Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = nano-immunotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3179 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 - 2 Aug 2025
Viewed by 190
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
Show Figures

Figure 1

26 pages, 3269 KiB  
Review
ROS-Responsive Nanoplatforms for Targeted Tumor Immunomodulation: A Paradigm Shift in Precision Cancer Immunotherapy
by Yuan-Yuan Fan, Hong Wu and Chuan Xu
Pharmaceutics 2025, 17(7), 886; https://doi.org/10.3390/pharmaceutics17070886 - 5 Jul 2025
Viewed by 535
Abstract
Despite remarkable advancements in cancer immunotherapy, its clinical efficacy remains constrained in solid tumors due to the immunosuppressive tumor microenvironment (TME). Reactive oxygen species (ROS), which exhibit dual regulatory roles in the TME by regulating immunogenic cell death (ICD) and reprogramming immune cell [...] Read more.
Despite remarkable advancements in cancer immunotherapy, its clinical efficacy remains constrained in solid tumors due to the immunosuppressive tumor microenvironment (TME). Reactive oxygen species (ROS), which exhibit dual regulatory roles in the TME by regulating immunogenic cell death (ICD) and reprogramming immune cell functionality, have emerged as a pivotal therapeutic target. Nano-enabled drug delivery systems present distinct advantages for TME modulation due to their structural versatility, tumor-specific targeting precision, and spatiotemporally controlled drug release. In particular, ROS-responsive nanoplatforms demonstrate multifaceted immunomodulatory potential by synergistically restoring ICD and remodeling immunosuppressive immune cell phenotypes within the TME. These platforms further amplify the therapeutic outcomes of conventional modalities including chemotherapy, radiotherapy, and photodynamic therapy (PDT) through ROS-mediated sensitization mechanisms. This review comprehensively examines recent breakthroughs in ROS-responsive nanosystems for antitumor immunotherapy, emphasizing their mechanistic interplay with TME components and clinical translation potential. Herein, we provide a framework for developing integrated therapeutic strategies to overcome the current limitations in cancer immunotherapy. Full article
(This article belongs to the Special Issue ROS-Mediated Nano Drug Delivery for Antitumor Therapy)
Show Figures

Figure 1

21 pages, 5329 KiB  
Article
Development of Immune-Regulatory Pseudo-Protein-Coated Iron Oxide Nanoparticles for Enhanced Treatment of Triple-Negative Breast Tumor
by Ying Ji, Juan Li, Li Ma, Zhijie Wang, Bochu Du, Hiu Yee Kwan, Zhaoxiang Bian and Chih-Chang Chu
Nanomaterials 2025, 15(13), 1006; https://doi.org/10.3390/nano15131006 - 30 Jun 2025
Viewed by 460
Abstract
Triple-negative breast cancer (TNBC) frequently evades immune recognition and elimination, resulting in an immunosuppressive microenvironment. The phagocytic activity of tumor-associated macrophages underscores the development of nanomaterials as a promising strategy to target these macrophages and modulate their polarization, thereby advancing immunotherapy against TNBC. [...] Read more.
Triple-negative breast cancer (TNBC) frequently evades immune recognition and elimination, resulting in an immunosuppressive microenvironment. The phagocytic activity of tumor-associated macrophages underscores the development of nanomaterials as a promising strategy to target these macrophages and modulate their polarization, thereby advancing immunotherapy against TNBC. This research developed functional polymers that are complexed with therapeutic molecules as a coating strategy for iron oxide nanoparticles. An arginine-based poly (ester urea urethane) polymer complexed with a macrophage-polarizing molecule (APU-R848) could provide a synergistic effect with iron oxide nanoparticles (IONPs) to stimulate the M1-polarization of macrophages at the tumor site, resulting in a versatile nano-platform for immune regulation of TNBC. In the 4T1 in vivo breast tumor model, the APU-R848-IONPs demonstrated an improved intratumoral biodistribution compared to IONPs without a polymer coating. APU-R848-IONPs significantly reversed the immune-suppressive tumor environment by reducing the M2/M1 macrophage phenotype ratio by 51%, associated with an elevated population of cytotoxic T cells and a significantly enhanced production of tumoricidal cytokines. The activated immune response induced by APU-R848-IONP resulted in a significant anti-tumor effect, demonstrating an efficacy that was more than 3.2-fold more efficient compared to the controls. These immune-regulatory pseudo-protein-coated iron oxide nanoparticles represent an effective nano-strategy for macrophages’ regulation and the activation of anti-tumor immunity, providing a new treatment modality for triple-negative breast cancer. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

