One-Dimensional Four-Layered Photonic Heterostructures: Analysis of Transmittance
Abstract
:1. Introduction
2. Transfer Matrix Method for Photonic Crystal Heterostructures
3. Numerical Results and Discussion
3.1. Effect of Composite Dielectrics
3.2. Effect of Periodicity
3.3. Effect of Sub-Layer Thicknesses
3.4. Effect of Incident Angle ()
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1D | One-dimensional |
PC | Photonic crystal |
PBG | Photonic bandgap |
FBG | Fiber Bragg grating |
EMW | Electromagnetic waves |
PCH | Photonic heterostructure |
TO | Transverse optical |
LO | Longitudinal optical |
GHz | Gigahertz |
PHz | Petahertz |
THz | Terahertz |
TMM | Transfer matrix method |
TE | Transverse electric |
WDM | Wavelength division multiplexer |
NIR | Near-infrared region |
References
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059. [Google Scholar] [CrossRef] [PubMed]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486. [Google Scholar]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A Dielectric Omnidirectional Reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [PubMed]
- Chigrin, D.N.; Lavrinenko, A.; Yarotsky, D.; Gaponenko, S. Observation of total omnidirectional reflection from a one-dimensional dielectric lattice. Appl. Phys. A 1999, 68, 25–28. [Google Scholar]
- Joannopoulos, J.D.; Meade, R.D.; Winn, J. Photonic Crystals-Molding the flow of light. Nature 1996, 381, 290. [Google Scholar]
- Biswas, R.; Chan, C.; Sigalas, M.; Soukoulis, C.; Ho, K. Photonic band gap materials. In Photonic Band Gap Materials; Springer: Berlin/Heidelberg, Germany, 1996; pp. 23–40. [Google Scholar]
- Elsayed, H.A.; Aly, A.H. Terahertz frequency superconductor-nanocomposite photonic band gap. Int. J. Mod. Phys. B 2018, 32, 1850056. [Google Scholar]
- Gong, Q.; Hu, X. Photonic Crystals: Principles and Applications; Jenny Stanford Publishing: Singapore, 2014. [Google Scholar]
- Shaban, S.M.; Mehaney, A.; Aly, A.H. Determination of 1-propanol, ethanol, and methanol concentrations in water based on a one-dimensional phoxonic crystal sensor. Appl. Opt. 2020, 59, 3878–3885. [Google Scholar]
- Vakhrushev, A. Theoretical Foundations and Application of Photonic Crystals; BoD–Books on Demand: Norderstedt, DE, USA, 2018. [Google Scholar]
- Nouman, W.M.; Abd El-Ghany, S.E.S.; Sallam, S.M.; Dawood, A.F.B.; Aly, A.H. Biophotonic sensor for rapid detection of brain lesions using 1D photonic crystal. Opt. Quantum Electron. 2020, 52, 287. [Google Scholar]
- Bazian, M. Photonic crystal add–drop filter: A review on principles and applications. Photonic Netw. Commun. 2021, 41, 57–77. [Google Scholar] [CrossRef]
- Aly, A.H.; Zaky, Z.A.; Shalaby, A.S.; Ahmed, A.M.; Vigneswaran, D. Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 2020, 95, 035510. [Google Scholar]
- Arregui, G.; Lanzillotti-Kimura, N.D.; Sotomayor-Torres, C.M.; García, P.D. Anderson photon-phonon colocalization in certain random superlattices. Phys. Rev. Lett. 2019, 122, 043903. [Google Scholar]
- Biswal, A.; Kumar, R.; Nayak, C.; Samiappan, D. Photonic transmission spectra in an extrinsic semiconductor based Gaussian random multilayer. Opt. Mater. 2020, 102, 109799. [Google Scholar]
