Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = multiscale rough surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9861 KB  
Article
Multiscale Investigation of Interfacial Behaviors in Rubber Asphalt–Aggregate Systems Under Salt Erosion: Insights from Laboratory Tests and Molecular Dynamics Simulations
by Yun Li, Youxiang Si, Shuaiyu Wang, Peilong Li, Ke Zhang and Yuefeng Zhu
Materials 2025, 18(20), 4746; https://doi.org/10.3390/ma18204746 - 16 Oct 2025
Viewed by 264
Abstract
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber [...] Read more.
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber asphalt–aggregate systems, this study developed a multiscale characterization method integrating a macroscopic mechanical test, microscopic tests, and molecular dynamics (MD) simulations. Firstly, laboratory-controlled salt–freeze–thaw cycles were employed to simulate field conditions, followed by quantitative evaluation of interfacial bonding properties through pull-out tests. Subsequently, the atomic force microscopy (AFM) and Fourier transform infrared spectrometer (FTIR) tests were conducted to characterize the microscopic morphology evolution and chemical functional group transformations, respectively. Moreover, by combining the diffusion coefficients of water molecules, salt solution ions, and asphalt components, the mechanism of interfacial salt erosion was elucidated. The results demonstrate that increasing NaCl concentration and freeze–thaw cycles progressively reduces interfacial pull-out strength and fracture energy, with NaCl-induced damage becoming limited after twelve salt–freeze–thaw cycles. In detail, with exposure to 15 freeze–thaw cycles in 6% NaCl solution, the pull-out strength and fracture energy of the rubber asphalt–limestone aggregate decrease by 50.47% and 51.57%, respectively. At this stage, rubber asphalt exhibits 65.42% and 52.34% increases in carbonyl and sulfoxide indexes, respectively, contrasted by 49.24% and 42.5% decreases in aromatic and aliphatic indexes. Long-term exposure to salt–freeze–thaw conditions promotes phase homogenization, ultimately reducing surface roughness and causing rubber asphalt to resemble matrix asphalt morphologically. At the rubber asphalt–NaCl solution–aggregate interface, the diffusion of Na+ is faster than that of Cl. Meanwhile, compared with other asphalt components, saturates exhibit notably enhanced mobility under salt erosion conditions. The synergistic effects of accelerated aging, salt crystallization pressure, and enhanced ionic diffusion jointly induce the deterioration of interfacial bonding, which accounts for the decrease in macroscopic pull-out strength. This multiscale investigation advances understanding of salt-induced deterioration while providing practical insights for developing durable asphalt mixtures in cold regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 1098 KB  
Review
Review of Nano- and Micro- Indentation Tests for Rocks
by Qingqing He and Heinz Konietzky
Geosciences 2025, 15(10), 389; https://doi.org/10.3390/geosciences15100389 - 7 Oct 2025
Viewed by 520
Abstract
Nano- and micro-indentation have become essential tools for quantifying the micromechanical behavior of rocks beyond traditional macroscopic tests. This review summarizes the historical evolution, experimental methodologies, and interpretation models (e.g., Oliver–Pharr, Doerner–Nix, energy-based methods, Hertz/ECM/Lawn), with a particular focus on rock-specific challenges such [...] Read more.
Nano- and micro-indentation have become essential tools for quantifying the micromechanical behavior of rocks beyond traditional macroscopic tests. This review summarizes the historical evolution, experimental methodologies, and interpretation models (e.g., Oliver–Pharr, Doerner–Nix, energy-based methods, Hertz/ECM/Lawn), with a particular focus on rock-specific challenges such as heterogeneity, anisotropy, and surface roughness. A structured literature survey (1980–August 2025) covers representative studies on shale, limestone, marble, sandstone, claystone, and granite. The transition from classical hardness measurements to advanced instrumented indentation has enabled more reliable determination of localized properties, including hardness, elastic modulus, fracture toughness, and creep. Special attention is given to the applicability and limitations of different interpretation models when applied to heterogeneous and anisotropic rocks. Current challenges include high sensitivity to surface conditions and difficulties in capturing the full complexity of natural rock behavior. Looking forward, promising directions involve intelligent systems that integrate AI-driven data analytics, robotic automation, and multiscale modeling (from molecular dynamics to continuum FEM) to enable predictive material design. This review aims to provide geoscientists and engineers with a comprehensive foundation for the effective application and further development of indentation-based testing in rock mechanics and geotechnical engineering. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

