Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = nanotransistor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2058 KiB  
Article
A Compact Device Model for a Piezoelectric Nano-Transistor
by L. Neil McCartney, Louise E. Crocker, Louise Wright and Ivan Rungger
Micromachines 2025, 16(2), 114; https://doi.org/10.3390/mi16020114 - 21 Jan 2025
Viewed by 798
Abstract
An approximate compact model was developed to provide a convenient method of exploring the initial design space when investigating the performance of micro-electronic devices such as nano-scaled piezoelectronic transistors, where fast ball-park estimates can be very helpful. First of all, the compact model [...] Read more.
An approximate compact model was developed to provide a convenient method of exploring the initial design space when investigating the performance of micro-electronic devices such as nano-scaled piezoelectronic transistors, where fast ball-park estimates can be very helpful. First of all, the compact model was verified by comparing its predictions with those of accurate axi-symmetric finite element analysis (FEA) using special boundary and interface conditions that enable the replication of the analytical model behaviour. Verification is achieved for a radio frequency (RF) switch and a smaller very-large-scale integrated (VLSI) device, where percentage differences between the compact and FEA model predictions are of the order 10−4 for the RF switch and 10−5 for the VLSI device. This confirms the consistency of complex property data (especially electro-thermo-elastic constants) and geometrical parameter input to both types of models and convincingly demonstrates that the analytical models and FEA for the two devices have been implemented correctly. A second type of boundary and interface condition is also used that is designed to replicate the actual behaviour of the devices in practice. The boundary and interface constraints applied for the verification procedure are relaxed so that there is perfect interface bonding between layers. For this unconstrained case, the resulting deformation is very complex, involving both bending effects and edge effects arising from property mismatches between neighbouring layers. The results for the RF switch show surprisingly good agreement between the predictions of the analytical and FEA results, provided the thickness of the piezoelectric layer is not too thick, implying that the analytical model should help to reduce the parameter design space for such devices. However, for the VLSI device, our results indicate that the compact model leads to much larger errors. For such systems, the compact model is unlikely to be able to reliably reduce the parameter design space, implying that accurate FEA will then need to be used. Full article
(This article belongs to the Special Issue Piezoelectric Devices and System in Micromachines)
Show Figures

Figure 1

19 pages, 1700 KiB  
Article
Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling
by Ulrich Wulf, Amanda Teodora Preda and George Alexandru Nemnes
Micromachines 2024, 15(10), 1270; https://doi.org/10.3390/mi15101270 - 19 Oct 2024
Cited by 1 | Viewed by 1161
Abstract
We study field effect nanotransistor devices in the Si/SiO2 material system which are based on lateral resonant tunneling between two parallel conduction channels. After introducing a simple piecewise linear potential model, we calculate the quantum transport properties in the R-matrix approach. In [...] Read more.
We study field effect nanotransistor devices in the Si/SiO2 material system which are based on lateral resonant tunneling between two parallel conduction channels. After introducing a simple piecewise linear potential model, we calculate the quantum transport properties in the R-matrix approach. In the transfer characteristics, we find a narrow resonant tunneling peak around zero control voltage. Such a narrow resonant tunneling peak allows one to switch the drain current with small control voltages, thus opening the way to low-energy applications. In contrast to similar double electron layer tunneling transistors that have been studied previously in III-V material systems with much larger channel lengths, the resonant tunneling peak in the drain current is found to persist at room temperature. We employ the R-matrix method in an effective approximation for planar systems and compare the analytical results with full numerical calculations. This provides a basic understanding of the inner processes pertaining to lateral tunneling transport. Full article
Show Figures

Figure 1

16 pages, 3407 KiB  
Article
Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics
by Khalil Tamersit, Abdellah Kouzou, José Rodriguez and Mohamed Abdelrahem
Nanomaterials 2024, 14(11), 962; https://doi.org/10.3390/nano14110962 - 1 Jun 2024
Cited by 5 | Viewed by 1688
Abstract
This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green’s function (NEGF) in [...] Read more.
This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green’s function (NEGF) in the ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical investigation comprehensively examines potential distribution, transfer characteristics, subthreshold swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications. Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize band diagrams and improve switching performance at ultra-scaled regimes is successfully presented. These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