- Biswal, A.; Kumar, R.; Nayak, C.; Dhanalakshmi, S. Photonic bandgap characteristics of GaAs/AlAs-based one-dimensional quasi-periodic photonic crystal. Optik 2021, 234, 166597. [Google Scholar]
- Biswal, A.; Kumar, R.; Nayak, C.; Samiappan, D. n-GaAs based extrinsic Dodecanacci photonic quasicrystal. Phys. B Condens. Matter 2020, 595, 412340. [Google Scholar]
- Kim, S.; Yoon, S.; Seok, H.; Lee, J.; Jeon, H. Band-edge lasers based on randomly mixed photonic crystals. Opt. Express 2010, 18, 7685–7692. [Google Scholar]
- Ilegems, M.; Pearson, G. Infrared Reflection Spectra of Ga 1- x Al x As Mixed Crystals. Phys. Rev. B 1970, 1, 1576. [Google Scholar]
- Istrate, E.; Sargent, E.H. Photonic crystal heterostructures and interfaces. Rev. Mod. Phys. 2006, 78, 455. [Google Scholar]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. 2D-Photonic crystal heterostructures for the realization of compact photonic devices. Photonics Nanostruct.-Fundam. Appl. 2021, 44, 100903. [Google Scholar]
- Amaolo, A.; Chao, P.; Maldonado, T.J.; Molesky, S.; Rodriguez, A.W. Can photonic heterostructures provably outperform single-material geometries? Nanophotonics 2024, 13, 283–288. [Google Scholar]
- Minden, H. Some Optical Properties of Aluminum Arsenide. Appl. Phys. Lett. 1970, 17, 358–360. [Google Scholar]
- Chen, X.; Xiong, S. Optical properties of GaAs/AlAs superlattices with randomly distributed layer thicknesses. Phys. Rev. B 1993, 47, 7146. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, T.; Nagano, M. Electronic, structural and optical properties of AlAs/GaP strained short-period superlattices. Jpn. J. Appl. Phys. 2003, 42, 4237. [Google Scholar] [CrossRef]
- Kim, O.; Spitzer, W. Infrared reflectivity spectra and Raman spectra of Ga1- x Al x As mixed crystals. J. Appl. Phys. 1979, 50, 4362–4370. [Google Scholar] [CrossRef]
- Dumelow, T.; Parker, T.; Smith, S.; Tilley, D. Far-infrared spectroscopy of phonons and plasmons in semiconductor superlattices. Surf. Sci. Rep. 1993, 17, 151–212. [Google Scholar] [CrossRef]
- Adachi, S. GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties; World Scientific: Singapore, 1994. [Google Scholar]
- Panyaev, I.S.; Yafarova, L.R.; Sannikov, D.G.; Dadoenkova, N.N.; Dadoenkova, Y.S.; Lyubchanskii, I.L. One-dimensional multiperiodic photonic structures: A new route in photonics (four-component media). J. Appl. Phys. 2019, 126, 103102. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Elsayed, H.A.; Mehaney, A.; Aly, A.H.; Sabra, W. Transmittance properties of one-dimensional metamaterial nanocomposite photonic crystal in GHz range. Sci. Rep. 2022, 12, 18331. [Google Scholar] [CrossRef]
- Dadoenkova, Y.S.; Dadoenkova, N.N.; Lyubchanskii, I.L.; Kłos, J.W.; Krawczyk, M. Faraday effect in bi-periodic photonic-magnonic crystals. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Jafarpour, A.; Chow, E.; Reinke, C.; Huang, J.; Adibi, A.; Grot, A.; Mirkarimi, L.; Girolami, G.; Lee, R.; Xu, Y. Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides. Appl. Phys. B 2004, 79, 409–414. [Google Scholar] [CrossRef]
- Hernández-Acosta, M.; Trejo-Valdez, M.; Castro-Chacón, J.; Torres-San Miguel, C.; Martínez-Gutiérrez, H.; Torres-Torres, C. Chaotic signatures of photoconductive Cu2ZnSnS4 nanostructures explored by Lorenz attractors. New J. Phys. 2018, 20, 023048. [Google Scholar] [CrossRef]
