The Effect of Thermal Annealing on Optical Properties and Surface Morphology of a Polymer: Fullerene- and Non-Fullerene-Blend Films Used in Organic Solar Cells
Abstract
1. Introduction
2. Experiment
2.1. Materials
2.2. Thin Films Deposition Method
2.3. Measurement Techniques
- -
- UV-Vis absorption
- -
- Ellipsometric measurements
- -
- AFM method
- -
- ATR-FTIR studies
- -
- Nano-IR characterization
- -
- Photovoltaic cells—preparation and characterization
3. Results and Discussion
3.1. Temperature Dependence of Absorption Spectra of Thin Films


3.2. Elipsometric Analysis
3.3. Surface Morphology of Thin Films
3.4. ATR-FTIR and Nano-IR Results of Measurements
3.5. J-V Characteristics of Fullerene and Non-Fullerene-Based BHJ Solar Cells
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heydari, M.; Heydari, A.; Amini, M. Solar power generation and sustainable energy: A review. Int. J. Technol. Sci. Res. 2023, 12, 342–349. Available online: https://ssrn.com/abstract=4515923 (accessed on 14 January 2026).
- Fazal, M.A.; Rubaiee, S. Progress of PV cell technology: Feasibility of building materials, cost, performance, and stability. Sol. Energy 2023, 258, 203–219. [Google Scholar] [CrossRef]
- Oshima, R.; Ogura, A.; Shoji, Y.; Makita, K.; Ubukata, A.; Koseki, S.; Imaizumi, M.; Sugaya, T. Ultra-high-speed growth of GaAs solar cells by triple-chamber hydride vapor phase epitaxy. Crystals 2023, 13, 370. [Google Scholar] [CrossRef]
- Li, Z.; Kong, X.; Zhang, J.; Zhang, P.; Li, A.; Zhang, X.; Li, X.; Tan, M.; Li, J.; Bin, H.; et al. Efficient open-air and as-cast processed organic solar cells enabled by optimized block and surface morphology using a low-cost terpolymer donor with enhanced dielectric constant. Nano Res. 2025, 18, 94908153. [Google Scholar] [CrossRef]
- Han, C.; Jin, Z.; Shen, C.; Liu, M.; Song, W.; Liu, Q.; Ge, Z. Green-Solvent-Processed Scalable Semi-Transparent Organic Solar Modules with 9.4% Efficiency and 42% Visible Transparency for Energy-Generating Windows. Adv. Energy Mater. 2025, 15, 2501682. [Google Scholar] [CrossRef]
- Shi, B.; Wang, J.; Bao, X.; Ma, W.; Yan, H. One plastic improves the shortages of photovoltaic and mechanical properties in flexible semitransparent organic photovoltaics. Chem. Commun. 2025, 61, 19861–19864. [Google Scholar] [CrossRef]
- Yu, J.; Pu, J.; Xie, D.; Ai, Z.; Lang, Y.; Cao, M.; Duan, C.; Lu, L.; Li, G. Semitransparent organic photovoltaics with wide geographical adaptability as sustainable smart windows. Nat. Commun. 2025, 16, 7421. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y. Narrowing the band gap: The key to high-performance organic photovoltaics. Acc. Chem. Res. 2020, 53, 1218–1228. [Google Scholar] [CrossRef]
- Wan, X.; Li, C.; Zhang, M.; Chen, Y. Acceptor–donor–acceptor type molecules for high performance organic photovoltaics–chemistry and mechanism. Chem. Soc. Rev. 2020, 49, 2828–2842. [Google Scholar] [CrossRef] [PubMed]
- Kan, B.; Kan, Y.; Zuo, L.; Shi, X.; Gao, K. Recent progress on all-small molecule organic solar cells using small-molecule nonfullerene acceptors. InfoMat 2021, 3, 175–200. [Google Scholar] [CrossRef]
- Li, S.; Li, C.Z.; Shi, M.; Chen, H. New phase for organic solar cell research: Emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 2020, 5, 1554–1567. [Google Scholar] [CrossRef]
