disinfection Potential of the Phytochemicals Linalool and Citronellal Against Biofilms Formed by Escherichia coli and Staphylococcus aureus. Processes 2024, 12, 2743. [Google Scholar] [CrossRef]
- Hobley, L.; Harkins, C.; MacPhee, C.E.; Stanley-Wall, N.R. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 2015, 39, 649–669. [Google Scholar] [CrossRef] [PubMed]
- Castelijn, G.A.A.; van der Veen, S.; Zwietering, M.H.; Moezelaar, R.; Abee, T. Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella typhimurium strains of different origin in high and low nutrient medium. Biofouling 2012, 28, 51–63. [Google Scholar] [CrossRef]
- Papaioannou, E.; Giaouris, E.D.; Berillis, P.; Boziaris, I.S. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges. Int. J. Food Microbiol. 2018, 267, 9–19. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Heir, E.; Mikkelsen, M.I.; Møretrø, T. Biofilm Matrix Composition Affects the Susceptibility of Food Associated Staphylococci to Cleaning and Disinfection Agents. Front. Microbiol. 2016, 7, 856. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, H.; Dou, X.; Jia, K.; Panagou, E.Z.; Zhang, H.; Xu, A.; Dong, Q. The influence of nutrients on biofilm formation of an ST87 strain of Listeria monocytogenes. LWT 2024, 191, 115658. [Google Scholar] [CrossRef]
- Paz-Méndez, A.M.; Lamas, A.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Effect of Food Residues in Biofilm Formation on Stainless Steel and Polystyrene Surfaces by Salmonella enterica Strains Isolated from Poultry Houses. Foods 2017, 6, 106. [Google Scholar] [CrossRef]
- Steenackers, H.; Hermans, K.; Vanderleyden, J.; De Keersmaecker, S.C.J. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res. Int. 2012, 45, 502–531. [Google Scholar] [CrossRef]
- Dantas, T.; Padrão, J.; da Silva, M.R.; Pinto, P.; Madeira, S.; Vaz, P.; Zille, A.; Silva, F. Bacteria co-culture adhesion on different texturized zirconia surfaces. J. Mech. Behav. Biomed. Mater. 2021, 123, 104786. [Google Scholar] [CrossRef] [PubMed]
- Obe, T.; Richards, A.K.; Shariat, N.W. Differences in biofilm formation of Salmonella serovars on two surfaces under two temperature conditions. J. Appl. Microbiol. 2022, 132, 2410–2420. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Botyanszki, Z.; Tay, P.K.R.; Joshi, N.S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 2014, 5, 4945. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Zhang, K.; Zhang, J.; Cui, D.; Wang, J.; Ji, P.; Wei, Y.; Li, J. Linalool as a Potential Agent for Inhibiting Escherichia coli Biofilm Formation and Exopolysaccharide Production. BMC Vet. Res. 2025, 21, 235. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, S.; Fan, Q.; Zuo, J.; Wang, Y.; Yi, L.; Wang, Y. New antibacterial targets: Regulation of quorum sensing and secretory systems in zoonotic bacteria. Microbiol. Res. 2023, 274, 127436. [Google Scholar] [CrossRef] [PubMed]
