Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = multiple stop bands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9201 KB  
Article
Study on the Complex Band Structure and Auxetic Behavior of Fractal Re-Entrant Honeycomb Metamaterials
by Jingru Li, Siyu Chen, Wei Lin and Yuzhang Lin
Materials 2025, 18(24), 5695; https://doi.org/10.3390/ma18245695 - 18 Dec 2025
Viewed by 272
Abstract
In order to break the limitation of metamaterials used in the vibration and sound reduction field, this work designed a two-dimensional metamaterial based on the re-entrant honeycomb lattice and using the fractal technique. The first, second, and third-order fractal re-entrant honeycomb metamaterials are [...] Read more.
In order to break the limitation of metamaterials used in the vibration and sound reduction field, this work designed a two-dimensional metamaterial based on the re-entrant honeycomb lattice and using the fractal technique. The first, second, and third-order fractal re-entrant honeycomb metamaterials are analyzed, respectively, within the established numerical models responsible for predicting the effective Poisson’s ratio, the real band structure, and the attenuation diagram. The effects of the fractal order, fractal ratio, and geometrical characteristics on these multiple functionalities are investigated simultaneously. Through adjusting the proposed fractal metamaterials, the results show that the transformation of auxetic performance, the number and location of multiple stop bands, the attenuation level inside the stop bands, and the wave decaying directionality can be flexibly tuned. This demonstrates that the compatibility of mechanical features and wave motion characteristics is successfully achieved in the present work. It provides a theoretical and technical basis for the development of multi-functional design methods of metamaterials in solving engineering problems. Full article
(This article belongs to the Special Issue Advanced Materials in Acoustics and Vibration)
Show Figures

Graphical abstract

20 pages, 3577 KB  
Article
Hyperspectral Remote Sensing and Artificial Intelligence for High-Resolution Soil Moisture Prediction
by Ki-Sung Kim, Junwon Lee, Jeongjun Park, Gigwon Hong and Kicheol Lee
Water 2025, 17(21), 3069; https://doi.org/10.3390/w17213069 - 27 Oct 2025
Viewed by 1271
Abstract
Reliable field estimation of soil moisture supports hydrology and water resources management. This study develops a drone-based hyperspectral approach in which visible and near-infrared reflectance is paired one-to-one with gravimetric water content measured by oven drying, yielding 1000 matched samples. After standardization, outlier [...] Read more.
Reliable field estimation of soil moisture supports hydrology and water resources management. This study develops a drone-based hyperspectral approach in which visible and near-infrared reflectance is paired one-to-one with gravimetric water content measured by oven drying, yielding 1000 matched samples. After standardization, outlier control, ranked wavelength selection, and light feature engineering, several predictors were evaluated. Conventional machine learning methods, including simple and multiple regression and tree-based ensembles, were limited by band collinearity and piecewise approximations and therefore failed to meet the accuracy target. Gradient boosting reached the target but used different trade-offs in variable sensitivity. An artificial neural network with three hidden layers, rectified linear unit activations, and dropout was trained using a feature count sweep and early stopping. With ten predictors, the model achieved a coefficient of determination of 0.9557, demonstrating accurate mapping from hyperspectral reflectance to gravimetric water content and providing a reproducible framework suitable for larger, multi date acquisitions and operational decision support. Full article
Show Figures

Figure 1

19 pages, 2497 KB  
Article
Path-Based Progression Optimization Model for Multimodal Traffic System Signal Coordination
by Qi Cao, Changjian Wu, Shunchao Wang, Hongtian Liu and Weihan Chen
Systems 2025, 13(10), 854; https://doi.org/10.3390/systems13100854 - 28 Sep 2025
Viewed by 626
Abstract
Passive transit signal priority (TSP) strategies are widely recognized as effective tools for mitigating bus delays along urban arterials. However, existing TSP models primarily focus on through movements of transit vehicles, leading to potential delays for buses making turning movements. Moreover, these models [...] Read more.
Passive transit signal priority (TSP) strategies are widely recognized as effective tools for mitigating bus delays along urban arterials. However, existing TSP models primarily focus on through movements of transit vehicles, leading to potential delays for buses making turning movements. Moreover, these models do not adequately address signal coordination in multi-modal traffic systems involving both buses and private vehicles, resulting in increased delays and frequent stops for private vehicles. To address these limitations, this study proposes a binary mixed-integer linear programming (BMILP)-based signal progression band optimization model designed for multi-modal, path-level signal coordination. The model creates multiple progression bands for both straight and turning buses to minimize potential transit delays and enhance public transport service levels. By incorporating the mutual interactions between buses and private vehicles, progression bands for private vehicles are simultaneously optimized, enabling coordinated signal control that considers all users. The objective function maximizes passenger-equivalent service demand satisfied by the progression bands, explicitly accounting for mixed traffic flows and passenger loads. Numerical experiments on an urban arterial corridor demonstrate that, compared with the benchmark BUSBAND method, the proposed model achieves a 26% reduction in average bus delays, a 37% reduction in passenger car delays, and a 22% decrease in total stops, while also improving overall travel time reliability. Full article
Show Figures