12 pages, 3173 KB  
Article
Effect of Grain Size on Polycrystalline Copper Finish Quality of Ultra-Precision Cutting
by Chuandong Zhang, Xinlei Yue, Kaiyuan You and Wei Wang
Micromachines 2025, 16(10), 1133; https://doi.org/10.3390/mi16101133 - 30 Sep 2025
Viewed by 299
Abstract
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical [...] Read more.
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical modeling to simulate nanoscale cutting processes in polycrystalline copper with controlled grain structures, coupled with experimental ultra-precision machining validation. Comprehensive analysis of stress distribution, subsurface damage formation, and cutting force evolution reveals that refined grain structures promote more homogeneous plastic deformation, resulting in superior surface finish with reduced roughness and diminished grain boundary step formation. However, the enhanced grain boundary density in fine-grained specimens necessitates increased cutting energy input. These findings establish critical process–structure–property relationships essential for advancing precision manufacturing of copper-based optical systems. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

25 pages, 6338 KB  
Article
Multi-Scale Model of Mid-Frequency Errors in Semi-Rigid Tool Polishing of Diamond-Turned Electroless Nickel Mirror
by Pengfeng Sheng, Jingjing Xia, Jun Yu, Kun Wang and Zhanshan Wang
J. Manuf. Mater. Process. 2025, 9(10), 325; https://doi.org/10.3390/jmmp9100325 - 30 Sep 2025
Viewed by 375
Abstract
Semi-rigid tool polishing is widely used in the high-precision manufacturing of electroless nickel surface due to its stable material removal and high efficiency in correcting mid- and high-frequency profile errors. However, predicting mid-frequency errors remains challenging due to the complexity of their underlying [...] Read more.
Semi-rigid tool polishing is widely used in the high-precision manufacturing of electroless nickel surface due to its stable material removal and high efficiency in correcting mid- and high-frequency profile errors. However, predicting mid-frequency errors remains challenging due to the complexity of their underlying sources. In this study, a theoretical model for semi-rigid tool polishing was developed based on multi-scale contact theory, incorporating a bridging model, rough surface contact, and Hertzian contact mechanics. The model accounts for the effects of tool surface roughness, polishing force, and path spacing. A series of experiments on diamond-turned electroless nickel mirrors was conducted to quantitatively evaluate the model’s feasibility and accuracy. The results demonstrate that the model can effectively predict mid-frequency errors, reveal the material removal mechanisms in semi-rigid polishing, and guide the optimization of process parameters. Ultimately, a surface with mid-frequency errors of 0.59 nm Rms (measured over a 1.26 mm × 0.94 mm window) was achieved, closely matching the predicted value of 0.64 nm. Full article
Show Figures

Figure 1

26 pages, 21628 KB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Cited by 1 | Viewed by 615
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

22 pages, 4555 KB  
Article
Elastic–Plastic Analysis of Asperity Based on Wave Function
by Zijian Xu, Min Zhu, Wenjuan Wang, Ming Guo, Shengao Wang, Xiaohan Lu and Ziwei Li
Materials 2025, 18(15), 3507; https://doi.org/10.3390/ma18153507 - 26 Jul 2025
Viewed by 402
Abstract
This paper proposes an improved wave function asperity elastic–plastic model. A cosine function that could better fit the geometric morphology was selected to construct the asperity, the elastic phase was controlled by the Hertz contact theory, the elastoplastic transition phase was corrected by [...] Read more.
This paper proposes an improved wave function asperity elastic–plastic model. A cosine function that could better fit the geometric morphology was selected to construct the asperity, the elastic phase was controlled by the Hertz contact theory, the elastoplastic transition phase was corrected by the hyperbolic tangent function, and the fully plastic phase was improved by the projected area theory. The model broke through the limitations of the spherical assumption and was able to capture the stress concentration and plastic flow phenomena. The results show that the contact pressure in the elastic phase was 22% higher than that of the spherical shape, the plastic strain in the elastoplastic phase was 52% lower than that of the spherical shape, and the fully plastic phase reduced the contact area error by 20%. The improved hyperbolic tangent function eliminated the unphysical oscillation phenomenon in the elastoplastic phase and ensured the continuity and monotonicity of the contact variables, with an error of <5% from the finite element analysis. Meanwhile, extending the proposed model, we developed a rough surface contact model, and it was verified that the wavy asperity could better match the mechanical properties of the real rough surface and exhibited progressive stiffness reduction during the plastic flow process. The model in this paper can provide a theoretical basis for predicting stress distribution, plastic evolution, and multi-scale mechanical behavior in the connection interface. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

