A Comprehensive Physicochemical Analysis Focusing on the Characterization and Stability of Valsartan Silver Nano-Conjugates
Abstract
1. Introduction
2. Results
2.1. Spectrophotometric Characterization of Mangifera indica Leaf Extract, AgNPs, and Val-AgNPs
2.2. FTIR Characterization
2.3. SEM and EDS Analysis
2.4. AFM Analysis
2.5. Zeta Potential Measurements and Particle Size Analysis
2.6. Differential Scanning Calorimetery
2.7. HPTLC and HPLC Analysis
2.8. pH Stability
2.9. Effect of MeOH on the Stability of Val-AgNPs
2.10. Hemolysis and Effect on Blood Cell Indices (Hemocompatibility)
3. Discussion
4. Materials and Methods
4.1. Chemicals and Plant Material
4.2. Preparation of Mangifera indica Leaf Extract
4.3. Green Synthesis of Silver Nanoparticles (AgNPs)
4.4. Green Synthesis of Valsartan Silver Nano-Conjugates (Val-AgNPs)
4.5. Characterization Techniques
4.5.1. Spectrophotometric Characterization of Mangifera indica Leaf Extract, AgNPs, and Val-AgNPs
4.5.2. FTIR Characterization
4.5.3. Scanning Electron Microscopy and Energy-Dispersive Spectroscopy
4.5.4. Atomic Force Spectroscopy
4.5.5. Zeta Potential Measurements and Particle Size Analysis
4.5.6. Differential Scanning Calorimetry
4.6. HPTLC and HPLC Analysis
4.7. pH Stability
4.8. Hemolysis and Effect on Blood Cell Indices (Hemocompatibility)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhaval, M.; Makwana, J.; Sakariya, E.; Dudhat, K. Drug Nanocrystals: A Comprehensive Review with Current Regulatory Guidelines. Curr. Drug Deliv. 2020, 17, 470–482. [Google Scholar] [CrossRef]
- Quodbach, J.; Preis, E.; Karkossa, F.; Winck, J.; Finke, J.H.; Steiner, D. Novel Strategies for the Formulation of Poorly Water-Soluble Drug Substances by Different Physical Modification Strategies with a Focus on Peroral Applications. Pharmaceuticals 2025, 18, 1089. [Google Scholar] [CrossRef] [PubMed]
- Prieto, C.; Evtoski, Z.; Pardo-Figuerez, M.; Hrakovsky, J.; Lagaron, J.M. Nanostructured Valsartan Microparticles with Enhanced Bioavailability Produced by High-Throughput Electrohydrodynamic Room-Temperature Atomization. Mol. Pharm. 2021, 18, 2947–2958. [Google Scholar] [CrossRef] [PubMed]
- Abada, E.; Mashraqi, A.; Modafer, Y.; Al Abboud, M.A.; El-Shabasy, A. Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi J. Biol. Sci. 2024, 31, 103877. [Google Scholar] [CrossRef] [PubMed]
- AlMohammed, H.I.; Khalaf, A.K.; Albalawi, A.E.; Alanazi, A.D.; Baharvand, P.; Moghaddam, A.; Mahmoudvand, H. Chitosan-Based Nanomaterials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review. Nanomaterials 2021, 11, 689. [Google Scholar] [CrossRef]
- Kanniah, P.; Chelliah, P.; Thangapandi, J.R.; Gnanadhas, G.; Mahendran, V.; Robert, M. Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. Int. J. Biol. Macromol. 2021, 189, 18–33. [Google Scholar] [CrossRef]
- Aslam, I.; Iqbal, J.; Peerzada, S.; Afridi, M.S.K.; Ishtiaq, S. Microscopic investigations and pharmacognostic techniques for the standardization of Caralluma edulis (Edgew.) Benth. ex Hook.f. Microsc. Res. Tech. 2019, 82, 1891–1902. [Google Scholar] [CrossRef]
- Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018, 46, 115–126. [Google Scholar] [CrossRef]
- Abdelghany, T.M.; Al-Rajhi, A.M.H.; Al Abboud, M.A.; Alawlaqi, M.M.; Magdah, A.G.; Helmy, E.A.M.; Mabrouk, A.S. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions—A Review. BioNanoScience 2018, 8, 5–16. [Google Scholar] [CrossRef]
- Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Rehman, A.U.; Khan, A.; Ullah, S.; Yuan, Q. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb. Pathog. 2017, 102, 133–142. [Google Scholar] [CrossRef]