6 pages, 1051 KiB  
Proceeding Paper
Hydrogel-Coated Nanonet-Based Field-Effect Transistors for SARS-CoV-2 Spike Protein Detection in High Ionic Strength Samples
by Alexandra Parichenko, Wonyeong Choi, Seonghwan Shin, Marlena Stadtmüller, Teuku Fawzul Akbar, Carsten Werner, Jeong-Soo Lee, Bergoi Ibarlucea and Gianaurelio Cuniberti
Eng. Proc. 2023, 35(1), 11; https://doi.org/10.3390/IECB2023-14566 - 8 May 2023
Cited by 1 | Viewed by 1217
Abstract
The SARS-CoV-2 pandemic has triggered many studies worldwide in the area of biosensors, leading to innovative approaches for the quantitative assessment of COVID-19. A nanostructured field-effect transistor (FET) is one type of device shown to be ultrasensitive for virus determination. FETs can be [...] Read more.
The SARS-CoV-2 pandemic has triggered many studies worldwide in the area of biosensors, leading to innovative approaches for the quantitative assessment of COVID-19. A nanostructured field-effect transistor (FET) is one type of device shown to be ultrasensitive for virus determination. FETs can be used as transducers to analyze changes in electrical current caused by the bonding of viral molecules to the surface of the semiconducting nanomaterial layer of the FETs. Although nano-transistors require simple setups amenable to be miniaturized for point-of-care diagnostic of COVID-19, this type of sensor usually has limited sensitivity in biological fluids. The reason behind this is the shortened screening length in the presence of high ionic strength solutions. In the frame of this study, we propose a methodology consisting of the FET surface modification with a hydrogel based on the star-shaped polyethylene glycol (starPEG), which hosts specific antibodies against SARS-CoV-2 spike protein in its porous structure. The deposition of the hydrogel increases the effective Debye length, preserving the biosensor’s sensitivity. We demonstrate the capability of silicon nanonet-based FETs to detect viral antigens and cultured viral particles in phosphate-buffered saline (PBS) as well as in human-purified saliva. Finally, we discriminated between positive and negative patients’ nasopharyngeal swab samples. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

13 pages, 8482 KiB  
Article
Double-Heterostructure Resonant Tunneling Transistors of Surface-Functionalized Sb and Bi Monolayer Nanoribbons
by Qi Gong and Guiling Zhang
Crystals 2023, 13(3), 379; https://doi.org/10.3390/cryst13030379 - 23 Feb 2023
Cited by 1 | Viewed by 1753
Abstract
Zigzag nanoribbons tailored from chemically surface-modified Sb or Bi monolayers by methyl, amino or hydroxyl are investigated through first-principles electronic-structure calculations to explore their potential applications in topological transport nanoelectronics. It is verified by Dirac-point-like energy dispersion of band-edges near Fermi level that [...] Read more.
Zigzag nanoribbons tailored from chemically surface-modified Sb or Bi monolayers by methyl, amino or hydroxyl are investigated through first-principles electronic-structure calculations to explore their potential applications in topological transport nanoelectronics. It is verified by Dirac-point-like energy dispersion of band-edges near Fermi level that the scattering-forbidden edge-states of these nanoribbons can give a topological conductive channel with extremely high electron mobility. Accordingly, Sb/SbXHn/Sb and Bi/BiXHn/Bi nanoribbon double-heterostructures (SbXHn or BiXHn: XHn = CH3, NH2, OH) are designed as resonant tunneling transistors and modeled by bipolar transport devices with their electron transport characteristics being calculated by nonequilibrium Green’s function combined first-principles schemes. Ballistic equilibrium conduction spectra and current-voltage characteristics prove that quantum conductance currents of these nanoribbon double heterostructures originate from the electron resonant tunneling between the topological edge-states of the two constituent Sb or Bi monolayer nanoribbons through the central barrier of SbXHn or BiXHn nanoribbon segment. This renders a high resonant current peak with strong negative differential conductance, thus being competent for zero-loss and ultrahigh-frequency resonant tunneling nanotransistors. Full article
(This article belongs to the Special Issue Recent Advances in Graphene and Other Two-Dimensional Materials)
Show Figures