Figure 1

18 pages, 6465 KB  
Article
0.5-V High-Order Universal Filter for Bio-Signal Processing Applications
by Montree Kumngern, Fabian Khateb, Tomasz Kulej and Somkiat Lerkvaranyu
Appl. Sci. 2025, 15(7), 3969; https://doi.org/10.3390/app15073969 - 3 Apr 2025
Cited by 1 | Viewed by 827
Abstract
In this paper, a novel multiple-input operational transconductance amplifier (MI-OTA) is proposed. The MI-OTA can be obtained by using the multiple-input bulk-driven MOS transistor (MIBD MOST) technique. The circuit structure is simple, can operate with a supply voltage of 0.5 V, and consumes [...] Read more.
In this paper, a novel multiple-input operational transconductance amplifier (MI-OTA) is proposed. The MI-OTA can be obtained by using the multiple-input bulk-driven MOS transistor (MIBD MOST) technique. The circuit structure is simple, can operate with a supply voltage of 0.5 V, and consumes 937 pW at a current setting of 625 pA. The proposed MI-OTA was used to implement a high-order multiple-input voltage-mode universal filter. The proposed filter can provide non-inverting and inverting low-pass, high-pass, band-pass, band-stop, and all-pass transfer functions to the same topology. In addition, it has a high input impedance and does not need any inverted input signals, so there is no additional buffering circuit. The proposed filter can be used for biological signal processing. The proposed MI-OTA and the second-order universal filter were simulated in Cadence using CMOS process parameters of 0.18 μm from TSMC to verify the functionality and performance of the new structures. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 3785 KB  
Article
Novel Multiple-Input Single-Output Shadow Filter with Improved Passband Gain Using Multiple-Input Multiple-Output DDTAs
by Montree Kumngern, Fabian Khateb and Tomasz Kulej
Electronics 2025, 14(7), 1417; https://doi.org/10.3390/electronics14071417 - 31 Mar 2025
Cited by 2 | Viewed by 525
Abstract
This paper presents a multiple-input single-output (MISO) shadow filter implemented using multiple-input differential difference transconductance amplifiers (MI-DDTAs). The MI-DDTA’s multiple inputs are realized through the multiple-input bulk-driven MOS transistor (MI-BD MOST) technique. Leveraging the multiple-input capability of the DDTA, various filter responses—low-pass filter [...] Read more.
This paper presents a multiple-input single-output (MISO) shadow filter implemented using multiple-input differential difference transconductance amplifiers (MI-DDTAs). The MI-DDTA’s multiple inputs are realized through the multiple-input bulk-driven MOS transistor (MI-BD MOST) technique. Leveraging the multiple-input capability of the DDTA, various filter responses—low-pass filter (LPF), high-pass filter (HPF), band-pass filter (BPF), band-stop filter (BSF), and all-pass filter (APF)—can be efficiently achieved by appropriately configuring the input signals. The natural frequency and quality factor of the shadow filter can be independently tuned using external amplifiers. Unlike conventional shadow filters, where adjusting the quality factor or natural frequency impacts the passband gain, this design ensures a constant unity passband gain. The MI-DDTA operates at a supply voltage of 0.5 V and consumes 385.8 nW of power for setting current Iset = 14 nA. The proposed MI-DDTA and shadow filter are designed and validated through simulations in the Cadence design environment, using a 0.18 µm CMOS process provided by TSMC (Taiwan Semiconductor Manufacturing Company Limited). Full article
Show Figures