- Miranda, A.; Akpobolokemi, T.; Chung, E.; Ren, G.; Raimi-Abraham, B.T. pH Alteration in Plant-Mediated Green Synthesis and Its Resultant Impact on Antimicrobial Properties of Silver Nanoparticles (AgNPs). Antibiotics 2022, 11, 1592. [Google Scholar] [CrossRef] [PubMed]
- Nadaroglu, H.; Onem, H.; Gungor, A.A. Green synthesis of Ce2O3 NPs and determination of its antioxidant activity. IET Nanobiotechnology 2017, 11, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gong, Y.; Hu, B.; Ouyang, B.; Pan, A.; Liu, J.; Liu, F.; Shang, X.-L.; Yang, X.-H.; Tu, G.; et al. Expert consensus on blood pressure management in critically ill patients. J. Intensive Med. 2023, 3, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U.F. Nanoparticles and their interactions with the dermal barrier. Derm. Endocrinol. 2009, 1, 197–206. [Google Scholar] [CrossRef]
- Larese, F.F.; D’AGostin, F.; Crosera, M.; Adami, G.; Renzi, N.; Bovenzi, M.; Maina, G. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 2009, 255, 33–37. [Google Scholar] [CrossRef]
- Zeb, A.; Arif, S.T.; Malik, M.; Shah, F.A.; Din, F.U.; Qureshi, O.S.; Lee, E.-S.; Lee, G.-Y.; Kim, J.-K. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig. 2019, 49, 485–517. [Google Scholar] [CrossRef]
- Kraeling, M.E.; Topping, V.D.; Keltner, Z.M.; Belgrave, K.R.; Bailey, K.D.; Gao, X.; Yourick, J.J. In vitro percutaneous penetration of silver nanoparticles in pig and human skin. Regul. Toxicol. Pharmacol. RTP 2018, 95, 314–322. [Google Scholar] [CrossRef]
- Taniguchi, M.; LaRocca, C.A.; Bernat, J.D.; Lindsey, J.S. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. J. Nat. Prod. 2023, 86, 1087–1119. [Google Scholar] [CrossRef]
- Azizi-Khereshki, N.; Mousavi, H.Z.; Dogaheh, M.G.; Farsadrooh, M.; Alizadeh, N.; Mohammadi, A. Synthesis of molecularly imprinted polymer as a nanosorbent for dispersive magnetic micro solid-phase extraction and determination of valsartan in biological samples by UV–Vis Spectrophotometry: Isotherm, kinetics, and thermodynamic studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 296, 122656. [Google Scholar] [CrossRef]
- Quevedo, A.C.; Guggenheim, E.; Briffa, S.M.; Adams, J.; Lofts, S.; Kwak, M.; Lee, T.G.; Johnston, C.; Wagner, S.; Holbrook, T.R.; et al. UV-Vis Spectroscopic Characterization of Nanomaterials in Aqueous Media. J. Vis. Exp. JoVE 2021, 176, e61764. [Google Scholar] [CrossRef]
- Samari, F.; Salehipoor, H.; Eftekhar, E.; Yousefinejad, S. Low-temperature biosynthesis of silver nanoparticles using mango leaf extract: Catalytic effect, antioxidant properties, anticancer activity and application for colorimetric sensing. New J. Chem. 2018, 42, 15905–15916. [Google Scholar] [CrossRef]
- Andresen, B.T.; Anderson, S.D.; Yeon, J.K.; Mireles, R. Valsartan. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 9780128012383. [Google Scholar] [CrossRef]
- Scroccarello, A.; Molina-Hernández, B., Jr.; Della Pelle, F.; Ciancetta, J.; Ferraro, G.; Fratini, E.; Valbonetti, L.; Copez, C.C.; Compagnone, D. Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger. Colloids Surf. B Biointerfaces 2021, 199, 111533. [Google Scholar] [CrossRef] [PubMed]
- Khalir, W.K.A.W.M.; Shameli, K.; Jazayeri, S.D.; Othman, N.A.; Jusoh, N.W.C.; Hassan, N.M. Biosynthesized Silver Nanoparticles by Aqueous Stem Extract of Entada spiralis and Screening of Their Biomedical Activity. Front. Chem. 2020, 8, 620. [Google Scholar] [CrossRef] [PubMed]
- Dhaka, A.; Mali, S.C.; Sharma, S.; Trivedi, R. A review on biological synthesis of silver nanopSarticles and their potential applications. Results Chem. 2023, 6, 101108. [Google Scholar] [CrossRef]
