Normalization of Immune Response via Chondroitin Sulfate and Fucoidan Targeting N-Acetylgalactosaminidase
Abstract
1. Introduction
2. Nagalase
2.1. Nagalase as Biomarker
2.2. Nagalase Detection Methods
2.3. Nagalase as a Therapeutic Target
3. Heteropolysaccharides
3.1. Fucoidan
3.1.1. General Information About Fucoidan
3.1.2. Anticancer Effects of Fucoidan
3.1.3. Anti-Inflammatory Effects of Fucoidan
4. Glycosaminoglycans
4.1. Chondroitin Sulfate
4.1.1. General Information About Chondroitin Sulfate
4.1.2. Anticancer Effects of Chondroitin Sulfate
4.1.3. Anti-Inflammatory Effects of Chondroitin Sulfate
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BDNF | brain neurotrophic factor |
CAM | chorioallantoic membrane |
CNS | central nervous system |
CS | chondroitin sulfate |
EBV | Epstein-Barr virus |
FCS | fucosylated forms of chondroitin sulfate |
HPS | heteropolysaccharides |
KS | keratan sulfate |
LMWCS | low molecular weight chondroitin sulfate |
LMWH | low molecular weight heparins |
MAPK | mitogen-activated protein kinase |
NACS | non-animal chondroitin sulfate |
NF | nuclear factor |
NK | natural killer |
NO | nitric oxide |
TIMP | tissue metalloproteinase inhibitor |
TLR | toll-like receptors |
VDTP | vitamin D-binding protein |
VEGF | vascular endothelial growth factor |
References
- Kaczanowski, S. Apoptosis: Its Origin, History, Maintenance and the Medical Implications for Cancer and Aging. Phys. Biol. 2016, 13, 031001. [Google Scholar] [CrossRef]
- Valastyan, S.; Weinberg, R.A. Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell 2011, 147, 275–292. [Google Scholar] [CrossRef]
- Yilmaz, M.; Christofori, G. EMT, the Cytoskeleton, and Cancer Cell Invasion. Cancer Metastasis Rev. 2009, 28, 15–33. [Google Scholar] [CrossRef]
- Benhamou, Y.; Picco, V.; Pagès, G. The Telomere Proteins in Tumorigenesis and Clinical Outcomes of Oral Squamous Cell Carcinoma. Oral Oncol. 2016, 57, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Bakunina, I.; Chadova, O.; Malyarenko, O.; Ermakova, S. The Effect of Fucoidan from the Brown Alga Fucus Evanescence on the Activity of α-N-Acetylgalactosaminidase of Human Colon Carcinoma Cells. Mar. Drugs 2018, 16, 155. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Naraparaju, V.R.; Urade, M. Prognostic Utility of Serum Alpha-N-Acetylgalactosaminidase and Immunosuppression Resulted from Deglycosylation of Serum Gc Protein in Oral Cancer Patients. Cancer Res. 1997, 57, 295–299. [Google Scholar]
- Yamamoto, N.; Urade, M. Pathogenic Significance of Alpha-N-Acetylgalactosaminidase Activity Found in the Hemagglutinin of Influenza Virus. Microbes Infect. 2005, 7, 674–681. [Google Scholar] [CrossRef]
- Korbelik, M.; Naraparaju, V.R.; Yamamoto, N. The Value of Serum Alpha-N-Acetylgalactosaminidase Measurement for the Assessment of Tumour Response to Radio- and Photodynamic Therapy. Br. J. Cancer 1998, 77, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Zoga, M.; Nikou, T.; Ioannidis, A.; Tzavellas, E.; Paparrigopoulos, T.; Lambrokostopoulos, K.T.; Vasdekis, V.G.; Magana, M.; Chatzipanagiotou, S. Alteration of α-N-Acetylgalactosaminidase (Nagalase) Concentration in Alcohol-Dependent Individuals without Liver Disease, during the Detoxification Therapy. Drug Alcohol Depend. 2017, 170, 147–151. [Google Scholar] [CrossRef]
- Yamamoto, N.; Suyama, H.; Yamamoto, N. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF. Transl. Oncol. 2008, 1, 65–72. [Google Scholar] [CrossRef]
- Thyer, L.; Ward, E.; Smith, R.; Branca, J.J.; Morucci, G.; Gulisano, M.; Noakes, D.; Eslinger, R.; Pacini, S. GC Protein-Derived Macrophage-Activating Factor Decreases α-N-Acetylgalactosaminidase Levels in Advanced Cancer Patients. Oncoimmunology 2013, 2, e25769. [Google Scholar] [CrossRef]
- Saburi, E.; Tavakol-Afshari, J.; Biglari, S.; Mortazavi, Y. Is α-N-Acetylgalactosaminidase the Key to Curing Cancer? A Mini-Review and Hypothesis. J. BUON 2017, 22, 1372–1377. [Google Scholar]
- Zhu, A.; Wang, Z.-K.; Beavis, R. Structural Studies of α-N-Acetylgalactosaminidase: Effect of Glycosylation on the Level of Expression, Secretion Efficiency, and Enzyme Activity. Arch. Biochem. Biophys. 1998, 352, 1–8. [Google Scholar] [CrossRef]
- Garman, S.C.; Hannick, L.; Zhu, A.; Garboczi, D.N. The 1.9 Å Structure of α-N-Acetylgalactosaminidase: Molecular Basis of Glycosidase Deficiency Diseases. Structure 2002, 10, 425–434. [Google Scholar] [CrossRef]
- Wang, A.M.; Desnick, R.J. Structural Organization and Complete Sequence of the Human Alpha-N-Acetylgalactosaminidase Gene: Homology with the Alpha-Galactosidase A Gene Provides Evidence for Evolution from a Common Ancestral Gene. Genomics 1991, 10, 133–142. [Google Scholar] [CrossRef]
- Tsuji, S.; Yamauchi, T.; Hiraiwa, M.; Isobe, T.; Okuyama, T.; Sakimura, K.; Takahashi, Y.; Nishizawa, M.; Uda, Y.; Miyatake, T. Molecular Cloning of a Full-Length cDNA for Human α-N-Acetylgalactosaminidase (α-Galactosidase B). Biochem. Biophys. Res. Commun. 1989, 163, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Umemoto, J.; Bhavanandan, V.P.; Davidson, E.A. Purification and Properties of an Endo-Alpha-N-Acetyl-D-Galactosaminidase from Diplococcus pneumoniae. J. Biol. Chem. 1977, 252, 8609–8614. [Google Scholar] [CrossRef] [PubMed]