19 pages, 3112 KB  
Article
Durable Superhydrophobic Composite Coating Based on Hydrangea-like SiO2 Nanoparticles with Excellent Performance in Anticorrosion, Drag Reduction, and Antifouling
by Yuhao Xue, Yamei Zhao, Xiaoqi Gu, Mengdan Huo, Kunde Yang, Mingyu Liu, Sixian Fan and Maoyong Zhi
Materials 2025, 18(15), 3443; https://doi.org/10.3390/ma18153443 - 23 Jul 2025
Viewed by 578
Abstract
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic [...] Read more.
Superhydrophobic coatings possess distinct wettability characteristics and hold significant potential in metal corrosion protection and underwater drag reduction. However, their practical application is often hindered by poor durability arising from the fragility of their micro/nanostructured surface roughness. In this study, a durable superhydrophobic coating featuring a hierarchical, hydrangea-like micro/nanostructure was successfully fabricated on an aluminum alloy substrate via a simple one-step cold-spraying technique. The coating consisted of hydrangea-shaped SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDT) to produce multiscale roughness, while epoxy resin (EP) served as the binding matrix to enhance mechanical integrity. The hydrangea-like SiO2 nanostructures were characterized by solid cores and wrinkled, petal-like outgrowths. This unique morphology not only increased the surface roughness but also provided more active sites for air entrapment, thereby enhancing the coating’s overall performance. The h-SiO2@PFDT-EP composite coating exhibited excellent superhydrophobicity, with a WCA of 170.1° ± 0.8° and a SA of 2.7° ± 0.5°. Durability was evaluated through sandpaper abrasion, tape peeling, acid and alkali immersion, artificial weathering, and salt spray tests. The results demonstrated that the coating retained stable superhydrophobic performance under various environmental stresses. Compared with bare 6061 aluminum and EP coatings, its corrosion current density was reduced by four and three orders of magnitude, respectively. Furthermore, the coating achieved a maximum drag-reduction rate of 31.01% within a velocity range of 1.31–7.86 m/s. The coating also displayed excellent self-cleaning properties. Owing to its outstanding durability, corrosion resistance, and drag-reducing capability, this one-step fabricated superhydrophobic coating showed great promise for applications in marine engineering and defense. Full article
Show Figures

Figure 1

15 pages, 2775 KB  
Article
Quantifying the Complexity of Rough Surfaces Using Multiscale Entropy: The Critical Role of Binning in Controlling Amplitude Effects
by Alex Kondi, Vassilios Constantoudis, Panagiotis Sarkiris and Evangelos Gogolides
Mathematics 2025, 13(15), 2325; https://doi.org/10.3390/math13152325 - 22 Jul 2025
Cited by 1 | Viewed by 499
Abstract
A salient feature of modern material surfaces used in cutting-edge technologies is their structural and spatial complexity, which endows them with novel properties and multifunctionality. The quantitative characterization of material complexity is a challenge that must be addressed to optimize their production and [...] Read more.
A salient feature of modern material surfaces used in cutting-edge technologies is their structural and spatial complexity, which endows them with novel properties and multifunctionality. The quantitative characterization of material complexity is a challenge that must be addressed to optimize their production and performance. While numerous metrics exist to quantify the complexity of spatial structures in various scientific domains, methods specifically tailored for characterizing the spatial complexity of material surface morphologies at the micro- and nanoscale are relatively scarce. In this paper, we utilize the concept of multiscale entropy to quantify the complexity of surface morphologies of rough surfaces across different scales and investigate the effects of amplitude fluctuations (i.e., surface height distribution) in both stepwise and smooth self-affine rough surfaces. The crucial role of the binning scheme in regulating amplitude effects on entropy and complexity measurements is highlighted and explained. Furthermore, by selecting an appropriate binning strategy, we analyze the impact of 2D imaging on the complexity of a rough surface and demonstrate that imaging can artificially introduce peaks in the relationship between complexity and surface amplitude. The results demonstrate that entropy-based spatial complexity effectively captures the scale-dependent heterogeneity of stepwise rough surfaces, providing valuable insights into their structural properties. Full article
(This article belongs to the Special Issue Chaos Theory and Complexity)
Show Figures