- Praseetha, S.; Sukumaran, S.T.; Dan, M.; Augustus, A.R.; Pandian, S.K.; Sugathan, S. The Anti-Biofilm Potential of Linalool, a Major Compound from Hedychium larsenii, against Streptococcus pyogenes and Its Toxicity Assessment in Danio rerio. Antibiotics 2023, 12, 545. [Google Scholar] [CrossRef]
BEOC | BEOI | ||
---|---|---|---|
Compound | Amount Relative (%) | Kovats Retention Index | |
Alcohols | |||
1-octen-3-ol | 0.28 ± 0.10 | N.D. | 1003 |
Ester | |||
Ethyl isovalerate | 0.11 ± 0.00 | N.D. | 853 |
Iso-bornyl acetate | N.D. | 0.92 ± 0.08 | 1789 |
Ether | |||
Estragol | 10.91 ± 0.34 | 7.89 ± 0.87 | 1204 |
Coumarin | N.D. | 0.91 ± 0.01 | 1890 |
Monoterpene oxygenated | |||
1,8-cineole (Eucalyptol) | N.D. | 12.91 ± 0.52 | 768 |
Eucalyptol | 24.12 ± 0.97 | N.D. | 1036 |
trans-sabinene hydrate | 1.25 ± 0.05 | N.D. | 1072 |
cis-sabinene hydrate | 0.21 ± 0.06 | N.D. | 1105 |
Linalool | 0.25 ± 0.01 | 69.86 ± 1.89 | 1109 |
Camphor | 24.61 ± 1.03 | 0.77 ± 0.05 | 1156 |
4-Terpineol | 0.69 ± 0.08 | 1.02 ± 0.01 | 1176 |
α-terpineol | 0.46 ± 0.01 | 0.69 ± 0.01 | 1184 |
Nerol | 0.11 ± 0.01 | N.D. | 1234 |
Monoterpene not oxygenated | |||
α-pinene | 1.48 ± 0.10 | 0.37 ± 0.01 | 932 |
terpinolene | N.D. | 1.47 ± 0.21 | 948 |
Camphene | 2.51 ± 0.19 | N.D. | 947 |
Sabinene | 0.52 ± 0.01 | N.D. | 973 |
β-pinene | 2.66 ± 0.24 | N.D. | 976 |
β-Mircene | 0.94 ± 0.01 | N.D. | 991 |
2-Carene | 0.13 ± 0.01 | N.D. | 1017 |
trans-β-Ocimene | 0.34 ± 0.01 | N.D. | 1039 |
cis-β-Ocimene | 2.75 ± 0.39 | N.D. | 1050 |
γ-Terpinene | 0.27 ± 0.03 | N.D. | 1060 |
α-terpinolene | 0.41 ± 0.01 | N.D. | 1089 |
Phenylpropene | |||
Chavicol | 2.43 ± 0.15 | N.D. | 1282 |
Eugenol | 4.22 ± 0.37 | N.D. | 1371 |
Sesquiterpenes | |||
α-Copaene | 0.49 ± 0.01 | N.D. | 1383 |
β-bourbonene | 0.32 ± 0.00 | N.D. | 1393 |
β-cubebene | 0.25 ± 0.02 | N.D. | 1396 |
trans-Cariofilene | 2.47 ± 0.04 | N.D. | 1431 |
α-bergamotene | 1.96 ± 0.02 | N.D. | 1442 |
β-Sesquifelandrene | 0.23 ± 0.01 | N.D. | 1448 |
trans-β-Farnesene | 0.17 ± 0.01 | N.D. | 1458 |
α-Humulene | 0.23 ± 0.01 | N.D. | 1466 |
Germacrene D | 3.51 ± 0.05 | N.D. | 1494 |
β-Bisabolene | 2.62 ± 0.04 | N.D. | 1515 |
α-Copaene | 0.15 ± 0.00 | N.D. | 1532 |
α-Bisabolene | 5.59 ± 0.36 | N.D. | 1550 |
Oxygenated Sesquiterpenes | |||
Viridiflorol | 0.27 ± 0.01 | N.D. | 1600 |
τ-cadinol | N.D. | 5.76 ± 0.35 | 2213 |
BEOC (µL/mL) | BEOI (µL/mL) | Linalool (µL/mL) | NaCLO (µL/mL) | |||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