- Brockhausen, I.; Schachter, H.; Stanley, P. O-GalNAc Glycans. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2009; ISBN 978-0-87969-770-9. [Google Scholar]
- Schindler, D.; Bishop, D.F.; Wolfe, D.E.; Wang, A.M.; Egge, H.; Lemieux, R.U.; Desnick, R.J. Neuroaxonal Dystrophy Due to Lysosomal Alpha-N-Acetylgalactosaminidase Deficiency. N. Engl. J. Med. 1989, 320, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.M.; Schindler, D.; Desnick, R. Schindler Disease: The Molecular Lesion in the Alpha-N-Acetylgalactosaminidase Gene That Causes an Infantile Neuroaxonal Dystrophy. J. Clin. Investig. 1990, 86, 1752–1756. [Google Scholar] [CrossRef]
- Yamamoto, N. Pathogenic Significance of Alpha-N-Acetylgalactosaminidase Activity Found in the Envelope Glycoprotein Gp160 of Human Immunodeficiency Virus Type 1. AIDS Res. Hum. Retroviruses 2006, 22, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.E.; Metcalf, M.C.; Best, D.; Fleet, G.W.J.; Garman, S.C. Pharmacological Chaperones for Human α-N-Acetylgalactosaminidase. Proc. Natl. Acad. Sci. USA 2012, 109, 17400–17405. [Google Scholar] [CrossRef]
- Clark, N.E.; Garman, S.C. The 1.9 Å Structure of Human α-N-Acetylgalactosaminidase: The Molecular Basis of Schindler and Kanzaki Diseases. J. Mol. Biol. 2009, 393, 435–447. [Google Scholar] [CrossRef]
- Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodová, R.; Berka, K.; Bazgier, V.; Velankar, S.; Burley, S.K.; Koča, J.; Rose, A.S. Mol* Viewer: Modern Web App for 3D Visualization and Analysis of Large Biomolecular Structures. Nucleic Acids Res. 2021, 49, W431–W437. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, S.B.; Nagasawa, H.; Uto, Y.; Hori, H. Tumor Cell Alpha-N-Acetylgalactosaminidase Activity and Its Involvement in GcMAF-Related Macrophage Activation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 132, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Naraparaju, V.R.; Moore, M.; Brent, L.H. Deglycosylation of Serum Vitamin D3-Binding Protein by α-N-Acetylgalactosaminidase Detected in the Plasma of Patients with Systemic Lupus Erythematosus. Clin. Immunol. Immunopathol. 1997, 82, 290–298. [Google Scholar] [CrossRef]
- Reddi, A.L.; Sankaranarayanan, K.; Arulraj, H.S.; Devaraj, N.; Devaraj, H. Serum Alpha-N-Acetylgalactosaminidase Is Associated with Diagnosis/Prognosis of Patients with Squamous Cell Carcinoma of the Uterine Cervix. Cancer Lett. 2000, 158, 61–64. [Google Scholar] [CrossRef]
- De Vuyst, L.; Degeest, B. Heteropolysaccharides from Lactic Acid Bacteria. FEMS Microbiol. Rev. 1999, 23, 153–177. [Google Scholar] [CrossRef]
- Chen, D.; Wang, A.; Lv, J.; Tang, C.; Jin, C.-H.; Liu, J.; Zeng, X.; Wang, L. Structural and Digestive Characters of a Heteropolysaccharide Fraction from Tea (Camellia sinensis L.) Flower. Food Chem. X 2024, 21, 101058. [Google Scholar] [CrossRef]
- Ruthes, A.C.; Smiderle, F.R.; Iacomini, M. Mushroom Heteropolysaccharides: A Review on Their Sources, Structure and Biological Effects. Carbohydr. Polym. 2016, 136, 358–375. [Google Scholar] [CrossRef]
- Cosenza, V.A.; Navarro, D.A.; Ponce, N.M.A.; Stortz, C.A. Seaweed Polysaccharides: Structure and Applications. In Industrial Applications of Renewable Biomass Products: Past, Present and Future; Goyanes, S.N., D’Accorso, N.B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 75–116. ISBN 978-3-319-61288-1. [Google Scholar]
- Wang, T.; Zhu, M.; He, Z.-Z. Low-Molecular-Weight Fucoidan Attenuates Mitochondrial Dysfunction and Improves Neurological Outcome After Traumatic Brain Injury in Aged Mice: Involvement of Sirt3. Cell. Mol. Neurobiol. 2016, 36, 1257–1268. [Google Scholar] [CrossRef]
- Jin, J.-O.; Chauhan, P.S.; Arukha, A.P.; Chavda, V.; Dubey, A.; Yadav, D. The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles. Mar. Drugs 2021, 19, 265. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Manivasagan, P.; Venkatesan, J.; Kim, S.-K. Brown Seaweed Fucoidan: Biological Activity and Apoptosis, Growth Signaling Mechanism in Cancer. Int. J. Biol. Macromol. 2013, 60, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and Bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Wu, J. Fucoidan: Biological Activity in Liver Diseases. Am. J. Chin. Med. 2020, 48, 1617–1632. [Google Scholar] [CrossRef]
- Dimitrova-Shumkovska, J.; Krstanoski, L.; Veenman, L. Potential Beneficial Actions of Fucoidan in Brain and Liver Injury, Disease, and Intoxication—Potential Implication of Sirtuins. Mar. Drugs 2020, 18, 242. [Google Scholar] [CrossRef]
- Ponce, N.M.A.; Stortz, C.A. A Comprehensive and Comparative Analysis of the Fucoidan Compositional Data Across the Phaeophyceae. Front. Plant Sci. 2020, 11, 556312. [Google Scholar] [CrossRef]
- Luthuli, S.; Wu, S.; Cheng, Y.; Zheng, X.; Wu, M.; Tong, H. Therapeutic Effects of Fucoidan: A Review on Recent Studies. Mar. Drugs 2019, 17, 487. [Google Scholar] [CrossRef] [PubMed]
- Quitério, E.; Soares, C.; Ferraz, R.; Delerue-Matos, C.; Grosso, C. Marine Health-Promoting Compounds: Recent Trends for Their Characterization and Human Applications. Foods 2021, 10, 3100. [Google Scholar] [CrossRef] [PubMed]