- Asif, M.; Yasmin, R.; Asif, R.; Ambreen, A.; Mustafa, M.; Umbreen, S. Green Synthesis of Silver Nanoparticles (AgNPs), Structural Characterization, and Their Antibacterial Potential. Dose-Response A Publ. Int. Hormesis Soc. 2022, 20, 15593258221088709. [Google Scholar] [CrossRef]
- Rahman, A.; Sravani, G.J.; Srividya, K.; Priyadharshni, A.D.R.; Narmada, A.; Sahithi, K.; Sai, T.K.; Padmavathi, Y. Development and validation of chemometric assisted FTIR spectroscopic method for simultaneous estimation of valsartan and hydrochlorothiazide in pure and pharmaceutical dosage forms. J. Young Pharm. 2020, 12, s51–s55. [Google Scholar] [CrossRef]
- Harshou, N.; Trefi, S.; Bitar, Y. Fourier transform infrared spectroscopy for quantitative determination of valsartan in bulk materials and in pharmaceutical dosage forms. Bull. Pharm. Sci. Assiut 2022, 45, 747–760. [Google Scholar] [CrossRef]
- Kale, K.B.; Shinde, M.A.; Patil, R.H.; Ottoor, D.P. Exploring the interaction of Valsartan and Valsartan-Zn(ll) complex with DNA by spectroscopic and in silico methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 264, 120329. [Google Scholar] [CrossRef]
- Aisida, S.O.; Madubuonu, N.; Alnasir, M.H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F.I. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci. 2020, 10, 305–315. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Atarod, M.; Sajjadi, M.; Sajadi, S.M.; Issaabadi, Z. Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 199–322. [Google Scholar] [CrossRef]
- Bhuiyan, S.H.; Miah, M.Y.; Paul, S.C.; Das Aka, T.; Saha, O.; Rahaman, M.; Sharif, J.I.; Habiba, O. Ashaduzzaman Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: Application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 2020, 6, e04603. [Google Scholar] [CrossRef]
- Srećković, N.Z.; Nedić, Z.P.; Monti, D.M.; D’elia, L.; Dimitrijević, S.B.; Mihailović, N.R.; Stanković, J.S.K.; Mihailović, V.B. Biosynthesis of Silver Nanoparticles Using Salvia pratensis L. Aerial Part and Root Extracts: Bioactivity, Biocompatibility, and Catalytic Potential. Molecules 2023, 28, 1387. [Google Scholar] [CrossRef]
- Ahmed, A.; Rauf, A.; Hemeg, H.A.; Qureshi, M.N.; Sharma, R.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Khan, I.; Alam, A.; Rahman, M. Green synthesis of gold and silver nanoparticles using Opuntia dillenii aqueous extracts: Characterization and their antimicrobial assessment. J. Nanomater. 2022, 2022, 4804116. [Google Scholar] [CrossRef]
- Sivalingam, A.M.; Pandian, A. Characterization of silver nanoparticles (AgNPs) synthesized using polyphenolic compounds from Phyllanthus emblica L. and their impact on cytotoxicity in human cell lines. Carbohydr. Polym. Technol. Appl. 2024, 8, 100535. [Google Scholar] [CrossRef]
- Hodoroaba, V.-D. Chapter 4.4—Energy-dispersive X-ray spectroscopy (EDS). In Micro and Nano Technologies, Characterization of Nanoparticles; Hodoroaba, V.-D., Unger, W.E.S., Shard, A.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 397–417. ISBN 9780128141823. [Google Scholar] [CrossRef]
- Grobelny, J.; DelRio, F.W.; Pradeep, N.; Kim, D.-I.; Hackley, V.A.; Cook, R.F. Size Measurement of Nanoparticles Using Atomic Force Microscopy: Version 1.1. 2009 Oct. In National Cancer Institute’s Nanotechnology Characterization Laboratory Assay Cascade Protocols; National Cancer Institute: Bethesda, MD, USA, 2005; NIST-NCL Joint Assay Protocol, PCC-6. Available online: https://www.ncbi.nlm.nih.gov/books/NBK604924/ (accessed on 23 November 2025).