25 pages, 2067 KiB  
Review
Revolutionizing Cancer Vaccine: The Power of Advanced Nanotechnology
by Saranya Udayakumar, Shangavy Pandiarajan, Devadass Jessy Mercy, Jayaprakash Suresh, Jashwanth Raj Jagadeesh kumar, Agnishwar Girigoswami and Koyeli Girigoswami
Chemistry 2025, 7(3), 97; https://doi.org/10.3390/chemistry7030097 - 13 Jun 2025
Viewed by 1029
Abstract
Developing an effective vaccine that is safer is the main focus in the field of cancer immunotherapy. Among other therapeutic approaches, cancer nanovaccination is formulated to deliver tumor adjuvant or antigen to the antigen-presenting cells (APCs) to prevent cancer relapse and metastasis. It [...] Read more.
Developing an effective vaccine that is safer is the main focus in the field of cancer immunotherapy. Among other therapeutic approaches, cancer nanovaccination is formulated to deliver tumor adjuvant or antigen to the antigen-presenting cells (APCs) to prevent cancer relapse and metastasis. It has shown excellent efficacy in inhibiting cancer growth. Herein, we discussed various forms of nanovaccines, including lipid-based nanovaccines, metal-based nanovaccines, carbon nanotube-based nanovaccines, PLGA-based nanovaccines, exosome-based nanovaccines, dendritic cell-based nanovaccines, and self-adjuvant nanovaccines in cancer immunotherapy, including their therapeutic effect. We expect that the investigated content will provide a valuable reference for future research and the development of nanovaccines for cancer treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

21 pages, 2429 KiB  
Article
Phospholipid-Rich DC-Vesicles with Preserved Immune Fingerprints: A Stable and Scalable Platform for Precision Immunotherapy
by Ramon Gutierrez-Sandoval, Francisco Gutierrez-Castro, Natalia Muñoz-Godoy, Ider Rivadeneira, Adolay Sobarzo, Luis Alarcón, Wilson Dorado, Andy Lagos, Diego Montenegro, Ignacio Muñoz, Rodrigo Aguilera, Jordan Iturra, Francisco Krakowiak, Cristián Peña-Vargas and Andres Toledo
Biomedicines 2025, 13(6), 1299; https://doi.org/10.3390/biomedicines13061299 - 26 May 2025
Cited by 2 | Viewed by 988
Abstract
Despite the progress in cancer immunotherapy, therapeutic responses in solid tumors remain suboptimal due to the immunosuppressive nature of the tumor microenvironment (TME), limited immune cell infiltration, and inefficient delivery of immune-activating agents. Dendritic cell-based therapies possess strong immunological potential but face challenges [...] Read more.
Despite the progress in cancer immunotherapy, therapeutic responses in solid tumors remain suboptimal due to the immunosuppressive nature of the tumor microenvironment (TME), limited immune cell infiltration, and inefficient delivery of immune-activating agents. Dendritic cell-based therapies possess strong immunological potential but face challenges in viability, standardization, and scalability. Likewise, exosomes and CAR-T cells are hindered by instability, production complexity, and limited efficacy in immune-excluded tumor settings. Objective: This study evaluates dendritic cell-derived vesicles (DC-Vesicles), embedded in a phospholipid-rich structural scaffold, as a multi-functional and scalable platform for immune modulation and therapeutic delivery. We aimed to assess their structural stability, immune marker preservation under clinical processing conditions, and potential to reprogram the TME. Methods and Results: DC-Vesicles were generated and analyzed using bottom-up proteomics via nanoLC–MS/MS on a timsTOF Pro 2 system under three conditions: fresh, concentrated, and cryopreserved. A consistent proteomic profile of over 400 proteins was identified, with cryopreserved samples retaining >90% of immune-relevant markers. Differential expression analysis confirmed stability of key immunological proteins such as HLA-A, QSOX1, ICAM1, NAMPT, TIGAR, and Galectin-9. No significant degradation was observed post-cryopreservation. Visualization through heatmaps, PCA, and volcano plots supported inter-condition consistency. In silico modeling suggested preserved capacity for M1 macrophage polarization and CD8+ T cell activation. Conclusions: DC-Vesicles demonstrate structural resilience and functional retention across storage conditions. Their cold-chain-independent compatibility, immune-targeting profile, and potential regulatory classification as Non-New Chemical Entities (NCEs) support their advancement as candidates for precision immunotherapy in resistant solid tumors. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

