Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (927)

Search Parameters:
Keywords = nano-FTIR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9557 KB  
Article
The Effect of Thermal Annealing on Optical Properties and Surface Morphology of a Polymer: Fullerene- and Non-Fullerene-Blend Films Used in Organic Solar Cells
by Bożena Jarząbek, Muhammad Raheel Khan, Barbara Hajduk, Andrzej Marcinkowski, Paweł Chaber, Adrian Cernescu and Yasin C. Durmaz
Polymers 2026, 18(2), 280; https://doi.org/10.3390/polym18020280 - 20 Jan 2026
Abstract
The optical properties, electronic structure and morphology of thin films of the polymer donor PTB7-Th blended with either the fullerene acceptor PC70BM or the non-fullerene acceptor ZY-4Cl were systematically investigated to evaluate their annealing-induced evolution. Thin films were characterized using UV–Vis–NIR absorption spectroscopy, [...] Read more.
The optical properties, electronic structure and morphology of thin films of the polymer donor PTB7-Th blended with either the fullerene acceptor PC70BM or the non-fullerene acceptor ZY-4Cl were systematically investigated to evaluate their annealing-induced evolution. Thin films were characterized using UV–Vis–NIR absorption spectroscopy, spectroscopic ellipsometry, ATR-FTIR spectroscopy, atomic force microscopy (AFM), and nano-IR analysis. In situ stepwise thermal annealing revealed distinct changes in absorption edge parameters, indicating thermally induced modifications in the electronic structure of the blend films. Ellipsometric analysis showed that elevated temperatures significantly affect the refractive index and extinction coefficient spectra. AFM measurements demonstrated markedly different surface morphology evolution for the two blend systems, with pronounced needle-shaped crystallites formation observed in PTB7-Th:ZY-4Cl films after annealing at 100 °C. Nano-IR characterization identified these crystallites as predominantly PTB7-Th, indicating phase separation driven by thermal treatment. The combined optical and structural results reveal distinct annealing-induced changes in the blend. Finally, BHJ solar cells, based on PTB7-Th:PC70BM and PTB7-Th:ZY-4Cl active layers, were fabricated, and their photovoltaic response was demonstrated. Full article
(This article belongs to the Special Issue Polymeric Materials for Solar Cell Applications)
Show Figures

Figure 1

22 pages, 6470 KB  
Article
Highly Efficient Adsorption of Pb(II) by Magnesium-Modified Zeolite: Performance and Mechanisms
by Yuting Yang, Xiong Wang, Sumra Siddique Abbasi, Bin Zhou, Qing Huang, Shujuan Zhang, Xinsheng Xiao, Hao Li, Huayi Chen and Yueming Hu
Toxics 2026, 14(1), 85; https://doi.org/10.3390/toxics14010085 - 17 Jan 2026
Viewed by 142
Abstract
In this study, magnesium-modified clinoptilolite (MZ) was successfully synthesized via precipitation and calcination to efficiently remove Pb(II) from aqueous solutions. The material was systematically characterized using BET, XRD, SEM-EDX, FT-IR, and XPS. Adsorption kinetics followed a pseudo-second-order model (R2 = 0.9956), with [...] Read more.
In this study, magnesium-modified clinoptilolite (MZ) was successfully synthesized via precipitation and calcination to efficiently remove Pb(II) from aqueous solutions. The material was systematically characterized using BET, XRD, SEM-EDX, FT-IR, and XPS. Adsorption kinetics followed a pseudo-second-order model (R2 = 0.9956), with MZ removing over 70% of Pb(II) within the first 3 h. Isotherm data were best described by the Langmuir model (R2 = 0.9686), confirming monolayer chemical adsorption, with a maximum adsorption capacity (qm) of 1656 mg/g. Notably, MZ maintained high adsorption capacity across a pH range of 3.0~5.5, and its performance was largely unaffected by the presence of high concentrations of competing ions (0.1~1.0 M NaNO3). Mechanistic analysis revealed that the loaded MgO facilitates the chemical conversion of Pb(II) to hydroxycarbonate (Pb3(CO3)2(OH)2) via surface complexation, which constitutes the primary removal mechanism. These findings demonstrate that magnesium modification can transform natural zeolites into high-capacity, stable adsorbents, offering promising potential for the treatment of Pb(II)-contaminated water. Full article
Show Figures