- Chicea, D.; Nicolae-Maranciuc, A.; Doroshkevich, A.S.; Chicea, L.M.; Ozkendir, O.M. Comparative synthesis of silver nanoparticles: Evaluation of chemical reduction procedures, AFM and DLS size analysis. Materials 2023, 16, 5244. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Perveen, S.; Ali, M.; Jiao, T.; Sharma, A.S.; Hassan, H.; Devaraj, S.; Li, H.; Chen, Q. Bioinspired morphology-controlled silver nanoparticles for antimicrobial application. Mater. Sci. Eng. C 2020, 108, 110421. [Google Scholar] [CrossRef]
- Sabry, S.A.; El Razek, A.M.A.; Nabil, M.; Khedr, S.M.; El-Nahas, H.M.; Eissa, N.G. Brain-targeted delivery of Valsartan using solid lipid nanoparticles labeled with Rhodamine B; a promising technique for mitigating the negative effects of stroke. Drug Deliv. 2023, 30, 2179127. [Google Scholar] [CrossRef]
- Ghanbari, E.; Picken, S.J.; van Esch, J.H. Analysis of differential scanning calorimetry (DSC): Determining the transition temperatures, and enthalpy and heat capacity changes in multicomponent systems by analytical model fitting. J. Therm. Anal. Calorim. 2023, 148, 12393–12409. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, X.; Huang, X.; Xu, W. Low-Temperature Sintering of Nanosilver Paste on a Gold Film Surface. High Temp. Mater. Process. 2014, 33, 21–25. [Google Scholar] [CrossRef]
- Lee, S.; Phelan, P.E.; Taylor, R.A.; Prasher, R.; Dai, L. Low-temperature melting of silver nanoparticles in sub-cooled and saturated water. J. Heat Transf. 2016, 138, 52301. [Google Scholar] [CrossRef]
- Asoro, M.; Damiano, J.; Ferreira, P. Size effects on the melting temperature of silver nanoparticles: In-situ tem observations. Microsc. Microanal. 2009, 15, 706–707. [Google Scholar] [CrossRef]
- Nasr, A.M.; Moftah, F.; Abourehab, M.A.S.; Gad, S. Design, Formulation, and Characterization of Valsartan Nanoethosomes for Improving Their Bioavailability. Pharmaceutics 2022, 14, 2268. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, V.; Mamunya, Y.; Sytnyk, I.; Iurzhenko, M.; Krivtsun, I.; Rybalchenko, N.; Naumenko, K.; Artiukh, L.; Kowalczuk, M.; Demchenko, O.; et al. Fabrication of polylactide composites with silver nanoparticles by sputtering deposition and their antimicrobial and antiviral applications. Polym. Int. 2025, 74, 207–216. [Google Scholar] [CrossRef]
- Kalyan, G.P.; Ranganayakulu, B. Preparation and characterization of valsartan nanoparticles. Int. J. Curr. Trends Pharm. Res. 2025, 13, 30–35. [Google Scholar]
- Meyers, C.; Meyers, D. Thin-Layer Chromatography. Curr. Protoc. Nucleic Acid Chem. 2008, 34, A.3D.1–A.3D.13. [Google Scholar] [CrossRef]
- Deore, B.L.; Patil, A.S.; Mali, B.J.; Patil, S.; Ratnaparkhi, S. HPTLC APPROACH for simultaneous quantification of valsartan and sacubitril in bulk and tablet formulations. World J. Adv. Res. Rev. 2024, 23, 3110–3119. [Google Scholar] [CrossRef]
- Parambi, D.G.T.; Mathew, M.; Ganesan, V. Quantitative analysis of Valsartan in tablets formulations by High Performance Thin-Layer Chromatography. J. Appl. Pharm. Sci. 2001, 1, 76. [Google Scholar]
- Shah, N.J.; Suhagia, B.N.; Shah, R.R.; Patel, N.M. HPTLC Method for the Simultaneous Estimation of Valsartan and Hydrochlorothiazide in Tablet Dosage Form. Indian J. Pharm. Sci. 2009, 71, 72–74. [Google Scholar] [CrossRef]