- Zhou, R.; Jiang, Z.; Shi, Y.; Wu, Q.; Yang, C.; Zhang, J.; Lu, K.; Wei, Z. Moving Alkyl-Chain Branching Point Induced a Hierarchical Morphology for Efficient All-Small-Molecule Organic Solar Cells. Adv. Funct. Mater. 2020, 30, 2005426. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, Z.; Zhuang, J.; Kan, L.; Zhang, M.; Yin, Q.; Zhu, L.; Liu, F.; Zhang, Y.; Pei, S. Enhancing small-area and module device performance in organic photovoltaics through insulating polymer-induced manipulation of active layer morphology. J. Mater. Chem. C 2025, 13, 12451–12459. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, C.; Lei, W.; Yang, T.; Liang, Z.; Sun, K.; Zhao, C.; Chen, L.; Zhu, L.; Zeng, H.; et al. Achieving 20% toluene-processed binary organic solar cells via secondary regulation of donor aggregation in sequential processing. Nano-Micro Lett. 2025, 17, 206. [Google Scholar] [CrossRef]
- Peet, J.; Heeger, A.J.; Bazan, G.C. “Plastic” Solar Cells: Self-Assembly of Bulk Heterojunction Nanomaterials by Spontaneous Phase Separation. Acc. Chem. Res. 2009, 42, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhang, M.; Yuan, M.; Qian, Y.; Sun, Y.; Liu, F. Morphology Characterization of Bulk Heterojunction Solar Cells. Small Methods 2018, 2, 1700229. [Google Scholar] [CrossRef]
- Huang, Y.; Kramer, E.J.; Heeger, A.J.; Bazan, G.C. Bulk Heterojunction Solar Cells: Morphology and Performance Relationships. Chem. Rev. 2014, 114, 7006–7043. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Wu, W.; Jiang, M.; Yin, X.; He, Z.; Liu, J. The Application of Crystallization Kinetics in Optimizing Morphology of Active Layer in Non-Fullerene Solar Cells. Energies 2024, 17, 2262. [Google Scholar] [CrossRef]
- Hedley, G.J.; Ruseckas, A.; Samuel, I.D. Light harvesting for organic photovoltaics. Chem. Rev. 2017, 117, 796–837. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Chen, L.; Yuan, Y.; Fu, J.; Geng, C.; Wan, J.; Wang, H.Q. Optimization of active layers for efficient binary organic solar cells. Phys. Chem. Chem. Phys. 2025, 27, 301–307. [Google Scholar] [CrossRef]
- Wupur, A.; Chen, T.; Yu, J.; Su, S.; Wu, X.; Li, Y.; Zhu, Y.; Dong, J.; Yang, Y.; Zhang, B.; et al. Ambient-Compatible Solvent Bath Thermal Annealing for Highly Efficient Organic Solar Cells and Large-Area Modules. Adv. Mater. 2025, E14741. [Google Scholar] [CrossRef]
- Memon, W.A.; Deng, Z.; He, F. Recent development in solid additives enables high-performance organic solar cells. EnergyChem 2024, 6, 100129. [Google Scholar] [CrossRef]
- Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M.A. Solvent vapor annealing of block polymer thin films. Macromolecules 2013, 46, 5399–5415. [Google Scholar] [CrossRef]
- Dickey, K.C.; Anthony, J.E.; Loo, Y.L. Improving organic thin-film transistor performance through solvent-vapor annealing of solution-processable triethylsilylethynyl anthradithiophene. Adv. Mater. 2006, 18, 1721–1726. [Google Scholar] [CrossRef]
- Doumon, N.Y.; Wang, G.; Qiu, X.; Minnaard, A.J.; Chiechi, R.C.; Koster, L.J.A. 1,8-diiodooctane acts as a photo-acid in organic solar cells. Sci. Rep. 2019, 9, 4350. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.J.; Hopkinson, P.E.; Couderc, E.; Domanski, K.; Abdi-Jalebi, M.; Greenham, N.C. Critical light instability in CB/DIO processed PBDTTT-EFT: PC71BM organic photovoltaic devices. Org. Electron. 2016, 30, 225–236. [Google Scholar] [CrossRef]
- Tournebize, A.; Rivaton, A.; Peisert, H.; Chassé, T. The crucial role of confined residual additives on the photostability of P3HT: PCBM active layers. J. Phys. Chem. C 2015, 119, 9142–9148. [Google Scholar] [CrossRef]
- Khan, M.R.; Jarząbek, B. Comprehensive Analysis of Fullerene-and Non-Fullerene-Based Bulk Heterojunction Solar Cells Using Numerical Simulation. Coatings 2024, 14, 1078. [Google Scholar] [CrossRef]