- Percival, E. The Polysaccharides of Green, Red and Brown Seaweeds: Their Basic Structure, Biosynthesis and Function. Br. Phycol. J. 1979, 14, 103–117. [Google Scholar] [CrossRef]
- Bernhard, S.A.; Hammett, L.P. Specific Effects in Acid Catalysis by Ion Exchange Resins. II. Hydrolysis of Esters in Water Solution1. J. Am. Chem. Soc. 1953, 75, 5834–5835. [Google Scholar] [CrossRef]
- Wuts, P.G.M.; Greene, T.W. Greene’s Protective Groups in Organic Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-58932-8. [Google Scholar]
- Nishino, T.; Nishioka, C.; Ura, H.; Nagumo, T. Isolation and Partial Characterization of a Noval Amino Sugar-Containing Fucan Sulfate from Commercial Fucus Vesiculosus Fucoidan. Carbohydr. Res. 1994, 255, 213–224. [Google Scholar] [CrossRef]
- Zayed, A.; El-Aasr, M.; Ibrahim, A.-R.S.; Ulber, R. Fucoidan Characterization: Determination of Purity and Physicochemical and Chemical Properties. Mar. Drugs 2020, 18, 571. [Google Scholar] [CrossRef]
- Etman, S.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Fucoidan, a Natural Biopolymer in Cancer Combating: From Edible Algae to Nanocarrier Tailoring. Int. J. Biol. Macromol. 2020, 147, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Irhimeh, M.R.; Fitton, J.H.; Lowenthal, R.M.; Kongtawelert, P. A Quantitative Method to Detect Fucoidan in Human Plasma Using a Novel Antibody. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 705–710. [Google Scholar] [CrossRef]
- Michel, C.; Lahaye, M.; Bonnet, C.; Mabeau, S.; Barry, J.L. In vitro Fermentation by Human Faecal Bacteria of Total and Purified Dietary Fibres from Brown Seaweeds. Br. J. Nutr. 1996, 75, 263–280. [Google Scholar] [CrossRef]
- Lynch, M.B.; Sweeney, T.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. The Effect of Dietary Laminaria-Derived Laminarin and Fucoidan on Nutrient Digestibility, Nitrogen Utilisation, Intestinal Microflora and Volatile Fatty Acid Concentration in Pigs. J. Sci. Food Agric. 2010, 90, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Tokita, Y.; Nakajima, K.; Mochida, H.; Iha, M.; Nagamine, T. Development of a Fucoidan-Specific Antibody and Measurement of Fucoidan in Serum and Urine by Sandwich ELISA. Biosci. Biotechnol. Biochem. 2010, 74, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, K.; Takada, H.; Iha, M.; Nagamine, T. Attenuation of N-Nitrosodiethylamine-Induced Liver Fibrosis by High-Molecular-Weight Fucoidan Derived from Cladosiphon Okamuranus. J. Gastroenterol. Hepatol. 2010, 25, 1692–1701. [Google Scholar] [CrossRef]
- Bakhru, S.H.; Furtado, S.; Morello, A.P.; Mathiowitz, E. Oral Delivery of Proteins by Biodegradable Nanoparticles. Adv. Drug Deliv. Rev. 2013, 65, 811–821. [Google Scholar] [CrossRef]
- Nagamine, T.; Nakazato, K.; Tomioka, S.; Iha, M.; Nakajima, K. Intestinal Absorption of Fucoidan Extracted from the Brown Seaweed, Cladosiphon okamuranus. Mar. Drugs 2014, 13, 48–64. [Google Scholar] [CrossRef]
- Reid, S.N.S.; Ryu, J.; Kim, Y.; Jeon, B.H. The Effects of Fermented Laminaria Japonica on Short-Term Working Memory and Physical Fitness in the Elderly. Evid.-Based Complement. Altern. Med. 2018, 2018, 8109621. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Rajauria, G. Seaweed Nutraceuticals and Their Therapeutic Role in Disease Prevention. Food Sci. Hum. Wellness 2019, 8, 252–263. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.; Zeng, L.; Jin, J.-O. Rehmannia Glutinosa Polysaccharide Induced an Anti-Cancer Effect by Activating Natural Killer Cells. Int. J. Biol. Macromol. 2017, 105, 680–685. [Google Scholar] [CrossRef]
- Liu, S.; Yang, J.; Peng, X.; Li, J.; Zhu, C. The Natural Product Fucoidan Inhibits Proliferation and Induces Apoptosis of Human Ovarian Cancer Cells: Focus on the PI3K/Akt Signaling Pathway. Cancer Manag. Res. 2020, 12, 6195–6207. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Yang, C.; Lee, H.; Lee, B.-Y. Molecular Characteristics of Partially Hydrolyzed Fucoidans from Sporophyll of Undaria Pinnatifida and Their in Vitro Anticancer Activity. Food Chem. 2010, 119, 554–559. [Google Scholar] [CrossRef]
- Mak, W.; Wang, S.K.; Liu, T.; Hamid, N.; Li, Y.; Lu, J.; White, W.L. Anti-Proliferation Potential and Content of Fucoidan Extracted from Sporophyll of New Zealand Undaria pinnatifida. Front. Nutr. 2014, 1, 9. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Anastyuk, S.D.; Surits, V.V.; Shevchenko, N.M.; Thinh, P.D.; Zadorozhny, P.A.; Ermakova, S.P. Comparison of Structure and in vitro Anticancer Activity of Native and Modified Fucoidans from Sargassum feldmannii and S. duplicatum. Int. J. Biol. Macromol. 2019, 124, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Thinh, P.D.; Menshova, R.V.; Ermakova, S.P.; Anastyuk, S.D.; Ly, B.M.; Zvyagintseva, T.N. Structural Characteristics and Anticancer Activity of Fucoidan from the Brown Alga Sargassum Mcclurei. Mar. Drugs 2013, 11, 1456–1476. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Ishihara, T.; Nakamoto, H.; Amaha, T.; Osaki, T.; Tsuka, T.; Imagawa, T.; Minami, S.; Takashima, O.; Ifuku, S.; et al. Effects of Oral Administration of Fucoidan Extracted from Cladosiphon okamuranus on Tumor Growth and Survival Time in a Tumor-Bearing Mouse Model. Mar. Drugs 2012, 10, 2337–2348. [Google Scholar] [CrossRef]