Figure 1

11 pages, 1841 KB  
Article
Construction of Silane-Modified Diatomite-Magnetic Nanocomposite Superhydrophobic Coatings Using Multi-Scale Composite Principle
by Dan Li, Mei Wu, Rongjun Xia, Jiwen Hu and Fangzhi Huang
Coatings 2025, 15(7), 786; https://doi.org/10.3390/coatings15070786 - 3 Jul 2025
Cited by 1 | Viewed by 769
Abstract
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were [...] Read more.
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were functionalized with octyltriethoxysilane (OTS) to prepare superhydrophobic diatomite flakes (ODEM) and OFe3O4 nanoparticles. Following the multi-scale composite principle, ODEM and OFe3O4 nanoparticles were blended and crosslinked via the hydroxyl-initiated ring-opening polymerization of epoxy resin (EP), resulting in an EP/ODEM@OFe3O4 composite coating with hierarchical roughness. Microstructural characterization revealed that the micrometer-scale porous structure of ODEM and the nanoscale protrusions of OFe3O4 form a hierarchical micro–nano topography. The special topography combined with the low surface energy property leads to a contact angle of 158°. Additionally, the narrow bandgap semiconductor characteristic of OFe3O4 induces the localized surface plasmon resonance effect. This enables the coating to attain 80% light absorption across the 350–2500 nm spectrum, and rapidly heat to 45.8 °C within 60 s under 0.5 sun, thereby demonstrating excellent deicing performance. This work provides a theoretical foundation for developing environmentally tolerant superhydrophobic photothermal coatings, which exhibit significant application potential in the field of anti-icing and anti-fouling. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

33 pages, 15773 KB  
Article
Surface Change and Stability Analysis in Open-Pit Mines Using UAV Photogrammetric Data and Geospatial Analysis
by Abdurahman Yasin Yiğit and Halil İbrahim Şenol
Drones 2025, 9(7), 472; https://doi.org/10.3390/drones9070472 - 2 Jul 2025
Cited by 1 | Viewed by 1921
Abstract
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 [...] Read more.
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 and 2025, high-resolution images were combined with dense point clouds produced by Structure from Motion (SfM) methods. Iterative Closest Point (ICP) registration (RMSE = 2.09 cm) and Multiscale Model-to-Model Cloud Comparison (M3C2) analysis was used to quantify the surface changes. The study found a volumetric increase of 7744.04 m3 in the dump zones accompanied by an excavation loss of 8359.72 m3, so producing a net difference of almost 615.68 m3. Surface risk factors were evaluated holistically using a variety of morphometric criteria. These measures covered surface variation in several respects: their degree of homogeneity, presence of any unevenness or texture, verticality, planarity, and linearity. Surface variation > 0.20, roughness > 0.15, and verticality > 0.25 help one to identify zones of increased instability. Point cloud modeling derived from UAVs and GIS-based spatial analysis were integrated to show that morphological anomalies are spatially correlated with possible failure zones. Full article
Show Figures