B. oceanisediminis | ||||||||
TJC1 | 30 | 30 | 3.75 | 15 | 0.0125 | 0.025 | 0.0023 | 0.0023 |
TJC8 | 30 | 30 | 7.5 | 15 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
TJC10 | 15 | 30 | 7.5 | 7.5 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
TJC18 | 30 | 30 | 7.5 | 7.5 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
TJC24 | 30 | 30 | 7.5 | 7.5 | 0.00625 | 0.025 | 0.0047 | 0.0047 |
B. thuringiensis | ||||||||
TJC2 | 30 | 30 | 7.5 | 7.5 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
TJC4 | 30 | 30 | 15 | 15 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
TJC20 | 30 | 30 | 7.5 | 15 | 0.00625 | 0.0125 | 0.0047 | 0.0047 |
TJC22 | 30 | 30 | 15 | 15 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
TJC25 | 30 | 30 | 7.5 | 15 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
S. enterica subp. salamae | ||||||||
TJC3 | 15 | 30 | 7.5 | 15 | 0.00625 | 0.0125 | 0.0047 | 0.0047 |
TJC5 | 30 | 30 | 1.87 | 3.75 | 0.00625 | 0.025 | 0.0047 | 0.0047 |
TJC13 | 30 | 30 | 3.75 | 7.5 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
TJC19 | 30 | 30 | 3.75 | 7.5 | 0.00625 | 0.0125 | 0.0047 | 0.0047 |
TJC21 | 30 | 30 | 3.75 | 7.5 | 0.0125 | 0.025 | 0.0047 | 0.0047 |
B. oceanisediminis | Treatment | Stainless Steel | Polystyrene |
---|---|---|---|
TJC1 | BEOI * | 35.18 ± 2.90 B jk | 69.33 ± 0.97 A cdef |
TJC8 | 48.09 ± 0.96 B hijk | 78.19 ± 9.95 A bcde | |
TJC10 | 48.85 ± 0.50 B ghijk | 84.92 ± 0.04 A abc | |
TJC18 | 67.46 ± 3.51 B cdefg | 81.02 ± 2.82 A abcd | |
TJC24 | 33.98 ± 1.33 B k | 64.95 ± 8.11 A defgh | |
TJC1 | LIN * | 48.07 ± 0.98 B hijk | 100 ± 0.83 A a |
TJC8 | 40.77 ± 1.40 B jk | 53.27 ± 8.09 A fghij | |
TJC10 | 61.74 ± 1.38 B | 79.26 ±8.62 A bcde | |
TJC18 | 39.99 ± 3.29 B jk | 45.61 ± 7.44 A ijk | |
TJC24 | 43.79 ± 0.99 B ijk | 92.89 ± 6.15 A ab | |
B. thuringiensis | Treatment | Stainless steel | Polystyrene |
TJC2 | BEOI * | 76.62 ± 3.25 B bc | 85.12 ± 3 A ab |
TJC4 | 4.06 ± 1.85 B i | 77.61 ± 1.43 A bc | |
TJC20 | 3.88 ± 2.29 B i | 79.37 ± 1.29 A bc | |
TJC22 | 45.14 ± 1.17 B gh | 71.69 ± 6.18 A bcd | |
TJC25 | 46.60 ± 1.75 B fgh | 68.88 ± 4.09 A bcde | |
TJC2 | LIN $ | 54.66 ± 8.08 B defg | 80.14 ± 3.11 A bc |
TJC4 | 50.68 ± 0.80 B efgh | 80.70 ± 8.83 A bc | |
TJC20 | 64.18 ± 2.78 B cdef | 100 ± 7.88 A a | |
TJC22 | 50.30 ± 0.90 B efgh | 75.75 ± 6.41 A bc | |
TJC25 | 34.75 ± 1.11 B h | 77.03 ± 8.63 A bc | |
S. enterica subsp. salamae | Treatment | Stainless steel | Polystyrene |
TJC3 | BEOI * | 47.27 ± 2.10 B cde | 78.47 ± 7.15 A ab |
TJC5 | 39.88 ± 1.20 B de | 89.33 ± 16.39 A a | |
TJC13 | 30.73 ± 0.45 B de | 82.54 ± 11.82 A ab | |
TJC19 | 64.99 ± 0.28 B bc | 89.7 ± 2.96 A a | |