- Cho, Y.; Yoon, J.-H.; Yoo, J.; Lee, M.; Lee, D.H.; Cho, E.J.; Lee, J.-H.; Yu, S.J.; Kim, Y.J.; Kim, C.Y. Fucoidan Protects Hepatocytes from Apoptosis and Inhibits Invasion of Hepatocellular Carcinoma by Up-Regulating P42/44 MAPK-Dependent NDRG-1/CAP43. Acta Pharm. Sin. B 2015, 5, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, P.; Wang, H.; Li, Q.; Teng, H.; Liu, Z.; Yang, W.; Hou, L.; Zou, X. Fucoidan Derived from Undaria Pinnatifida Induces Apoptosis in Human Hepatocellular Carcinoma SMMC-7721 Cells via the ROS-Mediated Mitochondrial Pathway. Mar. Drugs 2013, 11, 1961–1976. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, G.-Y.; Moon, S.-K.; Kim, W.J.; Yoo, Y.H.; Choi, Y.H. Fucoidan Inhibits the Proliferation of Human Urinary Bladder Cancer T24 Cells by Blocking Cell Cycle Progression and Inducing Apoptosis. Molecules 2014, 19, 5981–5998. [Google Scholar] [CrossRef]
- Park, H.Y.; Choi, I.-W.; Kim, G.-Y.; Kim, B.W.; Kim, W.-J.; Choi, Y.H. Fucoidan Induces G1 Arrest of the Cell Cycle in EJ Human Bladder Cancer Cells through Down-Regulation of pRB Phosphorylation. Rev. Bras. Farmacogn. 2015, 25, 246–251. [Google Scholar] [CrossRef]
- Han, M.H.; Lee, D.-S.; Jeong, J.-W.; Hong, S.-H.; Choi, I.-W.; Cha, H.-J.; Kim, S.; Kim, H.-S.; Park, C.; Kim, G.-Y.; et al. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway. Drug Dev. Res. 2017, 78, 37–48. [Google Scholar] [CrossRef]
- Huang, T.-H.; Chiu, Y.-H.; Chan, Y.-L.; Chiu, Y.-H.; Wang, H.; Huang, K.-C.; Li, T.-L.; Hsu, K.-H.; Wu, C.-J. Prophylactic Administration of Fucoidan Represses Cancer Metastasis by Inhibiting Vascular Endothelial Growth Factor (VEGF) and Matrix Metalloproteinases (MMPs) in Lewis Tumor-Bearing Mice. Mar. Drugs 2015, 13, 1882–1900. [Google Scholar] [CrossRef]
- Moreau, D.; Thomas-Guyon, H.; Jacquot, C.; Jugé, M.; Culioli, G.; Ortalo-Magné, A.; Piovetti, L.; Roussakis, C. An Extract from the Brown Alga Bifurcaria bifurcata Induces Irreversible Arrest of Cell Proliferation in a Non-Small-Cell Bronchopulmonary Carcinoma Line. J. Appl. Phycol. 2006, 18, 87–93. [Google Scholar] [CrossRef]
- Qiu, W.-L.; Tseng, A.-J.; Hsu, H.-Y.; Hsu, W.-H.; Lin, Z.-H.; Hua, W.-J.; Lin, T.-Y. Fucoidan Increased the Sensitivity to Gefitinib in Lung Cancer Cells Correlates with Reduction of TGFβ-Mediated Slug Expression. Int. J. Biol. Macromol. 2020, 153, 796–805. [Google Scholar] [CrossRef]
- Koyanagi, S.; Tanigawa, N.; Nakagawa, H.; Soeda, S.; Shimeno, H. Oversulfation of Fucoidan Enhances Its Anti-Angiogenic and Antitumor Activities. Biochem. Pharmacol. 2003, 65, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Boo, H.-J.; Hong, J.-Y.; Kim, S.-C.; Kang, J.-I.; Kim, M.-K.; Kim, E.-J.; Hyun, J.-W.; Koh, Y.-S.; Yoo, E.-S.; Kwon, J.-M.; et al. The Anticancer Effect of Fucoidan in PC-3 Prostate Cancer Cells. Mar. Drugs 2013, 11, 2982–2999. [Google Scholar] [CrossRef]
- Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; et al. Immunomodulatory and Anti-Inflammatory Effects of Fucoidan: A Review. Polymers 2020, 12, 2338. [Google Scholar] [CrossRef]
- Bhol, N.K.; Bhanjadeo, M.M.; Singh, A.K.; Dash, U.C.; Ojha, R.R.; Majhi, S.; Duttaroy, A.K.; Jena, A.B. The Interplay between Cytokines, Inflammation, and Antioxidants: Mechanistic Insights and Therapeutic Potentials of Various Antioxidants and Anti-Cytokine Compounds. Biomed. Pharmacother. 2024, 178, 117177. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-W.; Hwang, S.J.; Han, M.H.; Lee, D.-S.; Yoo, J.S.; Choi, I.-W.; Cha, H.-J.; Kim, S.; Kim, H.-S.; Kim, G.-Y.; et al. Fucoidan Inhibits Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Macrophages and Zebrafish Larvae. Mol. Cell. Toxicol. 2017, 13, 405–417. [Google Scholar] [CrossRef]
- Aleissa, M.S.; Alkahtani, S.; Abd Eldaim, M.A.; Ahmed, A.M.; Bungău, S.G.; Almutairi, B.; Bin-Jumah, M.; AlKahtane, A.A.; Alyousif, M.S.; Abdel-Daim, M.M. Fucoidan Ameliorates Oxidative Stress, Inflammation, DNA Damage, and Hepatorenal Injuries in Diabetic Rats Intoxicated with Aflatoxin B1. Oxid. Med. Cell. Longev. 2020, 2020, 9316751. [Google Scholar] [CrossRef]
- Menshova, R.V.; Shevchenko, N.M.; Imbs, T.I.; Zvyagintseva, T.N.; Malyarenko, O.S.; Zaporoshets, T.S.; Besednova, N.N.; Ermakova, S.P. Fucoidans from Brown Alga Fucus Evanescens: Structure and Biological Activity. Front. Mar. Sci. 2016, 3, 129. [Google Scholar] [CrossRef]
- Zhang, X.W.; Liu, Q.; Thorlacius, H. Inhibition of Selectin Function and Leukocyte Rolling Protects against Dextran Sodium Sulfate-Induced Murine Colitis. Scand. J. Gastroenterol. 2001, 36, 270–275. [Google Scholar] [CrossRef]
- Cumashi, A.; Ushakova, N.A.; Preobrazhenskaya, M.E.; D’Incecco, A.; Piccoli, A.; Totani, L.; Tinari, N.; Morozevich, G.E.; Berman, A.E.; Bilan, M.I.; et al. A Comparative Study of the Anti-Inflammatory, Anticoagulant, Antiangiogenic, and Antiadhesive Activities of Nine Different Fucoidans from Brown Seaweeds. Glycobiology 2007, 17, 541–552. [Google Scholar] [CrossRef]