- Biswal, A.; Kumar, R.; Nayak, C.; Dhanalakshmi, S.; Behera, H.; Lyubchanskii, I. Analysis of transmission spectra in one-dimensional ternary photonic crystals with complex unit cell. Optik 2022, 261, 169169. [Google Scholar] [CrossRef]
- Amiri, I.S.; Paul, B.K.; Ahmed, K.; Aly, A.H.; Zakaria, R.; Yupapin, P.; Vigneswaran, D. Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw. Opt. Technol. Lett. 2019, 61, 847–852. [Google Scholar]
- Lyu, W.; An, J.; Lin, Y.; Qiu, P.; Wang, G.; Chao, J.; Fu, B. Fabrication and applications of heterostructure materials for broadband ultrafast photonics. Adv. Opt. Mater. 2023, 11, 2300124. [Google Scholar] [CrossRef]
- Dixon, K.Y.; Loring, T.A.; Cerjan, A. Classifying topology in photonic heterostructures with gapless environments. Phys. Rev. Lett. 2023, 131, 213801. [Google Scholar] [CrossRef]
- Sui, J.Y.; Liao, S.Y.; Li, B.; Zhang, H.F. High sensitivity multitasking non-reciprocity sensor using the photonic spin Hall effect. Opt. Lett. 2022, 47, 6065–6068. [Google Scholar]
- Panyaev, I.S.; Sannikov, D.G.; Dadoenkova, N.N.; Dadoenkova, Y.S. Three-periodic 1D photonic crystals for designing the photonic optical devices operating in the infrared regime. Appl. Opt. 2021, 60, 1943–1952. [Google Scholar] [CrossRef]
- Biswal, A.; Jwo, D.J. Analysis of photonic band gap in a one-dimensional photonic crystal with multiple semiconductor bilayers. In Waves in Random and Complex Media; Taylor & Francis: Abingdon, UK, 2023; pp. 1–12. [Google Scholar]
- Yeh, P. Optical Waves in Layered Media; Wiley Online Library: Hoboken, NJ, USA, 1988; Volume 95. [Google Scholar]
- Morozov, G.V. Two forms of transfer matrix for one-dimensional optical structures. Opt. Quantum Electron. 2023, 55, 1120. [Google Scholar]
- Malitson, I.H. Refraction and dispersion of synthetic sapphire. JOSA 1962, 52, 1377–1379. [Google Scholar]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Jain, N.; Kumar, D.; Bhardwaj, K.; Sharma, R.K.; Holovsky, J.; Mishra, M.; Mishra, Y.K.; Sharma, S.K. Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors. Mater. Sci. Eng. R Rep. 2024, 160, 100826. [Google Scholar]
- Vyas, K.; Espinosa, D.H.; Hutama, D.; Jain, S.K.; Mahjoub, R.; Mobini, E.; Awan, K.M.; Lundeen, J.; Dolgaleva, K. Group III-V semiconductors as promising nonlinear integrated photonic platforms. Adv. Phys. X 2022, 7, 2097020. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswal, A.; Behera, H.; Jwo, D.-J.; Hsu, T.-W. One-Dimensional Four-Layered Photonic Heterostructures: Analysis of Transmittance. Materials 2025, 18, 1433. https://doi.org/10.3390/ma18071433
Biswal A, Behera H, Jwo D-J, Hsu T-W. One-Dimensional Four-Layered Photonic Heterostructures: Analysis of Transmittance. Materials. 2025; 18(7):1433. https://doi.org/10.3390/ma18071433
Chicago/Turabian StyleBiswal, Amita, Harekrushna Behera, Dah-Jing Jwo, and Tai-Wen Hsu. 2025. "One-Dimensional Four-Layered Photonic Heterostructures: Analysis of Transmittance" Materials 18, no. 7: 1433. https://doi.org/10.3390/ma18071433
APA StyleBiswal, A., Behera, H., Jwo, D.-J., & Hsu, T.-W. (2025). One-Dimensional Four-Layered Photonic Heterostructures: Analysis of Transmittance. Materials, 18(7), 1433. https://doi.org/10.3390/ma18071433