Concentration Sensitivity of Nucleic Acid and Protein Molecule Detection Using Nanowire Biosensors
Abstract
:1. Introduction
2. Concentration Sensitivity Limit of Nanowire Detection
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patolsky, F.; Zheng, G.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C.M. Electrical Detection of Single Viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022. [Google Scholar] [CrossRef] [Green Version]
- Popov, V.P.; Antonova, A.I.; Frantsuzov, A.A.; Safronov, L.N.; Feofanov, G.N.; Naumova, O.V.; Kilanov, D.V. Properties of Silicon-on-Insulator Structures and Devices. Semiconductors 2001, 35, 1030–1037. [Google Scholar] [CrossRef]
- Gao, X.P.A.; Zheng, G.; Lieber, C.M. Subthreshold Regime Has the Optimal Sensitivity for Nanowire FET Biosensors. Nano Lett. 2010, 10, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Hahm, J.; Lieber, C.M. Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Lett. 2004, 4, 51–54. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kozlov, A.F.; Romanova, T.S.; Shumov, I.D.; Popov, V.P.; Tikhonenko, F.V.; Glukhov, A.V.; Smirnov, A.Y.; et al. SOI-Nanowire Biosensor for the Detection of Glioma-Associated MiRNAs in Plasma. Chemosensors 2020, 8, 95. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Pleshakova, T.O.; Malsagova, K.A.; Kozlov, A.F.; Kaysheva, A.L.; Shumov, I.D.; Galiullin, R.A.; Kurbatov, L.K.; Popov, V.P.; Naumova, O.V.; et al. Detection of Marker MiRNAs in Plasma Using SOI-NW Biosensor. Sens. Actuat. B Chem. 2018, 261, 566–571. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Pleshakova, T.O.; Kozlov, A.F.; Malsagova, K.A.; Krohin, N.V.; Shumyantseva, V.V.; Shumov, I.D.; Popov, V.P.; Naumova, O.V.; Fomin, B.I.; et al. SOI Nanowire for the High-Sensitive Detection of HBsAg and α-Fetoprotein. Lab Chip Miniat. Chem. Biol. 2012, 12, 5104–5111. [Google Scholar] [CrossRef] [PubMed]
- Malsagova, K.A.; Ivanov, Y.D.; Pleshakova, T.O.; Kaysheva, A.L.; Shumov, I.D.; Kozlov, A.F.; Archakov, A.I.; Popov, V.P.; Fomin, B.I.; Latyshev, A.V. A SOI-Nanowire Biosensor for the Multiple Detection of D-NFATc1 Protein in the Serum. Anal. Methods 2015, 7, 8078–8085. [Google Scholar] [CrossRef]
- Biagioni, P.; Farahani, J.N.; Mühlschlegel, P.; Eisler, H.-J.; Pohl, D.W.; Hecht, B. A simple method for producing flattened atomic force microscopy tips. Rev. Sci. Instrum. 2008, 79, 016103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- АТОМНО-СИЛОВАЯ СПЕКТРОСКОПИЯ ОДИНОЧНЫХ ВИРУСНЫХ ЧАСТИЦ И ИХ СУБЪЕДИНИЦ. Available online: https://www.bio.msu.ru/res/Dissertation/754/DOC_FILENAME/Korneev_avtoref.pdf (accessed on 25 July 2021).
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays. Nat. Biotechnol. 2005, 23, 1294. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Gao, A.; Dai, P.; Mao, H.; Zuo, X.; Fan, C.; Wang, Y.; Li, T. Ultrasensitive Detection of Dual Cancer Biomarkers with Integrated CMOS-Compatible Nanowire Arrays. Anal. Chem. 2015, 87, 11203–11208. [Google Scholar] [CrossRef]
- Elfström, N.; Juhasz, R.; Sychugov, I.; Engfeldt, T.; Karlström, A.E.; Linnros, J. Surface Charge Sensitivity of Silicon Nanowires: Size Dependence. Nano Lett. 2007, 7, 2608–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.; Hideshima, S.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Label-Free Detection of Tumor Markers Using Field Effect Transistor (FET)-Based Biosensors for Lung Cancer Diagnosis. Sens. Actuat. B Chem. 2015, 212, 329–334. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-Molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Pershin, S.M. Quantum differences of ortho and para spin isomers of H2O as a physical basis of anomalous properties of water. Nanostructures Math. Phys. Model. 2012, 7, 103–120. [Google Scholar]
- Pershin, S.M. Ortho/para conversion of H2O in water and a step change in the “fluidity” of erythrocytes through a microcapillary at a temperature of 36.6 ± 0.3 °C. In Proceedings of the Selected Works of the “Weak and Super Weak Fields and Radiation in Biology and Medicine” V International Congress, Saint Petersburg, Russia, 29 June–3 July 2009; pp. 89–99. [Google Scholar]
- Pershin, S.M. The Konovalov effect in aqueous solutions at low concentrations: The role of spin orto-para H2O isomers. Rep. Acad. Sci. 2014, 455, 44–47. [Google Scholar]
- Zheng, G.; Wexler, A.; Pollack, G.H. Effect of buffers on aqueous solute-exclusion zones around ion-exchange resins. J. Coll. Interface Sci. 2009, 332, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Yoo, H.; Paraji, R.; Pollack, G.H. Impact of Hydrophilic Surfaces on Interfacial Water Dynamics Probed with NMR Spectroscopy. J. Phys. Chem. Lett. 2011, 2, 532. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.D.; Malsagova, K.A.; Vesnin, S.G.; Tatur, V.Y.; Ivanova, N.D.; Ziborov, V.S. The Registration of a Biomaser-Like Effect in an Enzyme System with an RTM Sensor. J. Sens. 2019, 2019, 7608512. [Google Scholar] [CrossRef] [Green Version]
- Archakov, A.I.; Ivanov, Y.D.; Lisitsa, A.V.; Zgoda, V.G. AFM fishing nanotechnology is the way to reverse the Avogadro number in proteomics. Proteomics 2007, 7, 4–9. [Google Scholar] [CrossRef]
- Pleshakova, T.O.; Shumov, I.D.; Ivanov, Y.D.; Malsagova, K.A.; Kaysheva, A.L.; Archakov, A.I. AFM-Based technologies as the way towards the reverse Avogadro number. Biochem. Suppl. Ser. B Biomed. Chem. 2015, 9, 244–257. [Google Scholar] [CrossRef]
- Li, J.; He, G.; Ueno, H.; Jia, C.; Noji, H.; Qi, C.; Guo, X. Direct real-time detection of single proteins using silicon nanowire-based electrical circuits. Nanoscale 2016, 8, 16172–16176. [Google Scholar] [CrossRef] [PubMed]
- Archakov, A.I.; Ivanov, Y.D.; Lisitsa, A.V.; Zgoda, V.G. Biospecific irreversible fishing coupled with atomic force microscopy fordetection of extremely low-abundant proteins. Proteomics 2009, 9, 1326–1343. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.Y.; Tuccori, E.; Magliulo, M.; Lattanzi, G.; Palazzo, G.; Persaud, K.; Torsi, L. Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat. Commun. 2015, 6, 6010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, Y.D.; Tatur, V.Y.; Glukhov, A.V.; Ziborov, V.S. Concentration Sensitivity of Nucleic Acid and Protein Molecule Detection Using Nanowire Biosensors. Biophysica 2021, 1, 328-333. https://doi.org/10.3390/biophysica1030024
Ivanov YD, Tatur VY, Glukhov AV, Ziborov VS. Concentration Sensitivity of Nucleic Acid and Protein Molecule Detection Using Nanowire Biosensors. Biophysica. 2021; 1(3):328-333. https://doi.org/10.3390/biophysica1030024
Chicago/Turabian StyleIvanov, Yuri D., Vadim Yu. Tatur, Alexander V. Glukhov, and Vadim S. Ziborov. 2021. "Concentration Sensitivity of Nucleic Acid and Protein Molecule Detection Using Nanowire Biosensors" Biophysica 1, no. 3: 328-333. https://doi.org/10.3390/biophysica1030024
APA StyleIvanov, Y. D., Tatur, V. Y., Glukhov, A. V., & Ziborov, V. S. (2021). Concentration Sensitivity of Nucleic Acid and Protein Molecule Detection Using Nanowire Biosensors. Biophysica, 1(3), 328-333. https://doi.org/10.3390/biophysica1030024