TJC21 | 47.51 ± 2.33 B cd | 89.75 ± 0.24 A a | |
TJC3 | LIN * | 62.90 ± 3.19 B bc | 100 ± 3.48 A a |
TJC5 | 37.28 ± 3.60 B de | 78.38 ± 5.39 A ab | |
TJC13 | 24.61 ± 0.91 B e | 84.09 ± 3.21 A ab | |
TJC19 | 77.65 ± 0.57 B ab | 98.08 ± 5.46 A a | |
TJC21 | 33.57 ± 1.20 B de | 92.26 ± 6.56 A a |
Biofilm Formation Inhibition (%) | ||
---|---|---|
Linalool | NaClO | |
B. oceanisediminis | ||
TJC1 | 100 ± 0.83 a | 99.51 ± 0 a |
TJC8 | 53.27 ± 8.09 b | 95.25 ± 1.91 a |
TJC10 | 79.26 ±8.62 a | 97.64 ± 1.66 a |
TJC18 | 45.61 ± 7.44 b | 97.00 ± 1.53 a |
TJC24 | 92.89 ± 6.15 a | 99.74 ± 0.35 a |
B. thuringiensis | ||
TJC2 | 80.14 ± 3.11 b | 95.35 ± 0.43 a |
TJC4 | 80.70 ± 8.83 a | 97.13 ± 1.35 a |
TJC20 | 100 ± 7.88 a | 94.56 ± 3.49 a |
TJC22 | 75.75 ± 6.41 a | 93.70 ± 2.42 a |
TJC25 | 77.03 ± 8.63 a | 96.76 ± 0.24 a |
S. enterica subsp. salamae | ||
TJC3 | 100 ± 3.48 a | 98.85 ± 0.65 a |
TJC5 | 78.38 ± 5.39 b | 98.43 ± 0 a |
TJC13 | 84.09 ± 3.21 b | 97.09 ± 0.82 a |
TJC19 | 98.08 ± 5.46 a | 98.20 ± 1.26 a |
TJC21 | 92.26 ± 6.56 a | 96.15 ± 4.35 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavone, V.; Argote-Vega, F.E.; Butt, W.; Molina-Hernandez, J.B.; Paludi, D.; Delgado-Ospina, J.; Valbonetti, L.; Pérez-Álvarez, J.Á.; Chaves-López, C. Antibiofilm Power of Basil Essential Oil Against Fish-Originated Multidrug-Resistant Salmonella and Bacillus spp.: Targeting Biofilms on Food Contact Surfaces. Foods 2025, 14, 1830. https://doi.org/10.3390/foods14101830
Pavone V, Argote-Vega FE, Butt W, Molina-Hernandez JB, Paludi D, Delgado-Ospina J, Valbonetti L, Pérez-Álvarez JÁ, Chaves-López C. Antibiofilm Power of Basil Essential Oil Against Fish-Originated Multidrug-Resistant Salmonella and Bacillus spp.: Targeting Biofilms on Food Contact Surfaces. Foods. 2025; 14(10):1830. https://doi.org/10.3390/foods14101830
Chicago/Turabian StylePavone, Valentina, Francisco Emilio Argote-Vega, Waleed Butt, Junior Bernardo Molina-Hernandez, Domenico Paludi, Johannes Delgado-Ospina, Luca Valbonetti, José Ángel Pérez-Álvarez, and Clemencia Chaves-López. 2025. "Antibiofilm Power of Basil Essential Oil Against Fish-Originated Multidrug-Resistant Salmonella and Bacillus spp.: Targeting Biofilms on Food Contact Surfaces" Foods 14, no. 10: 1830. https://doi.org/10.3390/foods14101830
APA StylePavone, V., Argote-Vega, F. E., Butt, W., Molina-Hernandez, J. B., Paludi, D., Delgado-Ospina, J., Valbonetti, L., Pérez-Álvarez, J. Á., & Chaves-López, C. (2025). Antibiofilm Power of Basil Essential Oil Against Fish-Originated Multidrug-Resistant Salmonella and Bacillus spp.: Targeting Biofilms on Food Contact Surfaces. Foods, 14(10), 1830. https://doi.org/10.3390/foods14101830