Figure 1

17 pages, 2780 KB  
Article
A Hybrid Inorganic–Organic Schiff Base-Functionalised Porous Platform for the Remediation of WEEE Polluted Effluents
by Devika Vashisht, Martin J. Taylor, Amthal Al-Gailani, Priyanka, Aseem Vashisht, Alex O. Ibhadon, Ramesh Kataria, Shweta Sharma and Surinder Kumar Mehta
Water 2026, 18(2), 247; https://doi.org/10.3390/w18020247 - 16 Jan 2026
Viewed by 182
Abstract
An inorganic–organic hybrid nano-adsorbent was prepared by chemical immobilisation of an organic Schiff base Cu (II) ion receptor, DHB ((E)-N-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl) ethylidene) benzohydrazide), a selective dehydroacetic acid-based chemosensor, onto a mesoporous silica support. In order to prepare the sorbent, the silylating agent was anchored [...] Read more.
An inorganic–organic hybrid nano-adsorbent was prepared by chemical immobilisation of an organic Schiff base Cu (II) ion receptor, DHB ((E)-N-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl) ethylidene) benzohydrazide), a selective dehydroacetic acid-based chemosensor, onto a mesoporous silica support. In order to prepare the sorbent, the silylating agent was anchored onto the silica. During this procedure, 3-Chloropropyl trimethoxy silane (CPTS) was attached to the surface, increasing hydrophobicity. By immobilising DHB onto the CPTS platform, the silica surface was activated, and as a result the coordination chemistry of the Schiff base generated a hybrid adsorbent with the capability to rapidly sequestrate Cu (II) ions from wastewater, as an answer to combat growing Waste Electrical and Electronic Equipment (WEEE) contamination in water supplies, in the wake of a prolonged consumerism mentality and boom in cryptocurrency mining. The produced hybrid materials were characterised by FTIR, proximate and ultimate analysis, nitrogen physisorption, PXRD, SEM, and TEM. The parameters influencing the removal efficiency of the sorbent, including pH, initial metal ion concentration, contact time, and adsorbent dosage, were optimised to achieve enhanced removal efficiency. Under optimal conditions (pH 7.0, adsorbent dosage 3 mg, contact time of 70 min, and 25 °C), Cu (II) ions were quantitatively sequestered from the sample solution; 93.1% of Cu (II) was removed under these conditions. The adsorption was found to follow pseudo-second-order kinetics, and Langmuir model fitting affirmed the monolayer adsorption. Full article
(This article belongs to the Special Issue The Application of Adsorption Technologies in Wastewater Treatment)
Show Figures

Figure 1

19 pages, 2498 KB  
Article
Nano-Enhanced Binary Eutectic PCM with SiC for Solar HDH Desalination Systems
by Rahul Agrawal, Kashif Mushtaq, Daniel López Pedrajas, Iqra Irfan and Breogán Pato-Doldán
Nanoenergy Adv. 2026, 6(1), 4; https://doi.org/10.3390/nanoenergyadv6010004 - 9 Jan 2026
Viewed by 124
Abstract
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology [...] Read more.
Freshwater scarcity is increasing day by day and has already reached a threatening level, especially in remotely populated areas. One of the technological solutions to this rising concern could be the use of the solar-based humidification–dehumidification (SHDH) method for water desalination. This technology is a promising solution but has challenges such as solar intermittency. This challenge can be solved by integrating SHDH with the phase change material as a solar energy storage medium. Therefore, a novel nano-enhanced binary eutectic phase change material (NEPCM) was developed in this project. PCM consisting of 70 wt.% stearic acid (ST) and 30 wt.% suberic acid (SBU) with a varying concentration of silicon carbide (SiC) nanoparticles (NPs) (0.1 to 3 wt.%) was synthesized specifically considering the need of SHDH application. The systematic thermophysical characterization was conducted to investigate their energy storage capacity, thermal durability, and performance consistency over repeated cycles. DSC analysis revealed that the addition of SiC NPs preserved the thermal stability of the NEPCM, while the phase transition temperature remained nearly unchanged with a variation of less than 0.74%. The value of latent heat is inversely related to the nanoparticle concentration, i.e., from 142.75 kJ/kg for the base PCM to 131.24 kJ/kg at 3 wt.% loading. This corresponds to reductions in latent heat ranging between 0.98% and 8.06%. The FTIR measurement confirms that no chemical reactions or no new functional groups were formed. All original functional groups of ST and SBU remained intact, showing that incorporating the SiC NP to the PCM lead to physical interactions (e.g., hydrogen bonding or surface adsorption). The TGA analysis showed that the SiC NPs in the NEPCM act as supporting material, and its nano-doping enhanced the final degradation temperature and thermal stability. There was negligible change in thermal conductivity for nanoparticle loadings of 0.1% and 0.4%; however, it increased progressively by 5.2%, 10.8%, 23.12%, and 25.8% at nanoparticle loadings of 0.7%, 1%, 2%, and 3%, respectively, at 25 °C. Thermal reliability was analyzed through a DSC thermal cycling test which confirmed the suitability of the material for the desired applications. Full article
(This article belongs to the Special Issue Innovative Materials for Renewable and Sustainable Energy Systems)
Show Figures