- Abdelaziz, W.; Zekry, A.; Shaker, A.; Abouelatta, M. Numerical study of organic graded bulk heterojunction solar cell using SCAPS simulation. Sol. Energy 2020, 211, 375–382. [Google Scholar] [CrossRef]
- Thompson, B.C.; Fréchet, J.M. Polymer–fullerene composite solar cells. Angew. Chem. Int. Ed. 2008, 47, 58–77. [Google Scholar] [CrossRef]
- Anthony, J.E. Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem. Mater. 2011, 23, 583–590. [Google Scholar] [CrossRef]
- Gasparini, N.; Wadsworth, A.; Moser, M.; Baran, D.; McCulloch, I.; Brabec, C.J. The physics of small molecule acceptors for efficient and stable bulk heterojunction solar cells. Adv. Energy Mater. 2018, 8, 1703298. [Google Scholar] [CrossRef]
- Marks, R.N.; Halls, J.J.M.; Bradley, D.D.C.; Friend, R.H.; Holmes, A.B. The photovoltaic response in poly (p-phenylene vinylene) thin-film devices. J. Phys. Condens. Matter 1994, 6, 1379. [Google Scholar] [CrossRef]
- Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. [Google Scholar] [CrossRef]
- Knupfer, M. Exciton binding energies in organic semiconductors. Appl. Phys. A 2003, 77, 623–626. [Google Scholar] [CrossRef]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- Fu, J.; Fong, P.W.; Liu, H.; Huang, C.S.; Lu, X.; Lu, S.; Abdelsamie, M.; Kodalle, T.; Sutter-Fella, C.M.; Yang, Y.; et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760. [Google Scholar] [CrossRef]
- Méndez, M.; Fernández, D.; Viterisi, A.; Martínez-Ferrero, E.; Palomares, E. Joule-Heating Annealing to Increase Organic Solar Cells Performance: A Comparative Study. Appl. Sci. 2022, 12, 2552. [Google Scholar] [CrossRef]
- Ameslon, Y.; Ronsin, O.J.; Harreiß, C.; Will, J.; Rechberger, S.; Wu, M.; Spiecker, E.; Harting, J. Phase field simulations of thermal annealing for all-small molecule organic solar cells. Phys. Chem. Chem. Phys. 2025, 27, 2053–2067. [Google Scholar] [CrossRef]
- Güney, H.Y.; Avdan, Z.; Yetkin, H. Optimization of annealing temperature and the annealing effect on life time and stability of P3HT: PCBM-based organic solar cells. Mater. Res. Express 2019, 6, 045103. [Google Scholar] [CrossRef]
- Yi, Z.; Ni, W.; Zhang, Q.; Li, M.; Kan, B.; Wan, X.; Chen, Y. Effect of thermal annealing on active layer morphology and performance for small molecule bulk heterojunction organic solar cells. J. Mater. Chem. C 2014, 2, 7247–7255. [Google Scholar] [CrossRef]
- Savikhin, V.; Jagadamma, L.K.; Purvis, L.J.; Robertson, I.; Oosterhout, S.D.; Douglas, C.J.; Samuel, I.D.; Toney, M.F. Morphological, Chemical, and Electronic Changes of the Conjugated Polymer PTB7 with Thermal Annealing. iScience 2018, 2, 182–192. [Google Scholar] [CrossRef]
- Jarząbek, B.; Nitschke, P.; Hajduk, B.; Domański, M.; Bednarski, H. In situ thermo-optical studies of polymer: Fullerene blend films. Polym. Test. 2020, 88, 106573. [Google Scholar] [CrossRef]
- Jarzabek, B.; Nitshke, P.; Godzierz, M.; Palewicz, M.; Piasecki, T.; Gotszalk, T.P. Thermo-Optical and Structural Studies of Iodine-Doped Polymer: Fullerene Blend Films, Used in Photovoltaic Structures. Polymers 2022, 14, 858. [Google Scholar] [CrossRef]
- Nitschke, P.; Jarząbek, B.; Vasylieva, M.; Honisz, D.; Małecki, J.G.; Musioł, M.; Janeczek, H.; Chaber, P. Influence of chemical structure on thermal, optical and electrochemical properties of conjugated azomethines. Synth. Met. 2021, 273, 116689. [Google Scholar] [CrossRef]
- Jarząbek, B.; Schab-Balcerzak, E.; Chamenko, T.; Sęk, D.; Cisowski, J.; Volozhin, A. Optical properties of new aliphatic–aromatic co-polyimides. J. Non-Cryst. Solids 2002, 299–302, 1057–1061. [Google Scholar] [CrossRef]
- Cody, G. Hydrogenated Amorphous Silicon, Part B, Optical Properties. In Semiconductors and Semimetals; Pankove, J.I., Ed.; Academic Press: New York, NY, USA, 1984; Volume 21, pp. 11–80. [Google Scholar]