Figure 1

27 pages, 9323 KB  
Article
Dispersion Mechanism and Sensitivity Analysis of Coral Sand
by Xiang Cui, Ru Qu and Mingjian Hu
J. Mar. Sci. Eng. 2025, 13(7), 1249; https://doi.org/10.3390/jmse13071249 - 28 Jun 2025
Viewed by 512
Abstract
A lime–sand island–reef formation has a dual structure consisting of an overlying loose or weakly consolidated coral sand (CS) layer and an underlying reef limestone layer. The coral sand layer is the sole carrier of the underground freshwater lens in the lime–sand island–reef, [...] Read more.
A lime–sand island–reef formation has a dual structure consisting of an overlying loose or weakly consolidated coral sand (CS) layer and an underlying reef limestone layer. The coral sand layer is the sole carrier of the underground freshwater lens in the lime–sand island–reef, and it differs in terms of its hydraulic properties from common terrigenous quartz sand (QS). This study investigated the mechanism of freshwater lens formation, dominated by solute dispersion, combining multi-scale experiments and numerical simulations (GMS) to reveal the control mechanisms behind the dispersion properties of coral sand and their role in freshwater lens formation. Firstly, the dispersion test and microscopic characterization revealed the key differences in coral sand in terms of its roundness, roughness, particle charge, and surface hydrophilicity. Accordingly, a hierarchical conversion model for the coral sand–quartz sand coefficient of dispersion (COD) was established (R2 > 0.99). Further, combining this with numerical simulation in GMS revealed that the response pattern of the coefficient of dispersion to key parameters of freshwater lens development is as follows: freshwater appearance time > steady-state freshwater body thickness > steady-state freshwater reserve > lens stabilization time. These results clarify the development mechanism and formation process behind freshwater lenses on island reefs, from the micro to the macro scale, and provide a scientific basis for optimizing the protection of freshwater resources in coral islands and guiding the construction of artificial islands. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 5413 KB  
Article
Quantitative Analysis of the Influence of Volatile Matter Content in Coal Samples on the Fractal Dimension of Their Nanopore Characteristics
by Lin Sun, Shoule Zhao, Jianghao Wei, Yunfeng Li, Dun Wu and Caifang Wu
Appl. Sci. 2025, 15(13), 7236; https://doi.org/10.3390/app15137236 - 27 Jun 2025
Cited by 1 | Viewed by 534
Abstract
As a crucial energy source and chemical raw material, coal’s micro-pore structure holds a pivotal influence on the occurrence and development of coalbed methane (CBM). This study systematically analyzed the nano-pore structure, surface roughness, and fractal characteristics of six coal samples with varying [...] Read more.
As a crucial energy source and chemical raw material, coal’s micro-pore structure holds a pivotal influence on the occurrence and development of coalbed methane (CBM). This study systematically analyzed the nano-pore structure, surface roughness, and fractal characteristics of six coal samples with varying volatile matter content (Vdaf) using Atomic Force Microscopy (AFM) combined with Scanning Electron Microscopy (SEM), revealing the correlation between volatile matter and the micro-physical properties of coal. Through AFM three-dimensional topographical observations, it was found that coal samples with higher volatile matter exhibited significant gorge-like undulations on their surfaces, with pores predominantly being irregular macropores, whereas low volatile matter coal samples had smoother surfaces with dense and regular pores. Additionally, the surface roughness parameters (Ra, Rq) of coal positively correlated with volatile matter content. Meanwhile, quantitative analysis of nano-pore parameters using Gwyddion software showed that an increase in volatile matter led to a decline in pore count, shape factor, and area porosity, while the average pore diameter increased. The fractal dimension of samples with different volatile matter contents was calculated, revealing a decrease in fractal dimension with rising volatile matter. Nano-ring analysis indicated that the total number of nano-rings was significantly higher in low volatile matter coal samples compared to high volatile matter ones, but the nano-ring roughness (Rr) increased with volatile matter content. SEM images further validated the AFM results. Through multi-scale characterization and quantitative analysis, this study clarified the extent to which volatile matter affects the nano-pore structure and surface properties of coal, providing critical data support for efficient CBM development and reservoir evaluation. Full article
Show Figures

Figure 1

16 pages, 1792 KB  
Article
A TransUNet-Based Intelligent Method for Identifying Internal Solitary Waves in the South China Sea
by Zubiao Wan, Yuhang Zhu, Shiqiu Peng, Jieshuo Xie, Shaotian Li and Tao Song
J. Mar. Sci. Eng. 2025, 13(6), 1154; https://doi.org/10.3390/jmse13061154 - 11 Jun 2025
Viewed by 647
Abstract
Internal Solitary Waves (ISWs) play a crucial role in energy transfer among multi-scale oceanic motions. They also have a significant impact on marine transportation and underwater communication. To date, the identification of ISWs has been primarily developed based on Synthetic Aperture Radar (SAR) [...] Read more.
Internal Solitary Waves (ISWs) play a crucial role in energy transfer among multi-scale oceanic motions. They also have a significant impact on marine transportation and underwater communication. To date, the identification of ISWs has been primarily developed based on Synthetic Aperture Radar (SAR) imagery. However, under severe sea conditions, the characteristics of ISWs at the ocean surface are generally disrupted, complicating their detection through satellite imagery. To mitigate the disturbances caused by severe weather, it is essential to account for ocean thermocline variability. In this study, we propose an automatic identification method for ISWs, utilizing the LLC4320 dataset from the South China Sea region for model training. The main innovations include: (1) The use of model data that incorporates both sea surface and underwater features, enabling accurate identification under rough sea conditions; (2) By incorporating the underwater features of ISWs, a TransUNet-based automatic identification method with some modifications, such as Dynamic Snake Convolution, is developed. The experimental results demonstrate that the model accurately identifies ISWs, achieving a Dice coefficient of 66.32%, Hausdorff_95 (HD95) of 5.27, Mean Pixel Accuracy (MPA) of 85.42%, and Mean Intersection over Union (MIoU) of 73.74% on our dataset, outperforming the other methods. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