Figure 1

24 pages, 4587 KB  
Article
A Comprehensive Physicochemical Analysis Focusing on the Characterization and Stability of Valsartan Silver Nano-Conjugates
by Abdul Qadir, Khwaja Suleman Hasan, Khair Bux, Khwaja Ali Hasan, Aamir Jalil, Asad Khan Tanoli, Khwaja Akbar Hasan, Shahida Naz, Muhammad Kashif, Nuzhat Fatima Zaidi, Ayesha Khan, Zeeshan Vohra, Herwig Ralf and Shama Qaiser
Int. J. Mol. Sci. 2026, 27(2), 582; https://doi.org/10.3390/ijms27020582 - 6 Jan 2026
Viewed by 451
Abstract
Valsartan (Val)—a lipophilic non-peptide angiotensin II type 1 receptor antagonist—is highly effective against hypertension and displaying limited solubility in water (3.08 μg/mL), thereby resulting in low oral bioavailability (23%). The limited water solubility of antihypertensive drugs can pose a challenge, particularly for rapid [...] Read more.
Valsartan (Val)—a lipophilic non-peptide angiotensin II type 1 receptor antagonist—is highly effective against hypertension and displaying limited solubility in water (3.08 μg/mL), thereby resulting in low oral bioavailability (23%). The limited water solubility of antihypertensive drugs can pose a challenge, particularly for rapid and precise administration. Herein, we synthesize and characterize valsartan-containing silver nanoparticles (Val-AgNPs) using Mangifera indica leaf extracts. The physicochemical, structural, thermal, and pharmacological properties of these nano-conjugates were established through various analytical and structural tools. The spectral shifts in both UV-visible and FTIR analyses indicate a successful interaction between the valsartan molecule and the silver nanoparticles. The resulting nano-conjugates are spherical and within the size range of 30–60 nm as revealed in scanning electron-EDS and atomic force micrographs. The log-normal distribution of valsartan-loaded nanoparticles, with a size range of 30 to 60 nm and a mode of 54 nm, indicates a narrow, monodisperse, and highly uniform particle size distribution. This is a favorable characteristic for drug delivery systems, as it leads to enhanced bioavailability and a consistent performance. Dynamic Light Scattering (DLS) analysis of the Val-AgNPs indicates a polydisperse sample with a tendency toward aggregation, resulting in larger effective sizes in the suspension compared to individual nanoparticles. The accompanying decrease in zeta potential (to −19.5 mV) and conductivity further supports the idea that the surface chemistry and stability of the nanoparticles changed after conjugation. Differential scanning calorimetry (DSC) demonstrated the melting onset of the valsartan component at 113.99 °C. The size-dependent densification of the silver nanoparticles at 286.24 °C correspond to a size range of 40–60 nm, showing a significant melting point depression compared to bulk silver due to nanoscale effects. The shift in Rf for pure valsartan to Val-AgNPs suggests that the interaction with the AgNPs alters the compound’s overall polarity and/or its interaction with the stationary phase, complimented in HPTLC and HPLC analysis. The stability and offloading behavior of Val-AgNPs was observed at pH 6–10 and in 40% and 80% MeOH. In addition, Val-AgNPs did not reveal hemolysis or significant alterations in blood cell indices, confirming the safety of the nano-conjugates for biological application. In conclusion, these findings provide a comprehensive characterization of Val-AgNPs, highlighting their potential for improved drug delivery applications. Full article
Show Figures