Figure 1

9 pages, 1062 KiB  
Article
Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform
by Rohitkumar Shailendra Singh, Katsuyuki Takagi, Toru Aoki, Jong Hyun Moon, Yoichiro Neo, Futoshi Iwata, Hidenori Mimura and Daniel Moraru
Materials 2022, 15(14), 4935; https://doi.org/10.3390/ma15144935 - 15 Jul 2022
Cited by 7 | Viewed by 2745
Abstract
Carbon nanotubes (CNTs) are ultimately small structures, attractive for future nanoelectronics. CNT-bundles on Si nanostructures can offer an alternative pathway to build hybrid CMOS-compatible devices. To develop a simple method of using such CNT-bundles as transistor channels, we fabricated semiconductor single-walled CNT field-effect [...] Read more.
Carbon nanotubes (CNTs) are ultimately small structures, attractive for future nanoelectronics. CNT-bundles on Si nanostructures can offer an alternative pathway to build hybrid CMOS-compatible devices. To develop a simple method of using such CNT-bundles as transistor channels, we fabricated semiconductor single-walled CNT field-effect transistors using inkjet printing on a CMOS-compatible platform. We investigated a method of producing stable CNT solutions without surfactants, allowing for CNT debundling and dispersion. An inkjet-printing system disperses CNT-networks with ultimately low density (down to discrete CNT-bundles) in Al source-drain gaps of transistors. Despite the small number of networks and random positions, such CNT-bundles provide paths to the flow current. For enhanced controllability, we also demonstrate the manipulation of CNT-networks using an AFM technique. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

16 pages, 538 KiB  
Article
An Electron Waveguide Model for FDSOI Transistors
by Ulrich Wulf
Solids 2022, 3(2), 203-218; https://doi.org/10.3390/solids3020014 - 15 Apr 2022
Cited by 2 | Viewed by 2732
Abstract
We extend our previous semi-empirical model for quantum transport in a conventional nano-MOSFET to FDSOI transistors. In ultra-thin-body and -BOX (UTBB) FDSOI transistors, the electron channel can be treated as an electron waveguide. In the abrupt transition approximation, it is possible to derive [...] Read more.
We extend our previous semi-empirical model for quantum transport in a conventional nano-MOSFET to FDSOI transistors. In ultra-thin-body and -BOX (UTBB) FDSOI transistors, the electron channel can be treated as an electron waveguide. In the abrupt transition approximation, it is possible to derive an analytical approximation for the potential seen by the charge carriers. With these approximations we calculate the threshold voltage and the transfer characteristics, finding remarkably good agreement with experiments in the OFF-state given the relative simplicity of our model. In the ON-state, our theory fails because Coulomb interaction between the free charge carriers and the device heating is neglected in our approach. Full article
(This article belongs to the Special Issue Solids in Europe)
Show Figures

Figure 1

6 pages, 219 KiB  
Communication
Concentration Sensitivity of Nucleic Acid and Protein Molecule Detection Using Nanowire Biosensors
by Yuri D. Ivanov, Vadim Yu. Tatur, Alexander V. Glukhov and Vadim S. Ziborov
Biophysica 2021, 1(3), 328-333; https://doi.org/10.3390/biophysica1030024 - 14 Aug 2021
Viewed by 2771
Abstract
The concentration detection limit (DL) of biomacromolecules attainable using a nanowire detector has become a topical issue. A DL of 10−15 M is required to reveal oncological and infectious diseases at an early stage. This study discusses the DL experimentally attainable in [...] Read more.
The concentration detection limit (DL) of biomacromolecules attainable using a nanowire detector has become a topical issue. A DL of 10−15 M is required to reveal oncological and infectious diseases at an early stage. This study discusses the DL experimentally attainable in the subfemtomolar concentration range, and possible mechanisms explaining such a low-concentration DL through the cooperative effect of biomacromolecular complexes formed on the surface of the nanowire (NW) chip near the nanowire. Full article
42 pages, 9756 KiB  
Review
Quantum Transport in a Silicon Nanowire FET Transistor: Hot Electrons and Local Power Dissipation
by Antonio Martinez and John R. Barker
Materials 2020, 13(15), 3326; https://doi.org/10.3390/ma13153326 - 26 Jul 2020
Cited by 8 | Viewed by 5190
Abstract
A review and perspective is presented of the classical, semi-classical and fully quantum routes to the simulation of electro-thermal phenomena in ultra-scaled silicon nanowire field-effect transistors. It is shown that the physics of ultra-scaled devices requires at least a coupled electron quantum transport [...] Read more.
A review and perspective is presented of the classical, semi-classical and fully quantum routes to the simulation of electro-thermal phenomena in ultra-scaled silicon nanowire field-effect transistors. It is shown that the physics of ultra-scaled devices requires at least a coupled electron quantum transport semi-classical heat equation model outlined here. The importance of the local density of states (LDOS) is discussed from classical to fully quantum versions. It is shown that the minimal quantum approach requires self-consistency with the Poisson equation and that the electronic LDOS must be determined within at least the self-consistent Born approximation. To bring in this description and to provide the energy resolved local carrier distributions it is necessary to adopt the non-equilibrium Green function (NEGF) formalism, briefly surveyed here. The NEGF approach describes quantum coherent and dissipative transport, Pauli exclusion and non-equilibrium conditions inside the device. There are two extremes of NEGF used in the community. The most fundamental is based on coupled equations for the Green functions electrons and phonons that are computed at the atomically resolved level within the nanowire channel and into the surrounding device structure using a tight binding Hamiltonian. It has the advantage of treating both the non-equilibrium heat flow within the electron and phonon systems even when the phonon energy distributions are not described by a temperature model. The disadvantage is the grand challenge level of computational complexity. The second approach, that we focus on here, is more useful for fast multiple simulations of devices important for TCAD (Technology Computer Aided Design). It retains the fundamental quantum transport model for the electrons but subsumes the description of the energy distribution of the local phonon sub-system statistics into a semi-classical Fourier heat equation that is sourced by the local heat dissipation from the electron system. It is shown that this self-consistent approach retains the salient features of the full-scale approach. For focus, we outline our electro-thermal simulations for a typical narrow Si nanowire gate all-around field-effect transistor. The self-consistent Born approximation is used to describe electron-phonon scattering as the source of heat dissipation to the lattice. We calculated the effect of the device self-heating on the current voltage characteristics. Our fast and simpler methodology closely reproduces the results of a more fundamental compute-intensive calculations in which the phonon system is treated on the same footing as the electron system. We computed the local power dissipation and “local lattice temperature” profiles. We compared the self-heating using hot electron heating and the Joule heating, i.e., assuming the electron system was in local equilibrium with the potential. Our simulations show that at low bias the source region of the device has a tendency to cool down for the case of the hot electron heating but not for the case of Joule heating. Our methodology opens the possibility of studying thermoelectricity at nano-scales in an accurate and computationally efficient way. At nano-scales, coherence and hot electrons play a major role. It was found that the overall behaviour of the electron system is dominated by the local density of states and the scattering rate. Electrons leaving the simulated drain region were found to be far from equilibrium. Full article
(This article belongs to the Special Issue Nanowire Field-Effect Transistor (FET))
Show Figures