Figure 1

11 pages, 1948 KB  
Article
One-Dimensional Four-Layered Photonic Heterostructures: Analysis of Transmittance
by Amita Biswal, Harekrushna Behera, Dah-Jing Jwo and Tai-Wen Hsu
Materials 2025, 18(7), 1433; https://doi.org/10.3390/ma18071433 - 24 Mar 2025
Cited by 2 | Viewed by 783
Abstract
The transmittance characteristics and the band structure of photonic heterostructures consisting of four distinct dielectric materials are analyzed using the transfer matrix method. An enhanced band structure of such crystals is discovered. It is shown that the band structure is strongly influenced by [...] Read more.
The transmittance characteristics and the band structure of photonic heterostructures consisting of four distinct dielectric materials are analyzed using the transfer matrix method. An enhanced band structure of such crystals is discovered. It is shown that the band structure is strongly influenced by the arrangement of unit cells in the periodic building blocks of the crystals. The transmission spectra are evaluated for varying layer thicknesses and incident angles to investigate their impact on wave propagation. The symmetrical results for periodicities, sub-layer thickness, and oblique incident angles indicate robust bandgaps with blue shifting and enhanced transmission. Moreover, the periodicity in different cases, followed by the period, has also shown to have a great impact on the emergence of multiple bandgaps. The photonic bandgap and frequency are associated with the lattice elements of the unit cell, shifting naturally as a fundamental property of the structure, which has been achieved by the alteration of unit cells. Hence, the proposed photonic heterostructures offer significant potential for developing efficient band-stop and band-pass filters, facilitating their use in multi-functional integrated optical circuits within the Terahertz spectrum. Full article
(This article belongs to the Special Issue Advanced Materials in Photoelectrics and Photonics)
Show Figures

Figure 1

15 pages, 6315 KB  
Article
A 328 nW, 0.45 V Current Differencing Transconductance Amplifier and Its Application in a Current-Mode Universal Filter
by Fabian Khateb, Montree Kumngern, Tomasz Kulej and Jiri Vavra
Appl. Sci. 2025, 15(7), 3471; https://doi.org/10.3390/app15073471 - 21 Mar 2025
Cited by 1 | Viewed by 906
Abstract
This paper presents a low-voltage, low-power current differencing transconductance amplifier (CDTA) utilizing the bulk-driven MOS transistor technique in the subthreshold region for reduced voltage and power consumption. The proposed CDTA includes a z-copy terminal, which enhances its functionality in current-mode circuit applications. Designed [...] Read more.
This paper presents a low-voltage, low-power current differencing transconductance amplifier (CDTA) utilizing the bulk-driven MOS transistor technique in the subthreshold region for reduced voltage and power consumption. The proposed CDTA includes a z-copy terminal, which enhances its functionality in current-mode circuit applications. Designed in the Cadence Virtuoso environment using 0.18 µm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC), the amplifier operates with a supply voltage of 0.45 V and consumes 328 nW of power, with a bias current set to 10 nA. The current bandwidth and offset of the CDTA are 35 kHz and 0.3 nA, respectively. To demonstrate its performance, the CDTA is applied in a current-mode universal filter, which can realize low-pass, band-pass, high-pass, band-stop, and all-pass responses within a single topology. This design eliminates issues related to inverting input signals, input signal matching, or the need for multiple input signals. Additionally, the natural frequency of these filtering functions can be electronically controlled. The low-pass filter achieves a dynamic range of 61 dB, with a total harmonic distortion of 0.8%. Full article
Show Figures

Figure 1

32 pages, 26195 KB  
Article
Topology Design of Soft Phononic Crystals for Tunable Band Gaps: A Deep Learning Approach
by Jingru Li, Minqi Qian, Jingming Yin, Wei Lin, Zhifu Zhang and Shihao Liu
Materials 2025, 18(2), 377; https://doi.org/10.3390/ma18020377 - 15 Jan 2025
Cited by 4 | Viewed by 1846
Abstract
The phononic crystals composed of soft materials have received extensive attention owing to the extraordinary behavior when undergoing large deformations, making it possible to provide tunable band gaps actively. However, the inverse designs of them mainly rely on the gradient-driven or gradient-free optimization [...] Read more.
The phononic crystals composed of soft materials have received extensive attention owing to the extraordinary behavior when undergoing large deformations, making it possible to provide tunable band gaps actively. However, the inverse designs of them mainly rely on the gradient-driven or gradient-free optimization schemes, which require sensitivity analysis or cause time-consuming, lacking intelligence and flexibility. To this end, a deep learning-based framework composed of a conditional variational autoencoder and multilayer perceptron is proposed to discover the mapping relation from the band gaps to the topology layout applied with prestress. The nonlinear superelastic neo-Hookean model is employed to describe the constitutive characteristics, based on which the band structures are obtained via the transfer matrix method accompanied with Bloch theory. The results show that the proposed data-driven approach can efficiently and rapidly generate multiple candidates applied with predicted prestress. The band gaps are in accord with each other and also consistent with the prescribed targets, verifying the accuracy and flexibility simultaneously. Furthermore, based on the generalization performance, the design space is deeply exploited to obtain desired soft structures whose stop bands are characterized by wider bandwidth, lower location, and enhanced wave attenuation performance. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Graphical abstract