Figure 1

20 pages, 3043 KB  
Article
Fibrous Mesoporous Silica KCC-1 Functionalized with 3,5-Di-tert-butylsalicylaldehyde as an Efficient Dispersive Solid-Phase Extraction Sorbent for Pb(II) and Co(II) from Water
by Sultan K. Alharbi, Yassin T. H. Mehdar, Manal A. Almalki, Khaled A. Thumayri, Khaled M. AlMohaimadi, Bandar R. Alsehli, Awadh O. AlSuhaimi and Belal H. M. Hussein
Nanomaterials 2026, 16(1), 58; https://doi.org/10.3390/nano16010058 - 31 Dec 2025
Viewed by 394
Abstract
The accurate determination of trace metals in aqueous matrices necessitates robust sample preparation techniques that enable selective preconcentration of analytes while ensuring compatibility with subsequent instrumental analysis. Dispersive solid-phase extraction (d-SPE), a suspension-based variant of conventional solid-phase extraction (SPE), facilitates rapid sorbent–analyte interactions [...] Read more.
The accurate determination of trace metals in aqueous matrices necessitates robust sample preparation techniques that enable selective preconcentration of analytes while ensuring compatibility with subsequent instrumental analysis. Dispersive solid-phase extraction (d-SPE), a suspension-based variant of conventional solid-phase extraction (SPE), facilitates rapid sorbent–analyte interactions and enhances mass transfer efficiency through direct dispersion of the sorbent in the sample solution. This approach offers significant advantages over traditional column-based SPE, including faster extraction kinetics and greater operational simplicity. When supported by appropriately engineered sorbents, d-SPE exhibits considerable potential for the selective enrichment of trace metal analytes from complex aqueous matrices. In this work, a fibrous silica-based chelating material, DSA-KCC-1, was synthesized by grafting 3,5-Di-tert-butylsalicylaldehyde (DSA) onto aminopropyl-modified KCC-1. The dendritic KCC-1 scaffold enables fast dispersion and short diffusion pathways, while the immobilized phenolate–imine ligand introduces defined binding sites for transition-metal uptake. Characterization by FTIR, TGA, BET, FESEM/TEM, XRD, and elemental analysis confirmed the successfulness of functionalization and preservation of the fibrous mesostructured. Adsorption studies demonstrated chemisorption-driven interactions for Pb(II) and Co(II) from water, with Langmuir-type monolayer uptake and pseudo-second-order kinetic behavior. The nano-adsorbent exhibited a markedly higher affinity for Pb(II) than for Co(II), with maximum adsorption capacities of 99.73 and 66.26 mg g−1, respectively. Integration of the DSA-KCC-1 nanosorbent into a d-SPE–ICP-OES workflow enabled the reliable determination of trace levels of the target ions, delivering low limits of detection, wide linear calibration ranges, and stable performance over repeated extraction cycles. Analysis of NIST CRM 1643d yielded results in good agreement with the certified values, while the method demonstrated high tolerance toward common coexisting ions. The combined structural features of the KCC-1 support and the Schiff-base ligand indicate the suitability of DSA-KCC-1 for d-SPE workflows and demonstrate the potential of this SPE format for selective preconcentration of trace metal ions in aqueous matrices. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 4759 KB  
Article
Material Properties, Characterization, and Application of Microcellular Injection-Molded Polypropylene Reinforced with Oyster Shells for Pb(II) Adsorption Kinetics from Aqueous Solutions
by Minyuan Chien, Naveen Bunekar, Cabangani Donga, Pontsho Mbule, Tlou Nathaniel Moja and Shyhshin Hwang
Polymers 2026, 18(1), 110; https://doi.org/10.3390/polym18010110 - 30 Dec 2025
Viewed by 237
Abstract
Microcellular injection-molded polypropylene/oyster shell nano-powder (PP/OSP) composites show potential as adsorbent materials for reducing toxic metal ion contamination in groundwater. This study investigates the material properties of PP/OSP composites and evaluates their Pb(II) adsorption performance in aqueous media. The effects of key operational [...] Read more.
Microcellular injection-molded polypropylene/oyster shell nano-powder (PP/OSP) composites show potential as adsorbent materials for reducing toxic metal ion contamination in groundwater. This study investigates the material properties of PP/OSP composites and evaluates their Pb(II) adsorption performance in aqueous media. The effects of key operational parameters, including contact time, pH, and initial Pb(II) concentration, were examined to determine the optimal conditions for heavy metal remediation. The composites were characterized using XRD, SEM, FTIR, and TGA to assess their crystalline structure, surface morphology, functional groups, and thermal stability, respectively. Adsorption isotherm analysis indicated that the Pb(II) uptake behavior followed both the Freundlich and Temkin models. Kinetic studies showed that the adsorption process was best described by the pseudo-first-order model. The maximum adsorption capacity for Pb(II) removal was determined to be 13.89 mg/g. Full article
(This article belongs to the Special Issue Advances in Polymer Processing Technologies: Injection Molding)
Show Figures

Figure 1

13 pages, 1232 KB  
Article
Ultra-Sensitive Bioanalytical Separations Using a New 4-Tritylphenyl Methacrylate-Based Monolithic Nano-Column with an Inner Diameter of 20 µm for Nano-LC
by Cemil Aydoğan
Int. J. Mol. Sci. 2026, 27(1), 224; https://doi.org/10.3390/ijms27010224 - 25 Dec 2025
Viewed by 191
Abstract
Low-flow liquid chromatography has become the primary tool for advanced chromatographic analysis and is an indispensable technique for the sensitive detection of biomolecules. In this study, we developed a new 4-tritylphenyl methacrylate-based monolithic nano-column with an internal diameter of 20 µm for bioanalytical [...] Read more.
Low-flow liquid chromatography has become the primary tool for advanced chromatographic analysis and is an indispensable technique for the sensitive detection of biomolecules. In this study, we developed a new 4-tritylphenyl methacrylate-based monolithic nano-column with an internal diameter of 20 µm for bioanalytical separations in nano-liquid chromatography (nano-LC). The composition of the monolith was optimized with regard to the monomer and porogenic solvent. The column was characterized using Fourier Transformed Infrared Spectroscopy (FT-IR) spectroscopy, scanning electron microscopy (SEM) and chromatographic analyses. Chromatographic characterization was performed using homologous alkylbenzenes (ABs) and polyaromatic hydrocarbons (PAHs), which facilitate hydrophobic and π–π interactions. Run-to-run and column-to-column reproducibility values were found to be <2.51% and 2.4–3.2%, respectively. The final monolith was then used to separate six standard proteins, including β-lactoglobulin A, carbonic anhydrase, ribonuclease A (RNase A), α-chymotrypsinogen (α-chym), lysozyme (Lys), cytochrome C (Cyt C) and myoglobin (Myo), as well as three dipeptides: Alanine-tyrosine (Ala-Tyr), Glycine-phenylalanine (Gly-Phe) and L-carnosine. The nano-column was then applied to profiling peptides and proteins in the MCF-7 cell line, enabling high-resolution peptide analysis. Full article
Show Figures