- Ni, L.; Wang, L.; Fu, X.; Duan, D.; Jeon, Y.-J.; Xu, J.; Gao, X. In vitro and in vivo Anti-Inflammatory Activities of a Fucose-Rich Fucoidan Isolated from Saccharina japonica. Int. J. Biol. Macromol. 2020, 156, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Chieosilapatham, P.; Kiatsurayanon, C.; Umehara, Y.; Trujillo-Paez, J.V.; Peng, G.; Yue, H.; Nguyen, L.T.H.; Niyonsaba, F. Keratinocytes: Innate Immune Cells in Atopic Dermatitis. Clin. Exp. Immunol. 2021, 204, 296–309. [Google Scholar] [CrossRef]
- Kirindage, K.G.I.S.; Jayasinghe, A.M.K.; Cho, N.; Cho, S.H.; Yoo, H.M.; Fernando, I.P.S.; Ahn, G. Fine-Dust-Induced Skin Inflammation: Low-Molecular-Weight Fucoidan Protects Keratinocytes and Underlying Fibroblasts in an Integrated Culture Model. Mar. Drugs 2022, 21, 12. [Google Scholar] [CrossRef]
- Shi, D.; Sheng, A.; Chi, L. Glycosaminoglycan-Protein Interactions and Their Roles in Human Disease. Front. Mol. Biosci. 2021, 8, 639666. [Google Scholar] [CrossRef]
- Köwitsch, A.; Zhou, G.; Groth, T. Medical Application of Glycosaminoglycans: A Review. J. Tissue Eng. Regen. Med. 2018, 12, e23–e41. [Google Scholar] [CrossRef]
- Dymarska, M. Hyaluronic Acid. Structure, Properties and Uses Kwas Hialuronowy. Budowa, Właściwości i Zastosowanie. Chem. Rev. 2016, 1, 136–138. [Google Scholar] [CrossRef]
- Shriver, Z.; Capila, I.; Venkataraman, G.; Sasisekharan, R. Heparin and Heparan Sulfate: Analyzing Structure and Microheterogeneity. In Heparin-A Century of Progress; Lever, R., Mulloy, B., Page, C.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 159–176. ISBN 978-3-642-23056-1. [Google Scholar]
- Purushothaman, A.; Sugahara, K.; Faissner, A. Chondroitin Sulfate “Wobble Motifs” Modulate Maintenance and Differentiation of Neural Stem Cells and Their Progeny. J. Biol. Chem. 2012, 287, 2935–2942. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Sugahara, K. Potential Therapeutic Application of Chondroitin Sulfate/Dermatan Sulfate. Curr. Drug Discov. Technol. 2008, 5, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H. Paradigms in the Structural Biology of the Mitogenic Ternary Complex FGF:FGFR:Heparin. Biochimie 2016, 127, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, U.; Couchman, J.; Kimata, K.; Esko, J.D. Proteoglycans and Sulfated Glycosaminoglycans. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2015. [Google Scholar]
- Vallet, S.D.; Clerc, O.; Ricard-Blum, S. Glycosaminoglycan-Protein Interactions: The First Draft of the Glycosaminoglycan Interactome. J. Histochem. Cytochem. 2021, 69, 93–104. [Google Scholar] [CrossRef]
- Baranova, N.S.; Nilebäck, E.; Haller, F.M.; Briggs, D.C.; Svedhem, S.; Day, A.J.; Richter, R.P. The Inflammation-Associated Protein TSG-6 Cross-Links Hyaluronan via Hyaluronan-Induced TSG-6 Oligomers. J. Biol. Chem. 2011, 286, 25675–25686. [Google Scholar] [CrossRef]
- Taylor, K.R.; Gallo, R.L. Glycosaminoglycans and Their Proteoglycans: Host-Associated Molecular Patterns for Initiation and Modulation of Inflammation. FASEB J. 2006, 20, 9–22. [Google Scholar] [CrossRef]
- Luan, Z.-G.; Naranpurev, M.; Ma, X.-C. Treatment of Low Molecular Weight Heparin Inhibits Systemic Inflammation and Prevents Endotoxin-Induced Acute Lung Injury in Rats. Inflammation 2014, 37, 924–932. [Google Scholar] [CrossRef]
- Huynh, M.B.; Ouidja, M.O.; Chantepie, S.; Carpentier, G.; Maïza, A.; Zhang, G.; Vilares, J.; Raisman-Vozari, R.; Papy-Garcia, D. Glycosaminoglycans from Alzheimer’s Disease Hippocampus Have Altered Capacities to Bind and Regulate Growth Factors Activities and to Bind Tau. PLoS ONE 2019, 14, e0209573. [Google Scholar] [CrossRef]
- Cui, H.; Hung, A.C.; Klaver, D.W.; Suzuki, T.; Freeman, C.; Narkowicz, C.; Jacobson, G.A.; Small, D.H. Effects of Heparin and Enoxaparin on APP Processing and Aβ Production in Primary Cortical Neurons from Tg2576 Mice. PLoS ONE 2011, 6, e23007. [Google Scholar] [CrossRef]
- Mycroft-West, C.J.; Devlin, A.J.; Cooper, L.C.; Procter, P.; Miller, G.J.; Fernig, D.G.; Guerrini, M.; Guimond, S.E.; Lima, M.A.; Yates, E.A.; et al. Inhibition of BACE1, the β-Secretase Implicated in Alzheimer’s Disease, by a Chondroitin Sulfate Extract from Sardina Pilchardus. Neural Regen. Res. 2020, 15, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Garantziotis, S.; Brezina, M.; Castelnuovo, P.; Drago, L. The Role of Hyaluronan in the Pathobiology and Treatment of Respiratory Disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 310, L785–L795. [Google Scholar] [CrossRef] [PubMed]
- Valcarcel, J.; Novoa-Carballal, R.; Pérez-Martín, R.I.; Reis, R.L.; Vázquez, J.A. Glycosaminoglycans from Marine Sources as Therapeutic Agents. Biotechnol. Adv. 2017, 35, 711–725. [Google Scholar] [CrossRef]
- Lauder, R.M. Chondroitin Sulphate: A Complex Molecule with Potential Impacts on a Wide Range of Biological Systems. Complement. Ther. Med. 2009, 17, 56–62. [Google Scholar] [CrossRef]
- Mizumoto, S.; Yamada, S.; Sugahara, K. Molecular Interactions between Chondroitin–Dermatan Sulfate and Growth Factors/Receptors/Matrix Proteins. Curr. Opin. Struct. Biol. 2015, 34, 35–42. [Google Scholar] [CrossRef]
- Ewald, C.Y. Drug Screening Implicates Chondroitin Sulfate as a Potential Longevity Pill. Front. Aging 2021, 2, 741843. [Google Scholar] [CrossRef]