25 pages, 814 KiB  
Review
Nanoparticles for Glioblastoma Treatment
by Dorota Bartusik-Aebisher, Kacper Rogóż and David Aebisher
Pharmaceutics 2025, 17(6), 688; https://doi.org/10.3390/pharmaceutics17060688 - 23 May 2025
Cited by 1 | Viewed by 798
Abstract
GBM is the most common and aggressive primary brain tumor in adults, characterized by low survival rates, high recurrence, and resistance to conventional therapies. Traditional diagnostic and therapeutic methods remain limited due to the difficulty in permeating the blood–brain barrier (BBB), diffuse tumor [...] Read more.
GBM is the most common and aggressive primary brain tumor in adults, characterized by low survival rates, high recurrence, and resistance to conventional therapies. Traditional diagnostic and therapeutic methods remain limited due to the difficulty in permeating the blood–brain barrier (BBB), diffuse tumor cell infiltration, and tumor heterogeneity. In recent years, nano-based technologies have emerged as innovative approaches for the detection and treatment of GBM. A wide variety of nanocarriers, including dendrimers, liposomes, metallic nanoparticles, carbon nanotubes, carbon dots, extracellular vesicles, and many more demonstrate the ability to cross the BBB, precisely deliver therapeutic agents, and enhance the effects of radiotherapy and immunotherapy. Surface functionalization, peptide modification, and cell membrane coating improve the targeting capabilities of nanostructures toward GBM cells and enable the exploitation of their photothermal, magnetic, and optical properties. Furthermore, the development of miRNA nanosponge systems offers the simultaneous inhibition of multiple tumor growth mechanisms and the modulation of the immunosuppressive tumor microenvironment. This article presents current advancements in nanotechnology for GBM, with a particular focus on the characteristics and advantages of specific groups of nanoparticles, including their role in radiosensitization. Full article
(This article belongs to the Special Issue Nano-Based Technology for Glioblastoma)
Show Figures

Figure 1

22 pages, 6198 KiB  
Article
Small Extracellular Vesicle (sEV) Uptake from Lung Adenocarcinoma and Squamous Cell Carcinoma Alters T-Cell Cytokine Expression and Modulates Protein Profiles in sEV Biogenesis
by Hafiza Padinharayil, Jinsu Varghese, Pulikkottil Raphael Varghese, Cornelia M. Wilson and Alex George
Proteomes 2025, 13(2), 15; https://doi.org/10.3390/proteomes13020015 - 23 Apr 2025
Viewed by 1111
Abstract
Background: Despite advances in immunotherapy, non-small-cell lung carcinoma (NSCLC)’s clinical success is limited, possibly due to substantial immunological alterations in advanced cancer patients. This study examines the immunomodulatory effects of sEVs derived from lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) on T [...] Read more.
Background: Despite advances in immunotherapy, non-small-cell lung carcinoma (NSCLC)’s clinical success is limited, possibly due to substantial immunological alterations in advanced cancer patients. This study examines the immunomodulatory effects of sEVs derived from lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) on T cells. Methods: SEVs were isolated from lung cancer cell lines and Jurkat-E6.1. SEV size and morphology were analyzed by NTA and TEM, respectively, while Western blotting confirmed sEV markers. SEV uptake was assessed, followed by resazurin assay, RNA isolation, quantification, cDNA preparation, RT-PCR, nano LC-MS, and bioinformatic analysis, before and after treating Jurkat-E6.1 cells with sEVs from A549 and SKMES1. Results: Cancer-derived sEVs were efficiently internalized by immune cells, reducing T-cell viability. The real-time PCR analysis showed downregulation of KI67, BCL2, BAX, TNFA, IL6, TGFβ, and IL10, suggesting reduced proliferation, dysregulated apoptosis, and impaired inflammatory and immunosuppressive signaling, and the upregulation of GZMB and IL2 suggests retained cytotoxic potential but possibly dysfunctional T-cell activation. Proteomic analysis revealed 39 differentially abundant proteins (DAPs) in ADC-treated T cells and 276 in SCC-treated T cells, with 19 shared DAPs. Gene Ontology (GO) analysis of these DAPs highlighted processes such as sEV biogenesis, metabolic pathways, and regulatory functions, with ADC sEVs influencing NAD metabolism, ECM binding, and oxidoreductase activity, while SCC sEVs affected mRNA stability, amino acid metabolism, and cadherin binding. The cytoplasmic colocalization suggests the presence of these proteins in the cellular and extracellular lumen, indicating the potential of further release of these proteins in the vesicles by T cells. Conclusion: Lung cancer-derived sEVs regulate T-cell activities through immunoregulatory signaling. The molecular interactions between sEVs and immune cells can reveal novel tumor immune regulatory mechanisms and therapeutic targets. Full article
Show Figures