Graphical abstract

20 pages, 3217 KB  
Article
Design and In Vitro Evaluation of Cross-Linked Poly(HEMA)-Pectin Nano-Composites for Targeted Delivery of Potassium Channel Blockers in Cancer Therapy
by Gizem Ozkurnaz Civir, Fatemeh Bahadori, Ozgur Ozay, Gamze Ergin Kızılçay, Seyma Atesoglu, Ebru Haciosmanoglu Aldogan and Burak Celik
Gels 2026, 12(1), 13; https://doi.org/10.3390/gels12010013 - 24 Dec 2025
Viewed by 347
Abstract
Potassium (K+) channel blockers are promising anticancer agents but suffer from off-target toxicities. We designed cross-linked poly-2-Hydroxyethyl methacrylate (HEMA)–pectin nanogels (HPN) to deliver two model blockers—dofetilide (Dof) and azimilide (Azi)—and evaluated their physicochemical properties, release behavior, and in vitro anticancer activity. [...] Read more.
Potassium (K+) channel blockers are promising anticancer agents but suffer from off-target toxicities. We designed cross-linked poly-2-Hydroxyethyl methacrylate (HEMA)–pectin nanogels (HPN) to deliver two model blockers—dofetilide (Dof) and azimilide (Azi)—and evaluated their physicochemical properties, release behavior, and in vitro anticancer activity. HPN was synthesized by surfactant-assisted aqueous nanogel polymerization and comprehensively characterized (FTIR, DLS, TEM/SEM, XRD, BET). The particles were monodispersed with a mean diameter ~230 nm, compatible with tumor accumulation via the Enhanced Permeability and Retention (EPR) effect, and exhibited a microporous matrix suitable for controlled release. Drug loading was higher for Dof than for Azi, with DL% values of 82.30 ± 3.1% and 17.84 ± 2.9%, respectively. Release kinetics diverged: Azi-HPN followed primarily first-order diffusion with a rapid burst, whereas Dof-HPN showed mixed zero/first-order behavior. Cytotoxicity was assessed in A549 lung cancer and BEAS-2B bronchial epithelial cells. Both free and nano-formulated blockers were selectively toxic to A549 with minimal effects on BEAS-2B. Notably, a hormesis-like pattern (low-dose stimulation/high-dose inhibition in MTT) was evident for free Dof and Azi; encapsulation attenuated this effect for Dof but not for Azi. Co-administration with paclitaxel (Ptx) potentiated Dof-HPN cytotoxicity in A549 but did not enhance Azi-HPN, suggesting mechanism-dependent drug-drug interactions. Overall, HPN provides a biocompatible platform that improves K+ blocker delivery. Full article
Show Figures