- Volpi, N. Analytical Aspects of Pharmaceutical Grade Chondroitin Sulfates. J. Pharm. Sci. 2007, 96, 3168–3180. [Google Scholar] [CrossRef] [PubMed]
- Urbi, Z.; Azmi, N.S.; Ming, L.C.; Hossain, M.S. A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application. Curr. Issues Mol. Biol. 2022, 44, 3905–3922. [Google Scholar] [CrossRef]
- Malavaki, C.; Mizumoto, S.; Karamanos, N.; Sugahara, K. Recent Advances in the Structural Study of Functional Chondroitin Sulfate and Dermatan Sulfate in Health and Disease. Connect. Tissue Res. 2008, 49, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Stick, R.V.; Williams, S. Carbohydrates: The Essential Molecules of Life; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 978-0-08-092702-2. [Google Scholar]
- Xu, H.; Zhou, Q.; Liu, B.; Chen, F.; Wang, M. Holothurian Fucosylated Chondroitin Sulfates and Their Potential Benefits for Human Health: Structures and Biological Activities. Carbohydr. Polym. 2022, 275, 118691. [Google Scholar] [CrossRef]
- Ustyuzhanina, N.E.; Bilan, M.I.; Dmitrenok, A.S.; Tsvetkova, E.A.; Nikogosova, S.P.; Hang, C.T.T.; Thinh, P.D.; Trung, D.T.; Van, T.T.T.; Shashkov, A.S.; et al. Fucose-Rich Sulfated Polysaccharides from Two Vietnamese Sea Cucumbers Bohadschia argus and Holothuria (Theelothuria) spinifera: Structures and Anticoagulant Activity. Mar. Drugs 2022, 20, 380. [Google Scholar] [CrossRef]
- Pomin, V.H. Holothurian Fucosylated Chondroitin Sulfate. Mar. Drugs 2014, 12, 232–254. [Google Scholar] [CrossRef]
- Wang, W.; Shi, L.; Qin, Y.; Li, F. Research and Application of Chondroitin Sulfate/Dermatan Sulfate-Degrading Enzymes. Front. Cell Dev. Biol. 2020, 8, 560442. [Google Scholar] [CrossRef]
- Sugahara, K.; Kitagawa, H. Recent Advances in the Study of the Biosynthesis and Functions of Sulfated Glycosaminoglycans. Curr. Opin. Struct. Biol. 2000, 10, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Maccarana, M.; Olander, B.; Malmström, J.; Tiedemann, K.; Aebersold, R.; Lindahl, U.; Li, J.-P.; Malmström, A. Biosynthesis of Dermatan Sulfate: Chondroitin-Glucuronate C5-Epimerase Is Identical to SART2. J. Biol. Chem. 2006, 281, 11560–11568. [Google Scholar] [CrossRef] [PubMed]
- Schiraldi, C.; Gatta, A.L.; Rosa, M.D.; Schiraldi, C.; Gatta, A.L.; Rosa, M.D. Biotechnological Production and Application of Hyaluronan. In Biopolymers; IntechOpen: London, UK, 2010; ISBN 978-953-307-109-1. [Google Scholar]
- Luo, X.; Fosmire, G.; Leach, R. Chicken Keel Cartilage as a Source of Chondroitin Sulfate. Poult. Sci. 2002, 81, 1086–1089. [Google Scholar] [CrossRef]
- Chen, S.; Xue, C.; Yin, L.; Tang, Q.; Yu, G.; Chai, W. Comparison of Structures and Anticoagulant Activities of Fucosylated Chondroitin Sulfates from Different Sea Cucumbers. Carbohydr. Polym. 2011, 83, 688–696. [Google Scholar] [CrossRef]
- Souza, A.R.C.; Kozlowski, E.O.; Cerqueira, V.R.; Castelo-Branco, M.T.L.; Costa, M.L.; Pavão, M.S.G. Chondroitin Sulfate and Keratan Sulfate Are the Major Glycosaminoglycans Present in the Adult Zebrafish Danio rerio (Chordata-Cyprinidae). Glycoconj. J. 2007, 24, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Galla, R.; Ruga, S.; Ferrari, S.; Saccone, S.; Saccuman, L.; Invernizzi, M.; Uberti, F. In Vitro Analysis of the Effects of Plant-Derived Chondroitin Sulfate from Intestinal Barrier to Chondrocytes. J. Funct. Foods 2022, 98, 105285. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Feng, D.; Xu, L.; Yin, F.; Zang, H.; Liu, C.; Wang, F. Preparation of Low Molecular Weight Chondroitin Sulfates, Screening of a High Anti-Complement Capacity of Low Molecular Weight Chondroitin Sulfate and Its Biological Activity Studies in Attenuating Osteoarthritis. Int. J. Mol. Sci. 2016, 17, 1685. [Google Scholar] [CrossRef] [PubMed]
- Valcarcel, J.; García, M.R.; Sampayo, L.F.; Vázquez, J.A. Marine Chondroitin Sulfate of Defined Molecular Weight by Enzymatic Depolymerization. Carbohydr. Polym. 2020, 229, 115450. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, Q.; Song, J.; Guo, R.; Ma, T.; Liu, Z.; Liu, Q. Intervention Effects of Low-Molecular-Weight Chondroitin Sulfate from the Nasal Cartilage of Yellow Cattle on Lipopolysaccharide-Induced Behavioral Disorders: Regulation of the Microbiome-Gut-Brain Axis. Front. Nutr. 2024, 11, 1371691. [Google Scholar] [CrossRef]
- Yang, S.-R.; Peng, S.; Ko, C.-Y.; Chu, I.-M. The Effects of Different Molecular Weight Chondroitin-4-Sulfates in Chondrocyte Pellet Culture. Cytotechnology 2016, 68, 371–379. [Google Scholar] [CrossRef]
- Volpi, N. Quality of Different Chondroitin Sulfate Preparations in Relation to Their Therapeutic Activity. J. Pharm. Pharmacol. 2009, 61, 1271–1280. [Google Scholar] [CrossRef]
- Xu, S.; Qiu, M.; Zhang, Q.; Wu, J.; Huimin, X.; Chen, J. Chain Structure and Immunomodulatory Activity of a Fructosylated Chondroitin from an Engineered Escherichia coli K4. Int. J. Biol. Macromol. 2019, 133, 702–711. [Google Scholar] [CrossRef]
- Badri, A.; Williams, A.; Awofiranye, A.; Datta, P.; Xia, K.; He, W.; Fraser, K.; Dordick, J.S.; Linhardt, R.J.; Koffas, M.A.G. Complete Biosynthesis of a Sulfated Chondroitin in Escherichia coli. Nat. Commun. 2021, 12, 1389. [Google Scholar] [CrossRef]