Figure 1

31 pages, 2026 KiB  
Review
Tumor Treatment by Nano-Photodynamic Agents Embedded in Immune Cell Membrane-Derived Vesicles
by Zhaoyang He, Yunpeng Huang, Yu Wen, Yufeng Zou, Kai Nie, Zhongtao Liu, Xiong Li, Heng Zou and Yongxiang Wang
Pharmaceutics 2025, 17(4), 481; https://doi.org/10.3390/pharmaceutics17040481 - 7 Apr 2025
Viewed by 704
Abstract
Non-invasive phototherapy includes modalities such as photodynamic therapy (PDT) and photothermal therapy (PTT). When combined with tumor immunotherapy, these therapeutic approaches have demonstrated significant efficacy in treating advanced malignancies, thus attracting considerable attention from the scientific community. However, the progress of these therapies [...] Read more.
Non-invasive phototherapy includes modalities such as photodynamic therapy (PDT) and photothermal therapy (PTT). When combined with tumor immunotherapy, these therapeutic approaches have demonstrated significant efficacy in treating advanced malignancies, thus attracting considerable attention from the scientific community. However, the progress of these therapies is hindered by inherent limitations and potential adverse effects. Recent findings indicate that certain therapeutic strategies, including phototherapy, can induce immunogenic cell death (ICD), thereby opening new avenues for the integration of phototherapy with tumor immunotherapy. Currently, the development of biofilm nanomaterial-encapsulated drug delivery systems has reached a mature stage. Immune cell membrane-encapsulated nano-photosensitizers hold great promise, as they can enhance the tumor immune microenvironment. Based on bioengineering technology, immune cell membranes can be designed according to the tumor immune microenvironment, thereby enhancing the targeting and immune properties of nano-photosensitizers. Additionally, the space provided by the immune cell membrane allows for the co-encapsulation of immunotherapeutic agents and chemotherapy drugs, achieving a synergistic therapeutic effect. At the same time, the timing of photodynamic therapy (PDT) can be precisely controlled to regulate the action timing of both immunotherapeutic and chemotherapy drugs. This article summarizes and analyzes current research based on the aforementioned advancements. Full article
(This article belongs to the Special Issue Smart Nanomedicine for Cancer Diagnosis and Therapy)
Show Figures