Figure 1

11 pages, 3331 KiB  
Article
Study of Silicon Nitride Inner Spacer Formation in Process of Gate-all-around Nano-Transistors
by Junjie Li, Yongliang Li, Na Zhou, Wenjuan Xiong, Guilei Wang, Qingzhu Zhang, Anyan Du, Jianfeng Gao, Zhenzhen Kong, Hongxiao Lin, Jinjuan Xiang, Chen Li, Xiaogen Yin, Xiaolei Wang, Hong Yang, Xueli Ma, Jianghao Han, Jing Zhang, Tairan Hu, Zhe Cao, Tao Yang, Junfeng Li, Huaxiang Yin, Huilong Zhu, Jun Luo, Wenwu Wang and Henry H. Radamsonadd Show full author list remove Hide full author list
Nanomaterials 2020, 10(4), 793; https://doi.org/10.3390/nano10040793 - 20 Apr 2020
Cited by 42 | Viewed by 14909
Abstract
Stacked SiGe/Si structures are widely used as the units for gate-all-around nanowire transistors (GAA NWTs) which are a promising candidate beyond fin field effective transistors (FinFETs) technologies in near future. These structures deal with a several challenges brought by the shrinking of device [...] Read more.
Stacked SiGe/Si structures are widely used as the units for gate-all-around nanowire transistors (GAA NWTs) which are a promising candidate beyond fin field effective transistors (FinFETs) technologies in near future. These structures deal with a several challenges brought by the shrinking of device dimensions. The preparation of inner spacers is one of the most critical processes for GAA nano-scale transistors. This study focuses on two key processes: inner spacer film conformal deposition and accurate etching. The results show that low pressure chemical vapor deposition (LPCVD) silicon nitride has a good film filling effect; a precise and controllable silicon nitride inner spacer structure is prepared by using an inductively coupled plasma (ICP) tool and a new gas mixtures of CH2F2/CH4/O2/Ar. Silicon nitride inner spacer etch has a high etch selectivity ratio, exceeding 100:1 to Si and more than 30:1 to SiO2. High anisotropy with an excellent vertical/lateral etch ratio exceeding 80:1 is successfully demonstrated. It also provides a solution to the key process challenges of nano-transistors beyond 5 nm node. Full article
(This article belongs to the Special Issue Plasma Based Nanomaterials and Their Applications)
Show Figures