20 pages, 4594 KB  
Article
Rolling-Translated circRUNX2.2 Promotes Lymphoma Cell Proliferation and Cycle Transition in Marek’s Disease Model
by Lulu Wang, Gang Zheng, Yuqin Yang, Junfeng Wu, Yushuang Du, Jiahua Chen, Changjun Liu, Yongzhen Liu, Bo Zhang, Hao Zhang, Xuemei Deng and Ling Lian
Int. J. Mol. Sci. 2024, 25(21), 11486; https://doi.org/10.3390/ijms252111486 - 25 Oct 2024
Cited by 1 | Viewed by 1723
Abstract
Marek’s disease (MD), an immunosuppressive disease induced by the Marek’s disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly [...] Read more.
Marek’s disease (MD), an immunosuppressive disease induced by the Marek’s disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly upregulated in MDV-infected tumorous spleens. In this study, we deeply analyzed the potential role of circRUNX2.2 in lymphoma cells. An open reading frame (ORF) in circRUNX2.2 with no stop codon was predicted, and small peptides (named circRUNX2.2-rt) presenting multiple ladder-like bands with different molecular weights encoded by circRUNX2.2 were detected via Western blotting assay. The polysome fraction assay reconfirmed the translation ability of circRUNX2.2, which could be detected in polysome fractions. Subsequent analysis verified that it translated in a rolling circle manner, rather than being assisted by the internal ribosome entry site (IRES) or m6A-mediated mechanism. Furthermore, we found that circRUNX2.2-rt was potently induced in MSB1 cells treated with sodium butyrate (NaB), which reactivated MDV and forced the MDV transition from the latent to reactivation phase. During this phase, MDV particles were clearly observed by electron microscopy, and the viral gene pp38 was also significantly upregulated. A biological function study showed that circRUNX2.2-rt promoted cell proliferation and cell cycle transition from the S to G2 phase and inhibited the apoptosis of MSB1. Further immunoprecipitation and mass spectrometry assays showed that 168 proteins potentially interacting with circRUNX2.2-rt were involved in multiple pathways related to cell cycle regulation, which proved that circRUNX2.2-rt could bind or recruit proteins to mediate the cell cycle. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 6348 KB  
Article
1-V Mixed-Mode Universal Filter Using Differential Difference Current Conveyor Transconductance Amplifiers
by Montree Kumngern, Fabian Khateb and Tomasz Kulej
Appl. Sci. 2024, 14(20), 9422; https://doi.org/10.3390/app14209422 - 16 Oct 2024
Cited by 3 | Viewed by 1475
Abstract
This paper presents a mixed-mode universal filter using differential difference current conveyor transconductance amplifiers (DDCCTA). Despite using a minimum number of MOS differential pairs, the proposed DDCCTA is a multiple-input, multiple-output device, that was achieved using the multiple-input bulk-driven MOS transistor (MIBD-MOST) technique, [...] Read more.
This paper presents a mixed-mode universal filter using differential difference current conveyor transconductance amplifiers (DDCCTA). Despite using a minimum number of MOS differential pairs, the proposed DDCCTA is a multiple-input, multiple-output device, that was achieved using the multiple-input bulk-driven MOS transistor (MIBD-MOST) technique, multiple-output current followers and transconductance gains. A subthreshold technique is used to achieve minimum power consumption of the DDCCTA. Thanks to the multiple-input and multiple-output of DDCCTA, the mixed-mode universal filter based on the proposed element can realize five standard filter responses, i.e., low-pass, high-pass, band-pass, band-stop, and all-pass responses, of four modes, i.e., voltage-mode, current-mode, transadmittance-mode, and transimpedance-mode, thus providing 194 filter responses from a single circuit. The natural frequency and quality factor of the filter response can be controlled electronically and orthogonally. The proposed DDCCTA and mixed-mode universal filter are simulated and designed using 0.18 μm CMOS technology to confirm the functionality of the new circuit. The mixed-mode universal filter uses ±0.5 V of supply voltage and consumes 0.374 mW of power when operating at a natural frequency of 10 kHz. Full article
Show Figures