Figure 1

18 pages, 3187 KiB  
Article
Discovery of PD-L1 Peptide Inhibitors from Ascidian Enzymatic Hydrolysates by Affinity Ultrafiltration Coupled to NanoLC-MS/MS
by Qiuyang Huang, Xiaoling Zang, Xinyu Jin, Qian Liu, Xin Zhang, Xinyu Li, Lizhen Zhao and Zhihua Lv
Mar. Drugs 2025, 23(4), 137; https://doi.org/10.3390/md23040137 - 21 Mar 2025
Viewed by 773
Abstract
Anti-PD-1 and anti-PD-L1 antibodies have achieved great clinical success in cancer immunotherapy, and peptide and small molecule inhibitors of PD-1/PD-L1 binding also attract much attention. Ascidians are not only seafood, but are also an important source of bioactive substances, including anti-tumor components. In [...] Read more.
Anti-PD-1 and anti-PD-L1 antibodies have achieved great clinical success in cancer immunotherapy, and peptide and small molecule inhibitors of PD-1/PD-L1 binding also attract much attention. Ascidians are not only seafood, but are also an important source of bioactive substances, including anti-tumor components. In this study, ascidian enzymatic hydrolysates were found to contain PD-1/PD-L1 inhibitory components. Affinity ultrafiltration (AUF) coupled with the nanoLC-MS/MS method was first applied in screening for PD-L1 peptide inhibitors from ascidian enzymatic hydrolysates. Two anti-PD-L1 ascidian peptides, C5 (LDVVIHTVTYGDR) and S2 (VLRDNIQGITKPAIR), were filtered out from the ascidians Ciona intestinalis and Styela clava, respectively. C5 and S2 showed moderate anti-PD-1/PD-L1 effects with the IC50 values of 33.9 µM (C5) and 112.8 μM (S2), respectively, by homogenous time-resolved fluorescence (HTRF) binding assay, and the KD values of 22.9 µM (C5) and 29.1 µM (S2), respectively, by surface plasmon resonance (SPR) assay. The results of this study suggest that ascidian enzymatic hydrolysates may be a potential source of bioactive peptides with anti-PD-1/PD-L1 activity. Full article
(This article belongs to the Special Issue Discovery of Marine-Derived Anticancer Agents, 2nd Edition)
Show Figures

Graphical abstract

36 pages, 2117 KiB  
Review
HDAC3: A Multifaceted Modulator in Immunotherapy Sensitization
by Rui Han, Yujun Luo, Jingdong Gao, Huiling Zhou, Yuqian Wang, Jiaojiao Chen, Guoyin Zheng and Changquan Ling
Vaccines 2025, 13(2), 182; https://doi.org/10.3390/vaccines13020182 - 13 Feb 2025
Viewed by 1970
Abstract
Histone deacetylase 3 (HDAC3) has emerged as a critical epigenetic regulator in tumor progression and immune modulation, positioning it as a promising target for enhancing cancer immunotherapy. This work comprehensively explores HDAC3’s multifaceted roles, focusing on its regulation of key immune-modulatory pathways such [...] Read more.
Histone deacetylase 3 (HDAC3) has emerged as a critical epigenetic regulator in tumor progression and immune modulation, positioning it as a promising target for enhancing cancer immunotherapy. This work comprehensively explores HDAC3’s multifaceted roles, focusing on its regulation of key immune-modulatory pathways such as cGAS-STING, ferroptosis, and the Nrf2/HO-1 axis. These pathways are central to tumor immune evasion, antigen presentation, and immune cell activation. Additionally, the distinct effects of HDAC3 on various immune cell types—including its role in enhancing T cell activation, restoring NK cell cytotoxicity, promoting dendritic cell maturation, and modulating macrophage polarization—are thoroughly examined. These findings underscore HDAC3’s capacity to reshape the tumor immune microenvironment, converting immunologically “cold tumors” into “hot tumors” and thereby increasing their responsiveness to immunotherapy. The therapeutic potential of HDAC3 inhibitors is highlighted, both as standalone agents and in combination with immune checkpoint inhibitors, to overcome resistance and improve treatment efficacy. Innovative strategies, such as the development of selective HDAC3 inhibitors, advanced nano-delivery systems, and integration with photodynamic or photothermal therapies, are proposed to enhance treatment precision and minimize toxicity. By addressing challenges such as toxicity, patient heterogeneity, and resistance mechanisms, this study provides a forward-looking perspective on the clinical application of HDAC3 inhibitors. It highlights its significant potential in personalized cancer immunotherapy, paving the way for more effective treatments and improved outcomes for cancer patients. Full article
(This article belongs to the Special Issue Advances in Immunotherapy for T Cells and Tumors)
Show Figures