- Bertrams, J.; Müller, M.B.; Kunz, N.; Kammerer, D.R.; Stintzing, F.C. Phenolic compounds as marker compounds for botanical origin determination of German propolis samples based on TLC and TLC-MS. J. Appl. Bot. Food Qual. 2013, 86, 143–153. [Google Scholar] [CrossRef]
- Kamireddy, T.; Sambu, P.; Lankalapalli, P.K.; Myneni, R.K.; Divadari, H. Stability-indicating RP-HPLC method development and validation for the quantification of amlodipine besylate and valsartan tablets in solid oral dosage form. Biomed. Chromatogr. BMC 2024, 38, e6017. [Google Scholar] [CrossRef]
- Velgosova, O.; Mačák, L.; Lisnichuk, M.; Varga, P. Influence of pH and Temperature on the Synthesis and Stability of Biologically Synthesized AgNPs. Appl. Nano 2025, 6, 22. [Google Scholar] [CrossRef]
- Silva-Holguín, P.N.; Garibay-Alvarado, J.A.; Reyes-López, S.Y. Silver Nanoparticles: Multifunctional Tool in Environmental Water Remediation. Materials 2024, 17, 1939. [Google Scholar] [CrossRef]
- Anigol, L.B.; Charantimath, J.S.; Gurubasavaraj, P.M. Effect of concentration and pH on the size of silver nanoparticles synthesized by green chemistry. Org. Med. Chem. Int. J. 2017, 3, 555622. [Google Scholar] [CrossRef]
- Liaqat, N.; Jahan, N.; Rahman, K.U.; Anwar, T.; Qureshi, H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front. Chem. 2022, 10, 952006. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. The influence of solvents and surfactants on the preparation of copper nanoparticles by a chemical reduction method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 25004. [Google Scholar] [CrossRef]
- Khoza, P.B.; Moloto, M.J.; Sikhwivhilu, L.M. The effect of solvents, acetone, water, and ethanol, on the morphological and optical properties of ZnO nanoparticles prepared by microwave. J. Nanotechnol. 2012, 2012, 195106. [Google Scholar] [CrossRef]
- de la Harpe, K.M.; Kondiah, P.P.; Choonara, Y.E.; Marimuthu, T.; du Toit, L.C.; Pillay, V. The Hemocompatibility of Nanoparticles: A Review of Cell–Nanoparticle Interactions and Hemostasis. Cells 2019, 8, 1209. [Google Scholar] [CrossRef]
- Laloy, J.; Minet, V.; Alpan, L.; Mullier, F.; Beken, S.; Toussaint, O.; Lucas, S.; Dogné, J.-M. Impact of Silver Nanoparticles on Haemolysis, Platelet Function and Coagulation. Nanobiomedicine 2014, 1, 4. [Google Scholar] [CrossRef]
- Luna-Vázquez-Gómez, R.; Arellano-García, M.E.; Toledano-Magaña, Y.; García-Ramos, J.C.; Radilla-Chávez, P.; Salas-Vargas, D.S.; Casillas-Figueroa, F.; Ruiz-Ruiz, B.; Pestryakov, A.; Bogdanchikova, N. Bell Shape Curves of Hemolysis Induced by Silver Nanoparticles: Review and Experimental Assay. Nanomaterials 2022, 12, 1066. [Google Scholar] [CrossRef]
- Sica, D.A.; Mannino, R. Antihypertensive medications and anemia. J. Clin. Hypertens. 2007, 9, 723–727. [Google Scholar] [CrossRef]
- Novartis Pharmaceuticals Canada Inc. DIOVAN (Valsartan) Tablets: Product Monograph Including Patient Medication Information. 2025. Available online: https://www.novartis.com/ca-en/sites/novartis_ca/files/diovan_pm_20250617_en.pdf (accessed on 23 November 2025).