- Goldenzweig, A.; Goldsmith, M.; Hill, S.E.; Gertman, O.; Laurino, P.; Ashani, Y.; Dym, O.; Unger, T.; Albeck, S.; Prilusky, J.; et al. Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Mol. Cell 2016, 63, 337–346. [Google Scholar] [CrossRef]
- Rondanelli, M.; Braschi, V.; Gasparri, C.; Nichetti, M.; Faliva, M.A.; Peroni, G.; Naso, M.; Iannello, G.; Spadaccini, D.; Miraglia, N.; et al. Effectiveness of Non-Animal Chondroitin Sulfate Supplementation in the Treatment of Moderate Knee Osteoarthritis in a Group of Overweight Subjects: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Nutrients 2019, 11, 2027. [Google Scholar] [CrossRef]
- Kawai, K.; Kamochi, R.; Oiki, S.; Murata, K.; Hashimoto, W. Probiotics in Human Gut Microbiota Can Degrade Host Glycosaminoglycans. Sci. Rep. 2018, 8, 10674. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, M.; Dai, W.; Shang, Q.; Yu, G. Bacteroides Salyersiae Is a Potent Chondroitin Sulfate-Degrading Species in the Human Gut Microbiota. Microbiome 2024, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Yin, Y.; Zhu, L.; Li, G.; Yu, G.; Wang, X. Degradation of Chondroitin Sulfate by the Gut Microbiota of Chinese Individuals. Int. J. Biol. Macromol. 2016, 86, 112–118. [Google Scholar] [CrossRef]
- He, M.; Wang, J.; Hu, S.; Wang, Y.; Xue, C.; Li, H. The Effects of Fucosylated Chondroitin Sulfate Isolated from Isostichopus badionotus on Antimetastatic Activity via Down-Regulation of Hif-1α and Hpa. Food Sci. Biotechnol. 2014, 23, 1643–1651. [Google Scholar] [CrossRef]
- Borsig, L.; Wang, L.; Cavalcante, M.C.M.; Cardilo-Reis, L.; Ferreira, P.L.; Mourąo, P.A.S.; Esko, J.D.; Pavąo, M.S.G. Selectin Blocking Activity of a Fucosylated Chondroitin Sulfate Glycosaminoglycan from Sea Cucumber: Effect on Tumor Metastasis and Neutrophil Recruitment. J. Biol. Chem. 2007, 282, 14984–14991. [Google Scholar] [CrossRef]
- du Souich, P.; García, A.G.; Vergés, J.; Montell, E. Immunomodulatory and Anti-Inflammatory Effects of Chondroitin Sulphate. J. Cell. Mol. Med. 2009, 13, 1451–1463. [Google Scholar] [CrossRef] [PubMed]
- Volpi, N. Anti-Inflammatory Activity of Chondroitin Sulphate: New Functions from an Old Natural Macromolecule. Inflammopharmacology 2011, 19, 299–306. [Google Scholar] [CrossRef]
- Imada, K.; Oka, H.; Kawasaki, D.; Miura, N.; Sato, T.; Ito, A. Anti-Arthritic Action Mechanisms of Natural Chondroitin Sulfate in Human Articular Chondrocytes and Synovial Fibroblasts. Biol. Pharm. Bull. 2010, 33, 410–414. [Google Scholar] [CrossRef]
- Reginster, J.-Y.; Dudler, J.; Blicharski, T.; Pavelka, K. Pharmaceutical-Grade Chondroitin Sulfate Is as Effective as Celecoxib and Superior to Placebo in Symptomatic Knee Osteoarthritis: The ChONdroitin versus CElecoxib versus Placebo Trial (CONCEPT). Ann. Rheum. Dis. 2017, 76, 1537–1543. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. The History and Advances in Cancer Immunotherapy: Understanding the Characteristics of Tumor-Infiltrating Immune Cells and Their Therapeutic Implications. Cell. Mol. Immunol. 2020, 17, 807–821. [Google Scholar] [CrossRef]
- Kim, J.; Lee, B.J.; Moon, S.; Lee, H.; Lee, J.; Kim, B.-S.; Jung, K.; Seo, H.; Chung, Y. Strategies to Overcome Hurdles in Cancer Immunotherapy. Biomater. Res. 2024, 28, 0080. [Google Scholar] [CrossRef]
- Fayyaz, H.; Zaman, A.; Rafiq, W.; Murtaza, M.H.; Ullah, I.; Fayyaz, H.; Zaman, A.; Rafiq, W.; Murtaza, M.H.; Ullah, I. Immunosuppression in Infectious Diseases: Causes and Effects. In Innate Immunity-New Perspectives and Therapeutic Opportunities; IntechOpen: London, UK, 2024; ISBN 978-1-83634-127-7. [Google Scholar]
- Strzelec, M.; Detka, J.; Mieszczak, P.; Sobocińska, M.K.; Majka, M. Immunomodulation—A General Review of the Current State-of-the-Art and New Therapeutic Strategies for Targeting the Immune System. Front. Immunol. 2023, 14, 1127704. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Chen, L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 2018, 175, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Emi, M.; Tanabe, K. Cancer Immunosuppression and Autoimmune Disease: Beyond Immunosuppressive Networks for Tumour Immunity. Immunology 2006, 119, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Jung, K. Normalization of the Tumor Microenvironment by Harnessing Vascular and Immune Modulation to Achieve Enhanced Cancer Therapy. Exp. Mol. Med. 2023, 55, 2308–2319. [Google Scholar] [CrossRef]
- Khan, A.A.; Mannan, V.; Pervaiz, M.A.; Akram, A.; Momin, E.S.; Sanusi, M.; Kashyap, T.; Elshaikh, A.O. The Role of Glucosamine and Chondroitin Sulfate in the Prevention of Colorectal Cancer: A Systematic Review. Cureus 2022, 14, e25401. [Google Scholar] [CrossRef]
- Kantor, E.; Lampe, J.; Peters, U.; Shen, D.; Vaughan, T.; White, E. Use of Glucosamine and Chondroitin Supplements and Risk of Colorectal Cancer. Cancer Causes Control 2013, 24, 1137–1146. [Google Scholar] [CrossRef]
- Fred Hutchinson Cancer Center GLANCE 2—Glucosamine and Chondroitin (G&C) Effects Study. 2019. Available online: https://clinicaltrials.gov/study/NCT01682694 (accessed on 21 September 2025).