- Tauc, J.; Menth, A. States in the gap. J. Non-Cryst. Solids 1972, 8–10, 569–585. [Google Scholar] [CrossRef]
- Agostinelli, T.; Lilliu, S.; Labram, J.; Campoy-Quiles, M.; Hampton, M.; Pires, E.; Rawle, J.; Bikondoa, O.; Bradley, D.; Anthopoulos, T.; et al. Real-time investigation of crystallization and phase-segregation dynamics in P3HT: PCBM solar cells during thermal annealing. Adv. Funct. Mater. 2011, 21, 1701–1708. [Google Scholar] [CrossRef]
- Hajduk, B.; Jarka, P.; Bednarski, H.; Tański, T. Variable Temperature Spectroscopic Ellipsometry as a Tool for Insight into the Optical Order in the P3HT:PC70BM and PC70BM Layers. Polymers 2023, 15, 3752. [Google Scholar] [CrossRef]
- Hajduk, B.; Bednarski, H.; Jarząbek, B.; Nitschke, P.; Janeczek, H. Phase diagram of P3HT:PC70BM thin films based on variable-temperature spectroscopic ellipsometry. Polym. Test. 2020, 84, 106383. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, S.; Ren, J.; Gao, M.; Bi, P.; Ye, L.; Hou, J. Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy Environ. Sci. 2020, 13, 2864–2869. [Google Scholar] [CrossRef]
- Westermeier, C.; Cernescu, A.; Amarie, S.; Liewald, C.; Keilmann, F.; Nickel, B. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging. Nat. Commun. 2014, 5, 4101. [Google Scholar] [CrossRef] [PubMed]
- Mrkyvkova, N.; Cernescu, A.; Futera, Z.; Nebojsa, A.; Dubroka, A.; Sojkova, M.; Hulman, M.; Majkova, E.; Jergel, M.; Siffalovic, P.; et al. Nano-imaging of Orientational Defects in Semiconducting Organic Films. J. Phys. Chem. C 2021, 125, 9229−9235. [Google Scholar] [CrossRef]










| Film | Thickness [nm] at 20 °C | RMS [nm] at 20 °C | RMS [nm] at 100 °C | RMS [nm] at 200 °C |
|---|---|---|---|---|
| PTB7-Th:PC70BM | 63.00 | 0.79 | 0.914 | 0.98 |
| PTB7-Th:ZY-4Cl | 75.00 | 2.08 | 8.68 | 19.10 |
| PTB7-Th | 81.00 | 1.10 | 0.97 | 1.10 |
| ZY-4Cl | 43.00 | 21.00 | 18.60 | 14.90 |
| Classification | Voc [V] | Jsc [mA/cm2] | FF | PCE [%] |
|---|---|---|---|---|
| PTB7-Th:ZY-4Cl | 0.686 ± 0.013 | 4.76 ± 0.14 | 0.36 ± 0.015 | 1.19 ± 0.10 |
| PTB7-Th:PC70BM | 0.65 ± 0.044 | 6.06 ± 0.031 | 0.32 ± 0.01 | 1.22 ± 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jarząbek, B.; Khan, M.R.; Hajduk, B.; Marcinkowski, A.; Chaber, P.; Cernescu, A.; Durmaz, Y.C. The Effect of Thermal Annealing on Optical Properties and Surface Morphology of a Polymer: Fullerene- and Non-Fullerene-Blend Films Used in Organic Solar Cells. Polymers 2026, 18, 280. https://doi.org/10.3390/polym18020280
Jarząbek B, Khan MR, Hajduk B, Marcinkowski A, Chaber P, Cernescu A, Durmaz YC. The Effect of Thermal Annealing on Optical Properties and Surface Morphology of a Polymer: Fullerene- and Non-Fullerene-Blend Films Used in Organic Solar Cells. Polymers. 2026; 18(2):280. https://doi.org/10.3390/polym18020280
Chicago/Turabian StyleJarząbek, Bożena, Muhammad Raheel Khan, Barbara Hajduk, Andrzej Marcinkowski, Paweł Chaber, Adrian Cernescu, and Yasin C. Durmaz. 2026. "The Effect of Thermal Annealing on Optical Properties and Surface Morphology of a Polymer: Fullerene- and Non-Fullerene-Blend Films Used in Organic Solar Cells" Polymers 18, no. 2: 280. https://doi.org/10.3390/polym18020280
APA StyleJarząbek, B., Khan, M. R., Hajduk, B., Marcinkowski, A., Chaber, P., Cernescu, A., & Durmaz, Y. C. (2026). The Effect of Thermal Annealing on Optical Properties and Surface Morphology of a Polymer: Fullerene- and Non-Fullerene-Blend Films Used in Organic Solar Cells. Polymers, 18(2), 280. https://doi.org/10.3390/polym18020280