Figure 1

25 pages, 425 KiB  
Article
A One-Dimensional Effective Model for Nanotransistors in Landauer–Büttiker Formalism
by Ulrich Wulf
Micromachines 2020, 11(4), 359; https://doi.org/10.3390/mi11040359 - 30 Mar 2020
Cited by 12 | Viewed by 4642
Abstract
In a series of publications, we developed a compact model for nanotransistors in which quantum transport in a variety of industrial nano-FETs was described quantitatively. The compact nanotransistor model allows for the extraction of important device parameters as the effective height of the [...] Read more.
In a series of publications, we developed a compact model for nanotransistors in which quantum transport in a variety of industrial nano-FETs was described quantitatively. The compact nanotransistor model allows for the extraction of important device parameters as the effective height of the source-drain barrier, device heating, and the quality of the coupling between conduction channel and the contacts. Starting from a basic description of quantum transport in a multi-terminal device in Landauer–Büttiker formalism, we give a detailed derivation of all relevant formulas necessary to construct our compact nanotransistor model. Here we make extensive use of the the R-matrix method. Full article
(This article belongs to the Special Issue Miniaturized Transistors, Volume II)
Show Figures

Figure 1

17 pages, 358 KiB  
Article
Channel Engineering for Nanotransistors in a Semiempirical Quantum Transport Model
by Ulrich Wulf, Jan Kučera, Hans Richter, Manfred Horstmann, Maciej Wiatr and Jan Höntschel
Mathematics 2017, 5(4), 68; https://doi.org/10.3390/math5040068 - 22 Nov 2017
Cited by 5 | Viewed by 5771
Abstract
One major concern of channel engineering in nanotransistors is the coupling of the conduction channel to the source/drain contacts. In a number of previous publications, we have developed a semiempirical quantum model in quantitative agreement with three series of experimental transistors. On the [...] Read more.
One major concern of channel engineering in nanotransistors is the coupling of the conduction channel to the source/drain contacts. In a number of previous publications, we have developed a semiempirical quantum model in quantitative agreement with three series of experimental transistors. On the basis of this model, an overlap parameter 0 C 1 can be defined as a criterion for the quality of the contact-to-channel coupling: A high level of C means good matching between the wave functions in the source/drain and in the conduction channel associated with a low contact-to-channel reflection. We show that a high level of C leads to a high saturation current in the ON-state and a large slope of the transfer characteristic in the OFF-state. Furthermore, relevant for future device miniaturization, we analyze the contribution of the tunneling current to the total drain current. It is seen for a device with a gate length of 26 nm that for all gate voltages, the share of the tunneling current becomes small for small drain voltages. With increasing drain voltage, the contribution of the tunneling current grows considerably showing Fowler–Nordheim oscillations. In the ON-state, the classically allowed current remains dominant for large drain voltages. In the OFF-state, the tunneling current becomes dominant. Full article
Show Figures

Figure 1

29 pages, 1108 KiB  
Review
Atomistic Studies of Mechanical Properties of Graphene
by Guoxin Cao
Polymers 2014, 6(9), 2404-2432; https://doi.org/10.3390/polym6092404 - 22 Sep 2014
Cited by 173 | Viewed by 15870
Abstract
Recent progress of simulations/modeling at the atomic level has led to a better understanding of the mechanical behaviors of graphene, which include the linear elastic modulus E, the nonlinear elastic modulus D, the Poisson’s ratio ν, the intrinsic strength σ [...] Read more.
Recent progress of simulations/modeling at the atomic level has led to a better understanding of the mechanical behaviors of graphene, which include the linear elastic modulus E, the nonlinear elastic modulus D, the Poisson’s ratio ν, the intrinsic strength σint and the corresponding strain εint as well as the ultimate strain εmax (the fracture strain beyond which the graphene lattice will be unstable). Due to the two-dimensional geometric characteristic, the in-plane tensile response and the free-standing indentation response of graphene are the focal points in this review. The studies are based on multiscale levels: including quantum mechanical and classical molecular dynamics simulations, and parallel continuum models. The numerical studies offer useful links between scientific research with engineering application, which may help to fulfill graphene potential applications such as nano sensors, nanotransistors, and other nanodevices. Full article
(This article belongs to the Special Issue Computational Chemistry)
Show Figures

Graphical abstract

14 pages, 671 KiB  
Article
Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs
by Jia-Hong Zhang, Qing-An Huang, Hong Yu and Shuang-Ying Lei
Sensors 2009, 9(4), 2746-2759; https://doi.org/10.3390/s90402746 - 17 Apr 2009
Cited by 10 | Viewed by 15320
Abstract
In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET) pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress [...] Read more.
In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET) pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors. Full article
Show Figures

Back to TopTop