- Cao, L.-M.; Sun, Z.-X.; Makale, E.C.; Du, G.-K.; Long, W.-F.; Huang, H.-R. Antitumor Activity of Fucoidan: A Systematic Review and Meta-Analysis. Transl. Cancer Res. 2021, 10, 5390–5405. [Google Scholar] [CrossRef]
- Yue, Q.; Liu, Y.; Li, F.; Hong, T.; Guo, S.; Cai, M.; Zhao, L.; Su, L.; Zhang, S.; Zhao, C.; et al. Antioxidant and Anticancer Properties of Fucoidan Isolated from Saccharina japonica Brown Algae. Sci. Rep. 2025, 15, 8962. [Google Scholar] [CrossRef]
- Jin, J.-O.; Yadav, D.; Madhwani, K.; Puranik, N.; Chavda, V.; Song, M. Seaweeds in the Oncology Arena: Anti-Cancer Potential of Fucoidan as a Drug—A Review. Molecules 2022, 27, 6032. [Google Scholar] [CrossRef]
- Turrini, E.; Maffei, F.; Fimognari, C. Ten Years of Research on Fucoidan and Cancer: Focus on Its Antiangiogenic and Antimetastatic Effects. Mar. Drugs 2023, 21, 307. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.N.; Lobo, F.C.M.; Rodrigues, L.C.; Fernandes, E.M.; Williams, D.S.; Mearns-Spragg, A.; Sotelo, C.G.; Perez-Martín, R.I.; Reis, R.L.; Gelinsky, M.; et al. Advanced Polymeric Membranes as Biomaterials Based on Marine Sources Envisaging the Regeneration of Human Tissues. Gels 2023, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, N.; Ustyuzhanina, N.; Bilan, M.; Donenko, F.; Usov, A.; Kiselevskiy, M.; Nifantiev, N. Fucoidan and Fucosylated Chondroitin Sulfate Stimulate Hematopoiesis in Cyclophosphamide-Induced Mice. Mar. Drugs 2017, 15, 301. [Google Scholar] [CrossRef] [PubMed]
- Ustyuzhanina, N.E.; Anisimova, N.Y.; Bilan, M.I.; Donenko, F.V.; Morozevich, G.E.; Yashunskiy, D.V.; Usov, A.I.; Siminyan, N.G.; Kirgisov, K.I.; Varfolomeeva, S.R.; et al. Chondroitin Sulfate and Fucosylated Chondroitin Sulfate as Stimulators of Hematopoiesis in Cyclophosphamide-Induced Mice. Pharmaceuticals 2021, 14, 1074. [Google Scholar] [CrossRef] [PubMed]
- Nováková, E.; Zima, J.; Špaglová, M.; Labudová, M.; Šupolíková, M. Synergistic Antiproliferative Effects of Chondroitin Sulfate and Fucoidan in Tumor-Derived Spheroids: Insights From a 3D Cell Culture Approach. Eur. Pharm. J. 2025, 71, 25–33. [Google Scholar] [CrossRef]
- Yamamoto, N.; Kumashiro, R. Conversion of Vitamin D3 Binding Protein (Group-Specific Component) to a Macrophage Activating Factor by the Stepwise Action of Beta-Galactosidase of B Cells and Sialidase of T Cells. J. Immunol. 1993, 151, 2794–2802. [Google Scholar] [CrossRef]
- Kisker, O.; Onizuka, S.; Becker, C.M.; Fannon, M.; Flynn, E.; D’Amato, R.; Zetter, B.; Folkman, J.; Ray, R.; Swamy, N.; et al. Vitamin D Binding Protein-Macrophage Activating Factor (DBP-Maf) Inhibits Angiogenesis and Tumor Growth in Mice. Neoplasia 2003, 5, 32–40. [Google Scholar] [CrossRef]
- Koga, Y.; Naraparaju, V.R.; Yamamoto, N. Antitumor Effect of Vitamin D-Binding Protein-Derived Macrophage Activating Factor on Ehrlich Ascites Tumor-Bearing Mice. Proc. Soc. Exp. Biol. Med. 1999, 220, 20–26. [Google Scholar] [CrossRef]
- Fitton, J.H. Therapies from Fucoidan; Multifunctional Marine Polymers. Mar. Drugs 2011, 9, 1731. [Google Scholar] [CrossRef]
- Fonseca, R.J.C.; Mourão, P.A.S. Pharmacological Activities of Sulfated Fucose-Rich Polysaccharides after Oral Administration: Perspectives for the Development of New Carbohydrate-Based Drugs. Mar. Drugs 2021, 19, 425. [Google Scholar] [CrossRef]
- Martin-Martin, L.; Pierluigi, B.; La Medica, C.; Melis, G.; Nuvoli, G.; Piccinni, V.; Pietrapertosa, M.; Vincenti, M.; Vinicola, V. Randomized Observational Multicenter Study to Assess the Efficacy and Safety of the Association of Fortigel (10 Gr) and Fucoidan (100 Mg) in Patients with Gonarthrosis. Clin. Res. Trials 2016, 2, 253–257. [Google Scholar] [CrossRef]
- Miraglia, N.; Bianchi, D.; Trentin, A.; Volpi, N.; Soni, M.G. Safety Assessment of Non-Animal Chondroitin Sulfate Sodium: Subchronic Study in Rats, Genotoxicity Tests and Human Bioavailability. Food Chem. Toxicol. 2016, 93, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Volpi, N.; Mantovani, V.; Galeotti, F.; Bianchi, D.; Straniero, V.; Valoti, E.; Miraglia, N. Oral Bioavailability and Pharmacokinetics of Nonanimal Chondroitin Sulfate and Its Constituents in Healthy Male Volunteers. Clin. Pharmacol. Drug Dev. 2019, 8, 336–345. [Google Scholar] [CrossRef] [PubMed]
Parameter | LMW CS | HMW CS | Reference |
---|---|---|---|
Molecular Weight | 1–5 kDa | 10–100 kDa | [122] |
Receptor Binding Efficiency | High | Moderate to Low | [122] |
Anti-inflammatory Cytokine Secretion (IL-10, TGF-β) | Enhanced | Limited | [122] |
Pro-inflammatory Cytokine Reduction (IL-6, IL-1β, TNF-α) | Significant | Less Effective | [123] |
Contamination with Animal Proteins | Minimal, due to biofermentation | Possible, contains proteins and antigens | [122] |
Risk of Immunogenic Reactions | Low | Higher risk of allergies and immunological reactions | [124] |
Absorption in the Digestive Tract | Increased bioavailability, higher plasma levels (+44%) | Low bioavailability | [124] |
Applications | Immunotherapy, tissue regeneration, inflammation treatment | Chondroprotective agents, dietary supplements | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zima, J.; Nováková, E.; Špaglová, M.; Šupolíková, M. Normalization of Immune Response via Chondroitin Sulfate and Fucoidan Targeting N-Acetylgalactosaminidase. Sci. Pharm. 2025, 93, 47. https://doi.org/10.3390/scipharm93040047
Zima J, Nováková E, Špaglová M, Šupolíková M. Normalization of Immune Response via Chondroitin Sulfate and Fucoidan Targeting N-Acetylgalactosaminidase. Scientia Pharmaceutica. 2025; 93(4):47. https://doi.org/10.3390/scipharm93040047
Chicago/Turabian StyleZima, Jozef, Eva Nováková, Miroslava Špaglová, and Miroslava Šupolíková. 2025. "Normalization of Immune Response via Chondroitin Sulfate and Fucoidan Targeting N-Acetylgalactosaminidase" Scientia Pharmaceutica 93, no. 4: 47. https://doi.org/10.3390/scipharm93040047
APA StyleZima, J., Nováková, E., Špaglová, M., & Šupolíková, M. (2025). Normalization of Immune Response via Chondroitin Sulfate and Fucoidan Targeting N-Acetylgalactosaminidase. Scientia Pharmaceutica, 93(4), 47. https://doi.org/10.3390/scipharm93040047