Graphical abstract

21 pages, 43352 KB  
Article
Green Synthesis of Copper-Doped ZrO2 Nanoparticles Using Calendula officinalis Flower Extract: Comprehensive Characterization, Biocompatibility, and Anticancer Evaluation
by Dhruv Suraneni, Balasubramanian Deepika, Kavinithi Jaganathan Mahadevan, Sanjana Raghupathy, Shangavy Pandiarajan, Devadass Jessy Mercy, Agnishwar Girigoswami, Sanjay Kisan Metkar, Surajit Hansda and Koyeli Girigoswami
Physchem 2026, 6(1), 1; https://doi.org/10.3390/physchem6010001 - 23 Dec 2025
Viewed by 381
Abstract
The field of nanotechnology has witnessed a paradigm shift towards eco-friendly and sustainable synthesis methods for nanoparticles due to increasing concerns over environmental toxicity and resource sustainability. Among various metal oxide nanoparticles, zirconium dioxide (ZrO2) nanoparticles have garnered significant attention owing [...] Read more.
The field of nanotechnology has witnessed a paradigm shift towards eco-friendly and sustainable synthesis methods for nanoparticles due to increasing concerns over environmental toxicity and resource sustainability. Among various metal oxide nanoparticles, zirconium dioxide (ZrO2) nanoparticles have garnered significant attention owing to their exceptional thermal stability, biocompatibility, mechanical strength, and catalytic properties. Doping ZrO2 with transition metals such as copper (Cu) further enhances its physicochemical attributes, including antibacterial activity, redox behaviour, and electronic properties, rendering it suitable for a diverse range of biomedical and industrial applications. In the present study, we report the green synthesis of copper-doped ZrO2 nanoparticles (Cu-ZrO2-CO NPs) using an aqueous extract of Calendula officinalis (marigold) flowers as a natural reducing and stabilizing agent. The complete characterization was performed using UV–vis spectrophotometry, dynamic light scattering (DLS), zeta potential, FTIR, SEM, EDAX, and XRD, revealing its size to be around 20–40 nm and zeta potential as −20 mV, indicating nano size and stability. The biocompatibility of the as-synthesized nanoparticle was analyzed in vitro using fibroblast cell viability and haemolysis assay, and in vivo using brine shrimp assay. The nanoparticles were safe up to a dose of 50 μg/mL, showing more than 95% cell viability and less than 2% haemolysis, which is within an acceptable range. Finally, the anticancer activity was explored for A549 cells by MTT assay and live-dead assay, with an IC50 value of 38.63 μg/mL. The chorioallantoic membrane (CAM) model was used to assess the anti-angiogenesis potential of the Cu-ZrO2-CO NPs. The results showed that the nanoparticles could kill the cancer cells via apoptosis, and one of the reasons for the anticancer effect was angiogenesis inhibition. Further research is needed using other cancer cell lines and animal tumour models. Full article
(This article belongs to the Section Biophysical Chemistry)
Show Figures

Graphical abstract

19 pages, 2719 KB  
Article
New Horizons in Quality Control of Enzyme Pharmaceuticals: Combining Dynamic Light Scattering, Fourier-Transform Infrared Spectroscopy, and Radiothermal Emission Analysis
by Gleb Vladimirovich Petrov, Aleksandr Andreevich Nazarov, Alena Mikhailovna Koldina and Anton Vladimirovich Syroeshkin
Sci. Pharm. 2026, 94(1), 2; https://doi.org/10.3390/scipharm94010002 - 22 Dec 2025
Viewed by 364
Abstract
Hyaluronidase and its modified analogs are clinically significant enzyme-based pharmaceuticals used to treat fibrosis, increase tissue permeability, and improve drug diffusion. While pharmacopeial quality control methods are well defined, scientific literature provides limited information about the physicochemical evaluation of such enzyme pharmaceuticals, necessitating [...] Read more.
Hyaluronidase and its modified analogs are clinically significant enzyme-based pharmaceuticals used to treat fibrosis, increase tissue permeability, and improve drug diffusion. While pharmacopeial quality control methods are well defined, scientific literature provides limited information about the physicochemical evaluation of such enzyme pharmaceuticals, necessitating a more holistic analytical approach. Commercial pharmaceuticals of hyaluronidase and its modified analog were analyzed using a combination of dynamic light scattering, infrared spectroscopy, and detection of intrinsic radiothermal emission (RTE). Dimensional characteristics were studied using a Zetasizer Nano ZSP (ZetasizerNano ZSP, Malvern Instruments, Malvern, UK) confirmed theoretical diameters of 5–8 nm, consistent with experimental values (6–8 nm). Fourier-Transform infrared spectroscopy (FTIR) (Agilent Cary 630, Agilent Technologies, Santa Clara, CA, USA) revealed characteristic transmission bands for the modified enzyme at 1464, 1448, 1326, 1158, and 1010 cm−1, confirming structural modification. RTE measurements using a TES-92 detector (TES Electrical Electronic Corp., Taipei, Taiwan) demonstrated a correlation between emission intensity and shelf life: 12.8 ± 0.8 µW/m2 for proper shelf-life samples, 8.3 ± 0.8 µW/m2 for six-month-expired, and 5.1 ± 1.0 µW/m2 for one-year-expired pharmaceuticals. The study offers a promising supplementary tool for pharmaceutical quality control of hyaluronidase-based drugs. Full article
Show Figures

