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Abstract: The SARS-CoV-2 pandemic has triggered many studies worldwide in the area of biosensors,
leading to innovative approaches for the quantitative assessment of COVID-19. A nanostructured
field-effect transistor (FET) is one type of device shown to be ultrasensitive for virus determination.
FETs can be used as transducers to analyze changes in electrical current caused by the bonding
of viral molecules to the surface of the semiconducting nanomaterial layer of the FETs. Although
nano-transistors require simple setups amenable to be miniaturized for point-of-care diagnostic
of COVID-19, this type of sensor usually has limited sensitivity in biological fluids. The reason
behind this is the shortened screening length in the presence of high ionic strength solutions. In the
frame of this study, we propose a methodology consisting of the FET surface modification with a
hydrogel based on the star-shaped polyethylene glycol (starPEG), which hosts specific antibodies
against SARS-CoV-2 spike protein in its porous structure. The deposition of the hydrogel increases
the effective Debye length, preserving the biosensor’s sensitivity. We demonstrate the capability of
silicon nanonet-based FETs to detect viral antigens and cultured viral particles in phosphate-buffered
saline (PBS) as well as in human-purified saliva. Finally, we discriminated between positive and
negative patients’ nasopharyngeal swab samples.

Keywords: COVID-9 diagnostics; SARS-CoV-2 detection; hydrogel biosensor; field-effect transistor;
Debye screening length; starPEG

1. Introduction

As an alternative to the standard techniques of Covid-19 [1] diagnostics, novel minia-
turized electronic devices have been introduced for rapid detection even in asymptomatic
carriers of the virus or in individuals with low viral load. Miniaturization of electro-
chemical techniques was demonstrated by several studies using commercially available
screen-printed electrodes and small-footprinted potentiostats, where authors performed the
measurements with either immunosandwich assays with labeled secondary antibodies [2]
or redox mediators [3] to provide the electrical signal. Alternative electronic biosensing
devices are field-effect transistors (FETs). They sense even minor alterations in the electrical
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signal caused by simple biorecognition events without the need for redox mediators or
receptors labeled with electroactive tags.

A number of FET-based biosensors have already been reported for the detection of
SARS-CoV-2 antigens [4,5]. FETs based on silicon nanowires are known to have excel-
lent sensitivity [6,7]. However, they are also known for their severe limitation based on
the Debye length screening distance when immersed in high ionic strength samples [8].
As a result, the conductivity changes caused by the binding of target pathogens to the
bioreceptors may not be detected by the biosensor. A promising solution to this problem
was found via surface chemistry by the co-deposition of the dielectric polyethylene glycol
(PEG) on the surface of the FET [9]. However, two-dimensional surface modification ap-
proaches still suffer from certain disadvantages compared to three-dimensional ones, such
as limited interaction kinetics between the surface and the sample and possible instability
of the bioreceptors. The incorporation of PEG and antibodies as a three-dimensional
fluid-like environment in the form of hydrogels introduces a new way of FET-based
biosensing where the effective Debye length is increased, offering an increased degree
of receptor-analyte interaction and a higher degree of surface protection from undesired
non-specific interactions.

In this contribution, we demonstrate antibody–antigen binding transduction in high
ionic strength using PEG-based hydrogels as host environments for the receptors and
nanomaterial-based FETs as transducers. Specifically, we used the star-shaped PEG
hydrogel where antibodies against the spike protein of the novel coronavirus (SARS-
CoV-2) are hosted. Silicon nanonet-based FETs were used to perform spike protein de-
tection in spiked buffer, spiked saliva, cultured viral solutions, and real samples from
nasopharyngeal swabs.

2. Results and Discussion

The used FETs consist of microfabricated electrodes with a silicon nanonet with lateral
distances of 100 nm at the interconnects (Figure 1a) covered with the starPEG-based
hydrogel. The hydrogel deposition resulted in the formation of a receptor molecule hosting
platform homogeneously distributed on top of the FETs gate electrode and the regions with
the nanonet. The homogeneous shaping of the hydrogel layer with a thickness of ca. 35 µm
(Figure 1b) was achieved due to the pressure from the applied glass slide.
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Figure 1. FET characterization: (a) optical microscopy of unmodified FETs and SEM magnification of
the sensing area, and (b) hydrogel-modified FET and its 3D profile.

During the FETs transfer characteristics recording the drain-source current Ids was
monitored, while the gate voltage Vg of the devices was swept with applied constant
source-to-drain potential Vds equal to 0.1 V. After each incubation of the samples on
the biosensing platform with increasing concentrations of spike protein receptor binding
domain (RBD) (from 5 pg mL−1 to 50 ng mL−1) in PBS (Figure 2a), the signal was measured
in pure PBS. Significant concentration dependency of the transfer curve was observed
(Figure 2a,b). The FET-based biosensor covered with hydrogel showed a sensitivity of
30 mV ± 5.7 mV to a ten-fold increase of spike protein concentration in PBS. The voltage
shift direction is in agreement with the theoretical isoelectric point of 3.9 and negative net
charge at pH 7.4 (z = −1.483) for the amino acid sequence of the RBD (region 480–499:
cngvegfncyfplqsygfqp). In comparison, the performance in a diluted buffer demonstrated
similar sensitivity to the antigens concentration changes (31 mV ± 3.5 mV). These results
suggest that the hydrogel layer on top of the FETs preserves the sensitivity of the device
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in high ionic strength solutions. Non-specific interactions of the sensor were discarded by
exposing the hydrogel to human IgG (Figure 2b).
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Figure 2. Electrical measurements results: (a) Biosensor response on different concentrations of SARS-
CoV-2 RBD dissolved in PBS. (b) Dependency of the gate voltage shift on antigens concentration in
PBS and diluted phosphate buffer (5 mM), with error bars indicating the standard deviation of three
different sensors. (c) The gate voltage shift dependency (with error bars as the standard deviation of
three sensor measurements) on corresponding antigen concentration dissolved in purified saliva.

Purified saliva spiked with RBD was used to assess the capability of the biosensor to
detect the presence of COVID-19 pathogens in complex biological fluids. Although recorded
I–V curves demonstrated clear dependence on the antigen concentration (Figure 2c), the
achieved sensitivity was smaller in comparison to those obtained in PBS (20 mV ± 9 mV
to ten-fold increase of RBD concentration). Our assumption is that the reason for this is
the higher viscosity of human saliva in comparison to PBS, which could lead to a reduced
diffusion of the molecules and, therefore, a diminished interaction between the target
and bioreceptors.

Before measuring patients’ samples, we analyzed samples of cultured viruses to con-
firm that spike protein was detectable after inactivation. Incubation of the hydrogel layer
with heat-deactivated samples (80 ◦C for 1 h [10]) led to consistent signals with clear de-
pendence of the FETs gate voltage shift on the virus concentration (Figure 3a). Further
measurements with heat-inactivated samples of COVID-19-positive (CT value 15.8) and
negative patients proved the capability of the device to identify the presence of the virus
in a realistic clinical scenario (Figure 3b). The I–V curve recorded after incubation with
the negative sample overlapped with the baseline originated from a measurement with
only PBS, while the incubation with COVID-19 positive sample resulted in a significant
shift of the signal (105 mV). Additionally, the transfer characteristics of the biosensor were
also recorded for different dilutions of heat-inactivated viral samples from nasopharyn-
geal swabs (Figure 3c). All three devices used for the measurements demonstrated a
clear dependence on the FETs gate voltage shift on the concentration of the inactivated
viral samples.
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3. Conclusions

In the frame of this study, we demonstrated the capability to use FETs coated with
the starPEG-heparin hydrogel-containing antibodies for direct SARS-CoV-2 detection in
high ionic strength solutions. This was proven by consecutive incubation of the biosensing
hydrogel platform with different concentrations of spike protein RBDs dissolved in PBS
solution, and the observation of the I–V curves shift to more positive values after each
incubation-washing cycle. Thus, we confirmed the dependency of the signal on the target
protein concentration in the analyzed liquid samples. Additionally, it was possible to
sense the change of the RBD concentration on femtomolar levels in diluted and undiluted
buffer, overcoming the Debye length limitation. The biosensor was able to perform the
detection in femtomolar levels of the analyte in both conditions, high and low ionic strength,
demonstrating the ultrasensitivity required for early diagnostics. Successful results by
spiking human purified saliva showed the potential use of such fluid as a non-invasive
source, offering an alternative to the uncomfortable nasopharyngeal swab. Finally, real
samples in the form of cultured viruses could be measured, and nasopharyngeal swabs
from healthy and sick patients could be discriminated. However, to achieve a quantitative
result with saliva and real samples with high viral load, sample dilution would be beneficial
due to the sensor signal saturation.

All in all, we showed the suitability of pegylated hydrogels as a new method to
overcome the Debye length problem in samples with high ionic strength, providing the
advantages of such hydrogels to protect the sensor surface from non-specific adsorption
and preserve the activity of antibodies. Further improvement may be necessary to avoid
saturation of the device after incubation with highly concentrated samples. The opportunity
to quantitatively measure the virus concentration by this biosensor may be helpful for
obtaining an overview of the infection and disease situation. In addition, the biosensor can
be used as a rapid early test to avoid overloading medical facilities, additionally, in view of
future epidemics or pandemics, by adjusting the hydrogel composition according to the
needs of other receptors and target biomarkers.

4. Methods
4.1. Silicon Nanonet-Based Field-Effect Transistor Fabrication

KrF photolithography and inductively coupled plasma reactive ion etching was used
as a highly reproducible method to define the active region on silicon-on-insulator wafers
with a 100 nm top Si layer (p-type, 10 Ω·cm, (100)) and a 400 nm buried oxide layer. The
source and drain regions were formed by arsenic ion implantation with a dose concentration
of 5 × 1015 cm−2. A 5 nm oxide was grown as a gate insulator by rapid thermal annealing
at 1000 ◦C for 20 s. The contact pads, source/drain transmission lines, and gate electrodes
were formed using an I-line stepper and a lift-off process. Finally, a SU-8 passivation
layer was formed on the entire surface except for the contact pads, channel, and reference
electrode regions.

4.2. Hydrogel Preparation and Deposition

StarPEG-heparin hydrogel was prepared via Michael addition reaction, where PEG-
thiol reacted with heparin maleimide 6 in the presence of the antibodies against SARS-CoV-2
RBD epitope (480–499). Details can be found in ref. [11]. The final mixture was drop cast
on top of the FETs for in situ gelation. A glass slide was put on top for 60 min in order to
achieve a homogeneous and flat surface. Finally, the glass slide was removed, and the gel
was hydrated using PBS.

4.3. Optical Microscopy and Thickness Estimation

Optical microscopy of the hydrogel layer was done using a digital microscope (VHX-7000,
Keyence Deutschland, Neu-Isenburg, Germany). The layer of star-PEG-heparin was visualized
on top of the FET chip surface. The scanning mode of the microscope provided a 3D profile to
estimate the thickness of the hydrogel after the deposition procedure described above.



Eng. Proc. 2023, 35, 11 5 of 6

4.4. Virus Culture and Deactivation

Virus isolates were obtained from nasopharyngeal swabs of anonymous patients. The
swab sample was filtered through a 0.2 µM filter and then added to Vero E6 cells cultured
in DMEM GlutaMAX supplemented with 10% fetal bovine serum, 1% non-essential amino
acids, and 1% penicillin/streptomycin. The virus was harvested upon the destruction of
the cell layer. The supernatant was cleared by centrifugation to remove cell debris. Passage
two of any isolate was used for experiments. Virus stocks were inactivated by heating
for 1 h at 80 ◦C.

4.5. Electrical Measurements

All I–V curves with FETs were obtained using a source measure unit (2604B, Keithley
Instruments, Germering, Germany) in a probe station with micropositioners for electrical
connection. For the biosensing response, the hydrogel-FET was incubated for 15 min
with 4 µL of the target solution. Every incubation step was followed by washing in pure
PBS in order to remove unbounded antigens and other possible molecules or cell debris.
Measurements were taken after each incubation-washing cycle using either a drop of PBS
(4 µL) as a high ionic strength solution or a drop of the same volume of 5 mM sodium
phosphate buffer as a low ionic strength solution.
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