- Parati, G.; Lombardi, C.; Pengo, M.; Bilo, G.; Ochoa, J.E. Current challenges for hypertension management: From better hypertension diagnosis to improved patients’ adherence and blood pressure control. Int. J. Cardiol. 2021, 331, 262–269. [Google Scholar] [CrossRef]
- Shen, M.; Zheng, C.; Chen, L.; Li, M.; Huang, X.; He, M.; Liu, C.; Lin, H.; Liao, W.; Bin, J.; et al. LCZ696 (sacubitril/valsartan) inhibits pulmonary hypertension induced right ventricular remodeling by targeting pyruvate dehydrogenase kinase 4. Biomed. Pharmacother. 2023, 162, 114569. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.J.; Yang, C.G.; Qiao, W.B.; Liu, Y.C.; Liu, S.Y.; Dong, G.J. Sacubitril/valsartan attenuates myocardial inflammation, hypertrophy, and fibrosis in rats with heart failure with preserved ejection fraction. Eur. J. Pharmacol. 2023, 961, 176170. [Google Scholar] [CrossRef] [PubMed]
- Katamesh, A.A.; Ibrahim, M.; Qelliny, M.R.; Abu Lila, A.S.; Subaiea, G.M.; Hassoun, S.M.; Abdallah, M.H.; Ismail, M.M.; El Sayed, M.M.; Mostafa, M. Innovative synergy in wound repair: Valsartan-loaded spanlastics gel coupled with cold atmospheric plasma for improved skin recovery. J. Drug Deliv. Sci. Technol. 2026, 115, 107641. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Duman, H.; Eker, F.; Akdaşçi, E.; Witkowska, A.M.; Bechelany, M.; Karav, S. Silver Nanoparticles: A Comprehensive Review of Synthesis Methods and Chemical and Physical Properties. Nanomaterials 2024, 14, 1527. [Google Scholar] [CrossRef]
- Arshad, F.; Naikoo, G.A.; Hassan, I.U.; Chava, S.R.; El-Tanani, M.; A Aljabali, A.; Tambuwala, M.M. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl. Biochem. Biotechnol. 2024, 196, 3636–3669. [Google Scholar] [CrossRef]
- Buarki, F.; AbuHassan, H.; Al Hannan, F.; Henari, F.Z. Green synthesis of iron oxide nanoparticles using hibiscus rosa sinensis flowers and their antibacterial activity. J. Nanotechnol. 2022, 2022, 5474645. [Google Scholar] [CrossRef]
- Sivakami, M.; Devi, K.R.; Renuka, R.; Thilagavathi, T. Green synthesis of magnetic nanoparticles via Cinnamomum verum bark extract for biological application. J. Environ. Chem. Eng. 2020, 8, 104420. [Google Scholar] [CrossRef]
- Bhusal, M.; Pathak, I.; Bhadel, A.; Shrestha, D.K.; Sharma, K.R. Synthesis of silver nanoparticles assisted by aqueous root and leaf extracts of Rhus chinensis Mill and its antibacterial activity. Heliyon 2024, 10, e33603. [Google Scholar] [CrossRef]
- Rodríguez-Félix, F.; López-Cota, A.G.; Moreno-Vásquez, M.J.; Graciano-Verdugo, A.Z.; Quintero-Reyes, I.E.; Del-Toro-Sánchez, C.L.; Tapia-Hernández, J.A. Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon 2021, 7, e06923. [Google Scholar] [CrossRef]