Figure 1

18 pages, 7013 KB  
Article
Current-Mode Active Filter Using EX-CCCII
by Montree Kumngern, Fabian Khateb, Tomasz Kulej and Siraphop Tooprakai
Electronics 2024, 13(11), 2059; https://doi.org/10.3390/electronics13112059 - 25 May 2024
Cited by 2 | Viewed by 1918
Abstract
This paper presents a novel multiple-input and multiple-output current-mode universal analog filter with electronic tuning capability. The proposed circuit uses a single second-generation current-controlled current conveyor with extra-X terminals (EX-CCCII) and two grounded capacitors. The filter can offer five standard filtering functions, namely [...] Read more.
This paper presents a novel multiple-input and multiple-output current-mode universal analog filter with electronic tuning capability. The proposed circuit uses a single second-generation current-controlled current conveyor with extra-X terminals (EX-CCCII) and two grounded capacitors. The filter can offer five standard filtering functions, namely low-pass, high-pass, band-pass, band-stop, all-pass responses, in the same circuit without changing the internal configuration of the filter by selecting appropriate input and output signals. To obtain the five standard filtering functions, inverted input signal and input matching conditions are absent. The natural frequency of all filter responses can be electronically controlled. The proposed circuit was simulated by SPICE using 0.18 μm CMOS process from Taiwan Semiconductor Manufacturing Company (TSMC). The results of experiments using the integrated circuit operational amplifier AD844 confirm the functionality of the new filter. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

16 pages, 8424 KB  
Article
1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers
by Montree Kumngern, Fabian Khateb, Tomasz Kulej and Boonying Knobnob
Sensors 2024, 24(10), 3013; https://doi.org/10.3390/s24103013 - 9 May 2024
Cited by 4 | Viewed by 1716
Abstract
This paper presents a new multiple-input single-output voltage-mode universal filter employing four multiple-input operational transconductance amplifiers (MI-OTAs) and three grounded capacitors suitable for low-voltage low-frequency applications. The quality factor (Q) of the filter functions can be tuned by both the capacitance [...] Read more.
This paper presents a new multiple-input single-output voltage-mode universal filter employing four multiple-input operational transconductance amplifiers (MI-OTAs) and three grounded capacitors suitable for low-voltage low-frequency applications. The quality factor (Q) of the filter functions can be tuned by both the capacitance ratio and the transconductance ratio. The multiple inputs of the OTA are realized using the bulk-driven multiple-input MOS transistor technique. The MI-OTA-based filter can also offer many filtering functions without additional circuitry requirements, such as an inverting amplifier to generate an inverted input signal. The proposed filter can simultaneously realize low-pass, high-pass, band-pass, band-stop, and all-pass responses, covering both non-inverting and inverting transfer functions in a single topology. The natural frequency and the quality factors of all the filtering functions can be controlled independently. The natural frequency can also be electronically controlled by tuning the transconductances of the OTAs. The proposed filter uses a 1 V supply voltage, consumes 120 μW of power for a 5 μA setting current, offers 40 dB of dynamic range and has a third intermodulation distortion of −43.6 dB. The performances of the proposed circuit were simulated using a 0.18 μm TSMC CMOS process in the Cadence Virtuoso System Design Platform to confirm the performance of the topology. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

8 pages, 14144 KB  
Communication
A Quad-Band Highly Selective Frequency Selective Surface with Ultra-Wideband Rejection
by Minrui Wang, Zheng Xiang, Yi Li, Baoyi Xu and Long Yang
Micromachines 2024, 15(1), 126; https://doi.org/10.3390/mi15010126 - 11 Jan 2024
Cited by 3 | Viewed by 2308
Abstract
In this paper, a highly selective quad-band frequency selective surface (FSS) with ultra-wideband rejection is presented. The proposed FSS structure was developed by cascading five metallic layers by three thin dielectric substrates. The five metallic layers are composed of two bent slot layers, [...] Read more.
In this paper, a highly selective quad-band frequency selective surface (FSS) with ultra-wideband rejection is presented. The proposed FSS structure was developed by cascading five metallic layers by three thin dielectric substrates. The five metallic layers are composed of two bent slot layers, two metallic square rings, and a metal patch. The dimensions of the unit cell are 0.13λ0× 0.13λ0× 0.18λ0 (λ0 is the free-space wavelength at the first operating frequency). The proposed structure achieves four transmission bands and has two wide stop-bands located at 1 to 5.5 GHz and 14 to 40 GHz, with a suppressed transmission coefficient below −20 dB. In order to verify the simulation results, an FSS prototype was fabricated and measured. It can be observed that the measured results are in favorable agreement with the simulation results. Its multiple narrow passbands and highly selective and ultra-wideband rejection properties ensure that our design can play a significant role in narrowband antennas, spatial filters, and many other fields. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

18 pages, 7405 KB  
Article
0.5-V 281-nW Versatile Mixed-Mode Filter Using Multiple-Input/Output Differential Difference Transconductance Amplifiers
by Fabian Khateb, Montree Kumngern and Tomasz Kulej
Sensors 2024, 24(1), 32; https://doi.org/10.3390/s24010032 - 20 Dec 2023
Cited by 9 | Viewed by 2050
Abstract
This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure [...] Read more.
This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure with minimal power consumption. In a single topology, the proposed filter can provide five standard filtering functions (low-pass, high-pass, band-pass, band-stop, and all-pass) in four modes: voltage (VM), current (CM), transadmittance (TAM), and transimpedance (TIM). This provides the full capability of a mixed-mode filter (i.e., twenty filter functions). Moreover, the VM filter offers high-input and low-output impedances and the CM filter offers high-output impedance; therefore, no buffer circuit is needed. The natural frequency of all filtering functions can be electronically controlled by a setting current. The voltage supply is 0.5 V and for a 4 nA setting current, the power consumption of the filter was 281 nW. The filter is suitable for low-frequency biomedical and sensor applications that require extremely low supply voltages and nano-watt power consumption. For the VM low-pass filter, the dynamic range was 58.23 dB @ 1% total harmonic distortion. The proposed filter was designed and simulated in the Cadence Virtuoso System Design Platform using the 0.18 µm TSMC CMOS technology. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 11641 KB  
Article
Mutual Coupling Reduction in MIMO DRA through Metamaterials
by Muhammad Sabir Khan, Shahid Khan, Owais Khan, Sajid Aqeel, Neelam Gohar and Mariana Dalarsson
Sensors 2023, 23(18), 7720; https://doi.org/10.3390/s23187720 - 7 Sep 2023
Cited by 12 | Viewed by 3489
Abstract
A single negative metamaterial structure with hexagonal split-ring resonators (H-SRRs) is inserted within a two-port multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) in order to achieve a reduction of mutual coupling between closed multiple antenna elements. Between closed, tightly coupled, high-profile antenna elements, [...] Read more.
A single negative metamaterial structure with hexagonal split-ring resonators (H-SRRs) is inserted within a two-port multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) in order to achieve a reduction of mutual coupling between closed multiple antenna elements. Between closed, tightly coupled, high-profile antenna elements, the single negative magnetic inclusions (H-SRRs) are embedded. By incorporating magnetic structures within antenna elements, the mutual coupling is significantly diminished. Mutual coupling reduction is attained by inserting an array of hexagonal split-ring resonators between the inter-spacing elements. An operative approach for the reduction of the mutual coupling between two × two MIMO DRAs initially operating at 5.2-GHz band is provided. To make the simulated design replica of the fabricated prototype, an air gap is introduced between the substrate, DRs, and H-SSRs. The addition of the air gap shifts the simulated results to 5.9 GHz, which closely resembles the measured values. The mutual coupling reduction is realized by integrating a meta-surface amid the two × two MIMO DRAs, which are settled in the H-plane. The meta-surface embraces an array of hexagonal split-ring resonator (H-SRR) cells that are unified along the E-plane. The H-SRR structure is designed to offer band-stop functionality within the antenna bandwidth. The proposed design has an overall dimension of 40 × 58.3 × 4.75 mm3 (1.5λ × 1.02λ × 0.079λ). By stacking the DRA with a one × three array of H-SRR unit cells, a 30 dB reduction in the mutual coupling level is attained without compromising on the antenna performance. The corresponding mutual impedance of the MIMO DRA is better than 30 dB over 5.9–6.1 GHz operating bandwidth. The proposed design has a DG of 10 db, ECC < 0.02, CCL < 0.02 bits/s/Hz, and an MEG of 0 dB. The overall design has a promising performance, which shows its suitability for the target wireless application. Full article
(This article belongs to the Special Issue Microwave Sensors and Antenna Topology)
Show Figures

Figure 1

Back to TopTop