Graphical abstract

24 pages, 4792 KB  
Article
Modification of Physico-Chemical and Biological Characteristics of Polymethylmethacrylate with Amorphous Carbon Nanoparticles for Counteracting Healthcare-Associated Infections
by Sergey V. Gudkov, Dmitriy A. Serov, Ruslan M. Sarimov, Vasiliy S. Novikov, Maksim Moskovskiy, Maksim B. Rebezov, Mikhail V. Dubinin, Konstantin V. Sergienko, Mikhail A. Sevostyanov, Fatikh M. Yanbaev, Maxim E. Astashev and Maria V. Vedunova
J. Funct. Biomater. 2026, 17(1), 5; https://doi.org/10.3390/jfb17010005 - 21 Dec 2025
Viewed by 424
Abstract
Composite materials based on polymethylmethacrylate (PMMA) and carbon nanoparticles are used in aviation, construction, medical and other fields of activity. Carbon nanotubes and carbon nano-dots are mainly used as carbon nanoparticles. Both carbon nanotube and carbon nano-dots are difficult to obtain materials with [...] Read more.
Composite materials based on polymethylmethacrylate (PMMA) and carbon nanoparticles are used in aviation, construction, medical and other fields of activity. Carbon nanotubes and carbon nano-dots are mainly used as carbon nanoparticles. Both carbon nanotube and carbon nano-dots are difficult to obtain materials with considerable cost. Amorphous carbon nanoparticles, on the contrary, are easy to obtain and have a low cost. The purpose of this work is to study the physico-chemical and biological characteristics of polymethylmethacrylate modified with amorphous carbon nanoparticles. Laser ablation was used to obtain the nanoparticles. Dynamic light scattering, measurement of the electrokinetic potential, TEM, AFM, and Raman microscopy are used to characterize nanoparticles. FTIR, MIM, AFM, UV-visual diagnostics, ROS tests, and biopolymer regeneration tests were used to analyze the combined sensors. The bacteriostatic effect was evaluated using turbodimetry, and the antibacterial effect was evaluated using precision cytofluorometry. Mammalian cells were examined using fluorescence microscopy. Carbon nanoparticles (CNPs) have been obtained and characterized. A protocol has been developed for the introduction of CNPs into photolithographic resin. Printed samples of complex geometry. It is shown that the printed samples are amenable to polishing, have pro-oxidant properties, and are able to prevent damage to biopolymers. Printed samples inhibit the development of bacteria and cause loss of viability. At the same time, the printed samples do not affect the development of mammalian cells. The obtained resins based on PMMA with CNPs can potentially serve as the basis for the creation of non-toxic materials in biomedicine and pharmacology. Full article
Show Figures

Figure 1

22 pages, 4312 KB  
Article
Functionalized Agave Bagasse Hydrochar for Reactive Orange 84 Removal: Synthesis, Characterization, and ANN–GA Optimization
by Neali Valencia-Espinoza, Reinier Abreu-Naranjo, Luisa F. Medina-Ganem, Raul E. Medina-Ganem, Fabricio G. Méndez-Landin, Alejandro Vega-Rios, Alberto Quevedo-Castro, Alain R. Picos-Benítez, Erick Bandala and Oscar M. Rodríguez-Narvaez
Processes 2026, 14(1), 10; https://doi.org/10.3390/pr14010010 - 19 Dec 2025
Viewed by 413
Abstract
Functionalized carbon-based materials have recently attracted attention for the efficient removal of complex pollutants, including dyes. In this study, agave bagasse, an abundant by-product of the Mexican tequila industry, was used as biomass to produce H2SO4-modified hydrochar (HC) for [...] Read more.
Functionalized carbon-based materials have recently attracted attention for the efficient removal of complex pollutants, including dyes. In this study, agave bagasse, an abundant by-product of the Mexican tequila industry, was used as biomass to produce H2SO4-modified hydrochar (HC) for the removal of Reactive Orange 84 (RO84). FTIR-ATR analysis revealed characteristic signals of –SO3H groups in the functionalized HC. BET characterization showed a broad range of surface areas and pore volumes, with pore radio indicating nano-, micro-, and mesoporous structures, depending on the acid concentration used during synthesis. TGA and XRD analyses indicated that higher acid concentration promoted the depolymerization of biomass components. Adsorption assays demonstrated that increasing H2SO4 concentrations enhanced dye removal. Post-adsorption FTIR-ATR analysis revealed signal shifts consistent with interactions between sulfonated groups and dye RO84. Statistical and mathematical analyses showed that optimal results were achieved by combining high acid concentrations during HC synthesis with high HC dosages during adsorption. Full article
Show Figures