- Sur, U.K.; Ankamwar, B.; Karmakar, S.; Halder, A.; Das, P. Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha. Mater. Today Proc. 2018, 5, 2321–2329. [Google Scholar] [CrossRef]
- Peleshok, K.; Piponski, M.; Ajie, E.A.; Poliak, O.; Zarivna, N.; Denefil, O.; Logoyda, L. Novel HPLC-UV method for simultaneous determination of valsartan and atenolol in fixed dosage form; Study of green profile assessment. Pharmacia 2021, 68, 43–51. [Google Scholar] [CrossRef]
- Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv. Powder Technol. 2017, 28, 122–130. [Google Scholar] [CrossRef]
- Amutha, S.; Sridhar, S. Green synthesis of magnetic iron oxide nanoparticle using leaves of Glycosmis mauritiana and their antibacterial activity against human pathogens. J. Innov. Pharm. Biol. Sci. 2018, 5, 22–26. [Google Scholar]
- Rasheed, T.; Bilal, M.; Iqbal, H.M.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces 2017, 158, 408–415. [Google Scholar] [CrossRef]
- Talha, A.; Raja, D.A.; Hussain, D.; Malik, M.I. Gold nanoparticle-based selective and efficient spectrophotometric assay for the insecticide methamidophos. Microchim. Acta 2024, 191, 164. [Google Scholar] [CrossRef]
- Abdulnaby, H.M.; Elkashef, I.; Ibrahim, S.; Labeeb, A.M. Synthesis of Silver Nanoparticles with Different Decoration Forms Dispersed in Nematic Liquid Crystal. Egypt. J. Chem. 2024, 67, 601–613. [Google Scholar] [CrossRef]
- Shewale, S.; Undale, V.; Shelar, M.; Bhalchim, V.; Panchal, C.; Gundecha, S. Development & quantitative analysis of validated stability-indicating analytical method for estimation of valsartan and hydrochlorothiazide by high performance thin layer chromatography. Mater. Today Proc. 2022, 51, 2163–2171. [Google Scholar] [CrossRef]
- Ardiana, F.; Suciati; Indrayanto, G. Valsartan. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 40, pp. 431–493. [Google Scholar] [CrossRef]
- Ragab, M.A.A.; Galal, S.M.; Korany, M.A.; Ahmed, A.R. High performance thin-layer and high performance liquid chromatography coupled with photodiode array and fluorescence detectors for analysis of valsartan and sacubitril in their supramolecular complex with quantitation of sacubitril-related substance in raw material and tablets. J. Chromatogr. Sci. 2018, 56, 498–509. [Google Scholar] [CrossRef]
- Marciniak, L.; Nowak, M.; Trojanowska, A.; Tylkowski, B.; Jastrzab, R. The Effect of pH on the Size of Silver Nanoparticles Obtained in the Reduction Reaction with Citric and Malic Acids. Materials 2020, 13, 5444. [Google Scholar] [CrossRef]













| Element | Atomic % | Atomic % Error | Weight % | Weight % Error |
|---|---|---|---|---|
| C | 50.2 | 0.3 | 21.0 | 0.1 |
| N | 14.6 | 1.1 | 7.1 | 0.5 |
| O | 16.6 | 0.8 | 9.2 | 0.4 |
| Na | 0.0 | 0.0 | 0.0 | 0.0 |
| Mg | 1.5 | 0.1 | 1.2 | 0.1 |
| Al | 0.7 | 0.0 | 0.7 | 0.0 |
| Cl | 0.1 | 0.0 | 0.1 | 0.0 |
| Ca | 0.1 | 0.0 | 0.2 | 0.0 |
| As | 0.1 | 0.0 | 0.2 | 0.1 |
| Mo | 0.3 | 0.2 | 0.9 | 0.7 |
| Ag | 72.2 | 0.5 | 89.4 | 0.6 |
| Cd | 0.1 | 0.1 | 0.4 | 0.3 |
| Test Description | Control | AgNPs | Val-AgNPs | Val | Reference | Range Unit (s) |
|---|---|---|---|---|---|---|
| RED BLOOD CELLS | 4.01 | 3.95 * | 4.08 | 4 | 4.50–5.50 | ×106/μL |
| HEMOGLOBIN | 13.2 | 13.1 | 13.5 | 13.3 | 13.0–17.0 | g/dL |
| HAEMATOCRIT | 35.2 | 34.7 * | 35.9 | 35.1 | 40.0–50.0 | % |
| M.C.V. | 87.7 | 87.7 | 88 | 87.8 | 78.0–100.0 | fl |
| M.C.H. | 33 | 33.2 | 33.1 | 33.2 | 27.0–34.0 | pg |
| M.C.H.C. | 37.6 | 37.8 | 37.7 | 37.8 | 31.0–36.0 | gm/dL |
| RDW-CV | 13.7 | 13.4 | 13.7 | 13.6 | <14.5% | % |
| PLATELET COUNT | 271 | 269 | 260 * | 263 * | 150–400 | ×103/μL |
| Mean Plat Volume (MPV) | 10.7 | 10.5 | 10.5 | 10.6 | 7.1–9.5 | fl |
| TOTAL/DIFFERENTIAL W.B.C. IN % | ||||||
| W.B.C. COUNT | 7.8 | 7.74 | 7.81 | 7.9 | 4.0–11.0 | ×103/μL |
| Neutrophils | 66 | 61 * | 62 * | 60 * | 40–75 | % |
| Lymphocytes | 27 | 32 * | 31 * | 34 * | 20–45 | % |
| Monocytes | 5 | 4 * | 6 ** | 3 * | 2–8 | % |
| Eosinophils | 2 | 3 | 1 | 3 | 2–4 | % |
| Basophils | 0 | 0 | 0 | 0 | <1 | % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Qadir, A.; Hasan, K.S.; Bux, K.; Hasan, K.A.; Jalil, A.; Tanoli, A.K.; Hasan, K.A.; Naz, S.; Kashif, M.; Zaidi, N.F.; et al. A Comprehensive Physicochemical Analysis Focusing on the Characterization and Stability of Valsartan Silver Nano-Conjugates. Int. J. Mol. Sci. 2026, 27, 582. https://doi.org/10.3390/ijms27020582
Qadir A, Hasan KS, Bux K, Hasan KA, Jalil A, Tanoli AK, Hasan KA, Naz S, Kashif M, Zaidi NF, et al. A Comprehensive Physicochemical Analysis Focusing on the Characterization and Stability of Valsartan Silver Nano-Conjugates. International Journal of Molecular Sciences. 2026; 27(2):582. https://doi.org/10.3390/ijms27020582
Chicago/Turabian StyleQadir, Abdul, Khwaja Suleman Hasan, Khair Bux, Khwaja Ali Hasan, Aamir Jalil, Asad Khan Tanoli, Khwaja Akbar Hasan, Shahida Naz, Muhammad Kashif, Nuzhat Fatima Zaidi, and et al. 2026. "A Comprehensive Physicochemical Analysis Focusing on the Characterization and Stability of Valsartan Silver Nano-Conjugates" International Journal of Molecular Sciences 27, no. 2: 582. https://doi.org/10.3390/ijms27020582
APA StyleQadir, A., Hasan, K. S., Bux, K., Hasan, K. A., Jalil, A., Tanoli, A. K., Hasan, K. A., Naz, S., Kashif, M., Zaidi, N. F., Khan, A., Vohra, Z., Ralf, H., & Qaiser, S. (2026). A Comprehensive Physicochemical Analysis Focusing on the Characterization and Stability of Valsartan Silver Nano-Conjugates. International Journal of Molecular Sciences, 27(2), 582. https://doi.org/10.3390/ijms27020582