20 pages, 8651 KB  
Article
Hierarchical Modeling of Archaeological and Modern Flax Fiber: From Micro- to Macroscale
by Vasuki Rajakumaran, Johnny Beaugrand, Alessia Melelli, Mario Scheel, Timm Weitkamp, Jonathan Perrin, Alain Bourmaud, Henry Proudhon and Sofiane Guessasma
Fibers 2025, 13(6), 76; https://doi.org/10.3390/fib13060076 - 9 Jun 2025
Cited by 1 | Viewed by 1210
Abstract
Flax fiber reinforcements weaken with aging and microstructural changes, limiting their applications. Here, we examine the effects of microstructure and aging on flax fiber elements’ performance by using 4000-year-old and modern Egyptian flax as references through multi-scale numerical modeling. This study introduces a [...] Read more.
Flax fiber reinforcements weaken with aging and microstructural changes, limiting their applications. Here, we examine the effects of microstructure and aging on flax fiber elements’ performance by using 4000-year-old and modern Egyptian flax as references through multi-scale numerical modeling. This study introduces a novel investigation into the tensile stress distribution behavior of archaeological and modern flax yarns. The finite element (FE) model is derived from 3D volumes obtained via X-ray microtomography and tensile testing in the elastic domain. At the microscale, fibers exhibit higher axial stress concentrations around surface defects and pores, particularly in regions with kink bands and lumens. At the mesoscale, fiber bundles show increased stress concentrations at inter-fiber voids and lumen, with larger bundles exhibiting greater stress heterogeneity, especially around pores and surface roughness. At the macroscale, yarns display significant stress heterogeneity, especially around microstructural defects like pores and fiber–fiber cohesion points. Aged fibers from ancient Egyptian cultural heritage in particular demonstrate large fiber discontinuities due to long-term degradation or aging. These numerical observations highlight how porosity, surface imperfections, and structural degradation increase stress concentration, leading to fiber rupture and mechanical failure. This insight reveals how aging and defects impact flax fiber performance and durability. Full article
Show Figures

Figure 1

18 pages, 2426 KB  
Article
Strain-Hardening and Strain-Softening Phenomena Observed in Thin Nitride/Carbonitride Ceramic Coatings During the Nanoindentation Experiments
by Uldis Kanders, Karlis Kanders, Ernests Jansons, Irina Boiko, Artis Kromanis, Janis Lungevics and Armands Leitans
Coatings 2025, 15(6), 674; https://doi.org/10.3390/coatings15060674 - 1 Jun 2025
Cited by 1 | Viewed by 746
Abstract
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high [...] Read more.
This study investigates the nanomechanical and tribological behavior of multilayered nitride/carbonitride nanostructured superlattice type coatings (NTCs) composed of alternating TiAlSiNb-N and TiCr-CN sublayers, deposited via high-power ion-plasma magnetron sputtering (HiPIPMS) technique. Reinforced with refractory elements Cr and Nb, the NTC samples exhibit high nanohardness (39–59 GPa), low friction, and excellent wear resistance. A novel analytical approach was introduced to extract stress–strain field (SSF) gradients and divergences from nanoindentation data, revealing alternating strain-hardening and strain-softening cycles beneath the incrementally loaded indenter. The discovered oscillatory behavior, consistent across all samples under the investigation, suggests a general deformation mechanism in thin films under incremental loading. Fourier analysis of the SSF gradient oscillatory pattern revealed a variety of characteristic dominant wavelengths within the length-scale interval (0.84–8.10) nm, indicating multi-scale nanomechanical responses. Additionally, the NTC samples display an anisotropic coating morphology exhibited as unidirectional undulating surface roughness waves, potentially attributed to atomic shadowing, strain-induced instabilities, and limited adatom diffusion. These findings deepen our understanding of nanoscale deformation in advanced PVD coatings and underscore the utility of SSF analysis for probing thin-film mechanics. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

Back to TopTop