Graphical abstract

15 pages, 1909 KB  
Article
The Carbon Dots from Seabuckthorn (Hippophae rhamnoides L.) Leaves: Recycle the Herbal Waste Products for a Nano-Formulation in Delivering Bioactive Compounds
by Chen-Xi Xia, Xiong Gao, Queenie Wing-Sze Lai, Zheng-Qi Wang, Lish Sheng-Yin Lin, Janet Yuen-Man Ho, Jia-Yu Zhu, Roy Wai-Lun Tang, Tina Ting-Xia Dong and Karl Wah-Keung Tsim
J. Funct. Biomater. 2025, 16(12), 465; https://doi.org/10.3390/jfb16120465 - 17 Dec 2025
Viewed by 395
Abstract
Carbon dots have emerged as promising nanocarriers for drug delivery due to their unique physicochemical properties and biocompatibilities. Here, the potential of leaf-derived carbon dots (named as SBLCD), derived from Seabuckthorn (Hippophae rhamnoides L.), was illustrated as a novel nano-formulation [...] Read more.
Carbon dots have emerged as promising nanocarriers for drug delivery due to their unique physicochemical properties and biocompatibilities. Here, the potential of leaf-derived carbon dots (named as SBLCD), derived from Seabuckthorn (Hippophae rhamnoides L.), was illustrated as a novel nano-formulation for bioactive compound delivery. Seabuckthorn leaves, rich in flavonoids, are the waste product during the production of Seabuckthorn fruits. The wasted leaves were utilized to synthesize carbon dots via a hydrothermal method. The resulting SBLCD, characterized by TEM, FT-IR and Raman spectroscopy, exhibited a diameter of ~5 nm in both amorphous and quasi-crystalline forms. Applications of SBLCD in cultures demonstrated robust properties of anti-inflammation and inducing neuronal cell differentiation. Furthermore, SBLCD was able to encapsulate luteolin, a bioactive flavonoid. The enhanced delivery efficiency translated to superior biological activity, with SBLCD-luteolin requiring only 1.50 μg/mL in achieving the EC50 efficacy, as compared to 6.82 μg/mL for free luteolin in pNF200-Luc expression assays. This approach not only valorizes Seabuckthorn leaf by-products but also potentially improves the efficacy of encapsulated flavonoids. The development of SBLCD as a multifunctional platform for flavonoid delivery represents a promising strategy in enhancing the efficacy of neuroactive compounds, combining anti-inflammatory effects (>70% cytokine suppression) with enhanced cellular uptake (4.5-fold increase). Full article
(This article belongs to the Section Biomaterials for Drug Delivery)
Show Figures

Graphical abstract

16 pages, 21768 KB  
Article
Evaluation of Fracture Toughness and Surface Roughness of a Novel Experimental Short Fiber-Reinforced CAD/CAM Block Material (In Vitro Study)
by Zakaria Jamal Mohammad and Diyar Khalid Bakr
Coatings 2025, 15(12), 1485; https://doi.org/10.3390/coatings15121485 - 16 Dec 2025
Viewed by 348
Abstract
The existing scientific literature indicates that flowable short fiber-reinforced composites (SFRCs) can be used for direct restoration due to their favorable mechanical properties. However, there is a lack of data on the mechanical properties of SFRCs designed specifically for indirect CAD/CAM restorations. This [...] Read more.
The existing scientific literature indicates that flowable short fiber-reinforced composites (SFRCs) can be used for direct restoration due to their favorable mechanical properties. However, there is a lack of data on the mechanical properties of SFRCs designed specifically for indirect CAD/CAM restorations. This study aims to fabricate a novel experimental SFRC CAD/CAM block and evaluate its fracture toughness and polishability as an indirect restoration in comparison with different conventional resin-based CAD/CAM blocks with different compositions. Fourier-transform infrared spectroscopy (FTIR) was employed to analyze the chemical structure of the Experimental SFRC group, while the microstructure of specimens from each group was examined using scanning electron microscopy (SEM). Then, this study divided the specimens into three groups—Group 1 (Grandio blocks), Group 2 (Cerasmart 270), and Group 3 (Experimental SFRC)—with 30 specimens in each group. Each group was then subdivided into sub-groups for the fracture toughness test, which evaluated resistance to crack propagation, and the surface roughness test, which assessed surface topography. FTIR analysis showed that the experimental SFRC exhibited distinct spectral changes after polymerization, confirming successful chemical reactions and network formation. SEM analysis showed that the Experimental SFRC block had a polymeric matrix with randomly oriented, well-dispersed short fibers. Grandio blocs exhibited a dense nanohybrid structure with irregular fillers, while Cerasmart 270 displayed a more uniform microstructure with evenly dispersed nano-sized spherical fillers. The Experimental SFRC showed the highest fracture toughness (2.758 MPa·√m), surpassing the other groups (p < 0.05) and highlighting its superior resistance to crack propagation. Regarding surface roughness Ra, the novel Experimental SFRC group (0.182) presented a significant difference compared to other groups (p < 0.05) but within clinical acceptance, and they can be well polished for clinical use after milling. The Cerasmart 270 block showed the lowest surface roughness Ra (0.135) among the groups, which is attributed to its filler size, geometry, and composition, resulting in a smoother surface. The higher fracture toughness of the Experimental SFRC among the groups suggests superior resistance to crack propagation, attributed to the incorporation of short fibers that enhance energy absorption and reduce brittleness, thereby supporting its suitability for high-stress-bearing clinical applications. Full article
(This article belongs to the Special Issue Progress and Prospects in Dental Materials and Endodontic Sciences)
Show Figures

Figure 1

Back to TopTop