Figure 1

24 pages, 10552 KiB  
Review
Nano-Oncologic Vaccine for Boosting Cancer Immunotherapy: The Horizons in Cancer Treatment
by Chao Chen, Yue Xu, Hui Meng, Hongyi Bao, Yong Hu, Chunjian Li and Donglin Xia
Nanomaterials 2025, 15(2), 122; https://doi.org/10.3390/nano15020122 - 16 Jan 2025
Cited by 1 | Viewed by 2058
Abstract
Nano-oncologic vaccines represent a groundbreaking approach in the field of cancer immunotherapy, leveraging the unique advantages of nanotechnology to enhance the effectiveness and specificity of cancer treatments. These vaccines utilize nanoscale carriers to deliver tumor-associated antigens and immunostimulatory adjuvants, facilitating targeted immune activation [...] Read more.
Nano-oncologic vaccines represent a groundbreaking approach in the field of cancer immunotherapy, leveraging the unique advantages of nanotechnology to enhance the effectiveness and specificity of cancer treatments. These vaccines utilize nanoscale carriers to deliver tumor-associated antigens and immunostimulatory adjuvants, facilitating targeted immune activation and promoting robust antitumor responses. By improving antigen presentation and localizing immune activation within the tumor microenvironment, nano-oncologic vaccines can significantly increase the efficacy of cancer immunotherapy, particularly when combined with other treatment modalities. This review highlights the mechanisms through which nano-oncologic vaccines operate, their potential to overcome existing limitations in cancer treatment, and ongoing advancements in design. Additionally, it discusses the targeted delivery approach, such as EPR effects, pH response, ultrasonic response, and magnetic response. The combination therapy effects with photothermal therapy, radiotherapy, or immune checkpoint inhibitors are also discussed. Overall, nano-oncologic vaccines hold great promise for changing the landscape of cancer treatment and advancing personalized medicine, paving the way for more effective therapeutic strategies tailored to individual patient needs. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

24 pages, 1584 KiB  
Review
Nanocarriers-Assisted Nose-to-Brain Delivery of Levodopa: Current Progress and Prospects
by Mariya Dangova, Nadezhda Ivanova and Velichka Andonova
Appl. Sci. 2025, 15(1), 331; https://doi.org/10.3390/app15010331 - 31 Dec 2024
Cited by 2 | Viewed by 1655
Abstract
A challenge to contemporary medicine is still the discovery of an effective and safe therapy for symptomatic control, if not cure, of Parkinson’s disease. While the potential century’s break-through is sought and foreseen by many scientists in gene therapy, immunotherapy, new drug combinations, [...] Read more.
A challenge to contemporary medicine is still the discovery of an effective and safe therapy for symptomatic control, if not cure, of Parkinson’s disease. While the potential century’s break-through is sought and foreseen by many scientists in gene therapy, immunotherapy, new drug combinations, and neurosurgical approaches, the not-yet-conventional intranasal administration of “classic” levodopa (L-DOPA) also stands out as a perspective from which Parkinson’s patients may benefit in the short term. With the main drawbacks of the standard oral L-DOPA treatment being the extremely low systemic and cerebral bioavailability, it is widely recognized that the nasal route may turn out to be the better administration site, for it offers the alternative of direct brain delivery via the olfactory bulb (the so-called nose-to-brain axis). However, such advancement would be unthinkable without the current progress in nano-scaled drug carriers which are needed to ensure drug stability, mucosal retention and permeation, olfactory uptake, and harmlessness to the sensory neurons and respiratory cilia. This study aims to review the most significant results and achievements in the field of nano-particulate nose-to-brain delivery of L-DOPA. Full article
Show Figures

Figure 1

31 pages, 5629 KiB  
Review
CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad
by Juan C. Baena, Lucy M. Pérez, Alejandro Toro-Pedroza, Toshio Kitawaki and Alexandre Loukanov
Int. J. Mol. Sci. 2024, 25(23), 13157; https://doi.org/10.3390/ijms252313157 - 7 Dec 2024
Cited by 2 | Viewed by 2591
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited [...] Read more.
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named “CAR T nanosymbiosis”, offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our “addition by subtraction model” synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms. Full article
(This article belongs to the Topic New Nanomaterials for Biomedical Applications)
Show Figures

Figure 1

20 pages, 1890 KiB  
Review
Nanoparticles as Delivery Systems for Antigenic Saccharides: From Conjugation Chemistry to Vaccine Design
by Marie-Jeanne Archambault, Laetitia Mwadi Tshibwabwa, Mélanie Côté-Cyr, Serge Moffet, Tze Chieh Shiao and Steve Bourgault
Vaccines 2024, 12(11), 1290; https://doi.org/10.3390/vaccines12111290 - 19 Nov 2024
Cited by 1 | Viewed by 2438
Abstract
Glycoconjugate vaccines have been effective in preventing numerous bacterial infectious diseases and have shown recent potential to treat cancers through active immunotherapy. Soluble polysaccharides elicit short-lasting immune responses and are usually covalently linked to immunogenic carrier proteins to enhance the antigen-specific immune response [...] Read more.
Glycoconjugate vaccines have been effective in preventing numerous bacterial infectious diseases and have shown recent potential to treat cancers through active immunotherapy. Soluble polysaccharides elicit short-lasting immune responses and are usually covalently linked to immunogenic carrier proteins to enhance the antigen-specific immune response by stimulating T-cell-dependent mechanisms. Nonetheless, the conjugation of purified polysaccharides to carrier proteins complexifies vaccine production, and immunization with protein glycoconjugates can lead to the undesirable immunogenic interference of the carrier. Recently, the use of nanoparticles and nanoassemblies for the delivery of antigenic saccharides has gathered attention from the scientific community. Nanoparticles can be easily functionalized with a diversity of functionalities, including T-cell epitope, immunomodulator and synthetic saccharides, allowing for the modulation and polarization of the glycoantigen-specific immune response. Notably, the conjugation of glycan to nanoparticles protects the antigens from degradation and enhances their uptake by immune cells. Different types of nanoparticles, such as liposomes assembled from lipids, inorganic nanoparticles, virus-like particles and dendrimers, have been explored for glycovaccine design. The versatility of nanoparticles and their ability to induce robust immune responses make them attractive delivery platforms for antigenic saccharides. The present review aims at summarizing recent advancements in the use of nano-scaled systems for the delivery of synthetic glycoantigens. After briefly presenting the immunological mechanisms required to promote a robust immune response against antigenic saccharides, this review will offer an overview of the current trends in the nanoparticle-based delivery of glycoantigens. Full article
(This article belongs to the Special Issue Advances in Glycoconjugate Vaccines and Nanovaccines)
Show Figures

Figure 1

16 pages, 7981 KiB  
Review
Induced Necroptosis and Its Role in Cancer Immunotherapy
by Ziyao Zhang, Fangming Zhang, Wenjing Xie, Yubo Niu, Haonan Wang, Guofeng Li, Lingyun Zhao, Xing Wang and Wensheng Xie
Int. J. Mol. Sci. 2024, 25(19), 10760; https://doi.org/10.3390/ijms251910760 - 6 Oct 2024
Cited by 8 | Viewed by 3141
Abstract
Necroptosis is a type of regulated cell death (RCD) that is triggered by changes in the extracellular or intracellular milieu that are picked up by certain death receptors. Thanks to its potent capacity to induce immunological responses and overcome apoptotic resistance, it has [...] Read more.
Necroptosis is a type of regulated cell death (RCD) that is triggered by changes in the extracellular or intracellular milieu that are picked up by certain death receptors. Thanks to its potent capacity to induce immunological responses and overcome apoptotic resistance, it has garnered significant attention as a potential cancer treatment. Basic information for the creation of nano-biomedical treatments is provided by studies on the mechanisms underlying tumor necroptosis. Receptor-interacting protein kinase 1 (RIPK1)–RIPK3-mediated necroptosis, Toll-like receptor domain-containing adapter-inducing interferon (IFN)-β (TRIF)–RIPK3-mediated necroptosis, Z-DNA-binding protein 1 (ZBP1)–RIPK3-mediated necroptosis, and IFNR-mediated necroptosis are the four signaling pathways that collectively account for triggered necroptosis in this review. Necroptosis has garnered significant interest as a possible cancer treatment strategy because, in contrast to apoptosis, it elicits immunological responses that are relevant to therapy. Thus, a thorough discussion is held on the connections between tumor cell necroptosis and the immune environment, cancer immunosurveillance, and cells such as dendritic cells (DCs), cytotoxic T cells, natural killer (NK) cells, natural killer T (NKT) cells, and their respective cytokines. Lastly, a summary of the most recent nanomedicines that cause necroptosis in order to cause immunogenic cell death is provided in order to emphasize their promise for cancer immunotherapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop