Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (668)

Search Parameters:
Keywords = multiple autonomous vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1593 KiB  
Article
Robust Adaptive Multiple Backtracking VBKF for In-Motion Alignment of Low-Cost SINS/GNSS
by Weiwei Lyu, Yingli Wang, Shuanggen Jin, Haocai Huang, Xiaojuan Tian and Jinling Wang
Remote Sens. 2025, 17(15), 2680; https://doi.org/10.3390/rs17152680 (registering DOI) - 2 Aug 2025
Abstract
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To [...] Read more.
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To address the issue that low-cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex environments that contain noise and external interference, an adaptive multiple backtracking robust alignment method is proposed. The sliding window that constructs observation and reference vectors is established, which effectively avoids the accumulation of sensor errors during the full integration process. A new observation vector based on the magnitude matching is then constructed to effectively reduce the effect of outliers on the alignment process. An adaptive multiple backtracking method is designed in which the window size can be dynamically adjusted based on the innovation gradient; thus, the alignment time can be significantly shortened. Furthermore, the modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the measurement noise covariance matrix is proposed, and the Expectation–Maximization (EM) algorithm is employed to refine the prior parameter of the predicted error covariance matrix. Simulation and experimental results demonstrate that the proposed method significantly reduces alignment time and improves alignment accuracy. Taking heading error as the critical evaluation indicator, the proposed method achieves rapid alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an improvement of over 63% compared to the backtracking-based Kalman filter (BKF) method and over 57% compared to the fuzzy adaptive KF (FAKF) method. Full article
(This article belongs to the Section Urban Remote Sensing)
23 pages, 10936 KiB  
Article
Towards Autonomous Coordination of Two I-AUVs in Submarine Pipeline Assembly
by Salvador López-Barajas, Alejandro Solis, Raúl Marín-Prades and Pedro J. Sanz
J. Mar. Sci. Eng. 2025, 13(8), 1490; https://doi.org/10.3390/jmse13081490 (registering DOI) - 1 Aug 2025
Abstract
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to [...] Read more.
Inspection, maintenance, and repair (IMR) operations on underwater infrastructure remain costly and time-intensive because fully teleoperated remote operated vehicle s(ROVs) lack the range and dexterity necessary for precise cooperative underwater manipulation, and the alternative of using professional divers is ruled out due to the risk involved. This work presents and experimentally validates an autonomous, dual-I-AUV (Intervention–Autonomous Underwater Vehicle) system capable of assembling rigid pipeline segments through coordinated actions in a confined underwater workspace. The first I-AUV is a Girona 500 (4-DoF vehicle motion, pitch and roll stable) fitted with multiple payload cameras and a 6-DoF Reach Bravo 7 arm, giving the vehicle 10 total DoF. The second I-AUV is a BlueROV2 Heavy equipped with a Reach Alpha 5 arm, likewise yielding 10 DoF. The workflow comprises (i) detection and grasping of a coupler pipe section, (ii) synchronized teleoperation to an assembly start pose, and (iii) assembly using a kinematic controller that exploits the Girona 500’s full 10 DoF, while the BlueROV2 holds position and orientation to stabilize the workspace. Validation took place in a 12 m × 8 m × 5 m water tank. Results show that the paired I-AUVs can autonomously perform precision pipeline assembly in real water conditions, representing a significant step toward fully automated subsea construction and maintenance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 3580 KiB  
Article
Distributed Collaborative Data Processing Framework for Unmanned Platforms Based on Federated Edge Intelligence
by Siyang Liu, Nanliang Shan, Xianqiang Bao and Xinghua Xu
Sensors 2025, 25(15), 4752; https://doi.org/10.3390/s25154752 (registering DOI) - 1 Aug 2025
Abstract
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this [...] Read more.
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this issue, this study designs an unmanned platform cluster architecture inspired by the cloud-edge-end model. This architecture integrates federated learning for privacy protection, leverages the advantages of distributed model training, and utilizes edge computing’s near-source data processing capabilities. Additionally, this paper proposes a federated edge intelligence method (DSIA-FEI), which comprises two key components. Based on traditional federated learning, a data sharing mechanism is introduced, in which data is extracted from edge-side platforms and placed into a data sharing platform to form a public dataset. At the beginning of model training, random sampling is conducted from the public dataset and distributed to each unmanned platform, so as to mitigate the impact of data distribution heterogeneity and class imbalance during collaborative data processing in unmanned platforms. Moreover, an intelligent model aggregation strategy based on similarity measurement and loss gradient is developed. This strategy maps heterogeneous model parameters to a unified space via hierarchical parameter alignment, and evaluates the similarity between local and global models of edge devices in real-time, along with the loss gradient, to select the optimal model for global aggregation, reducing the influence of device and model heterogeneity on cooperative learning of unmanned platform swarms. This study carried out extensive validation on multiple datasets, and the experimental results showed that the accuracy of the DSIA-FEI proposed in this paper reaches 0.91, 0.91, 0.88, and 0.87 on the FEMNIST, FEAIR, EuroSAT, and RSSCN7 datasets, respectively, which is more than 10% higher than the baseline method. In addition, the number of communication rounds is reduced by more than 40%, which is better than the existing mainstream methods, and the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

46 pages, 125285 KiB  
Article
ROS-Based Autonomous Driving System with Enhanced Path Planning Node Validated in Chicane Scenarios
by Mohamed Reda, Ahmed Onsy, Amira Y. Haikal and Ali Ghanbari
Actuators 2025, 14(8), 375; https://doi.org/10.3390/act14080375 - 27 Jul 2025
Viewed by 151
Abstract
In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially or fully without human intervention. The ADS pipeline comprises multiple layers, including sensors, perception, localization, mapping, path planning, and control. The Robot Operating System (ROS) is a widely adopted framework that [...] Read more.
In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially or fully without human intervention. The ADS pipeline comprises multiple layers, including sensors, perception, localization, mapping, path planning, and control. The Robot Operating System (ROS) is a widely adopted framework that supports the modular development and integration of these layers. Among them, the path-planning and control layers remain particularly challenging due to several limitations. Classical path planners often struggle with non-smooth trajectories and high computational demands. Meta-heuristic optimization algorithms have demonstrated strong theoretical potential in path planning; however, they are rarely implemented in real-time ROS-based systems due to integration challenges. Similarly, traditional PID controllers require manual tuning and are unable to adapt to system disturbances. This paper proposes a ROS-based ADS architecture composed of eight integrated nodes, designed to address these limitations. The path-planning node leverages a meta-heuristic optimization framework with a cost function that evaluates path feasibility using occupancy grids from the Hector SLAM and obstacle clusters detected through the DBSCAN algorithm. A dynamic goal-allocation strategy is introduced based on the LiDAR range and spatial boundaries to enhance planning flexibility. In the control layer, a modified Pure Pursuit algorithm is employed to translate target positions into velocity commands based on the drift angle. Additionally, an adaptive PID controller is tuned in real time using the Differential Evolution (DE) algorithm, ensuring robust speed regulation in the presence of external disturbances. The proposed system is practically validated on a four-wheel differential drive robot across six scenarios. Experimental results demonstrate that the proposed planner significantly outperforms state-of-the-art methods, ranking first in the Friedman test with a significance level less than 0.05, confirming the effectiveness of the proposed architecture. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

31 pages, 4220 KiB  
Article
A Novel Multi-Server Federated Learning Framework in Vehicular Edge Computing
by Fateme Mazloomi, Shahram Shah Heydari and Khalil El-Khatib
Future Internet 2025, 17(7), 315; https://doi.org/10.3390/fi17070315 - 19 Jul 2025
Viewed by 256
Abstract
Federated learning (FL) has emerged as a powerful approach for privacy-preserving model training in autonomous vehicle networks, where real-world deployments rely on multiple roadside units (RSUs) serving heterogeneous clients with intermittent connectivity. While most research focuses on single-server or hierarchical cloud-based FL, multi-server [...] Read more.
Federated learning (FL) has emerged as a powerful approach for privacy-preserving model training in autonomous vehicle networks, where real-world deployments rely on multiple roadside units (RSUs) serving heterogeneous clients with intermittent connectivity. While most research focuses on single-server or hierarchical cloud-based FL, multi-server FL can alleviate the communication bottlenecks of traditional setups. To this end, we propose an edge-based, multi-server FL (MS-FL) framework that combines performance-driven aggregation at each server—including statistical weighting of peer updates and outlier mitigation—with an application layer handover protocol that preserves model updates when vehicles move between RSU coverage areas. We evaluate MS-FL on both MNIST and GTSRB benchmarks under shard- and Dirichlet-based non-IID splits, comparing it against single-server FL and a two-layer edge-plus-cloud baseline. Over multiple communication rounds, MS-FL with the Statistical Performance-Aware Aggregation method and Dynamic Weighted Averaging Aggregation achieved up to a 20-percentage-point improvement in accuracy and consistent gains in precision, recall, and F1-score (95% confidence), while matching the low latency of edge-only schemes and avoiding the extra model transfer delays of cloud-based aggregation. These results demonstrate that coordinated cooperation among servers based on model quality and seamless handovers can accelerate convergence, mitigate data heterogeneity, and deliver robust, privacy-aware learning in connected vehicle environments. Full article
Show Figures

Figure 1

25 pages, 6057 KiB  
Article
Physical Implementation and Experimental Validation of the Compensation Mechanism for a Ramp-Based AUV Recovery System
by Zhaoji Qi, Lingshuai Meng, Haitao Gu, Ziyang Guo, Jinyan Wu and Chenghui Li
J. Mar. Sci. Eng. 2025, 13(7), 1349; https://doi.org/10.3390/jmse13071349 - 16 Jul 2025
Viewed by 237
Abstract
In complex marine environments, ramp-based recovery systems for autonomous underwater vehicles (AUVs) often encounter engineering challenges such as reduced docking accuracy and success rate due to disturbances in the capture window attitude. In this study, a desktop-scale physical experimental platform for recovery compensation [...] Read more.
In complex marine environments, ramp-based recovery systems for autonomous underwater vehicles (AUVs) often encounter engineering challenges such as reduced docking accuracy and success rate due to disturbances in the capture window attitude. In this study, a desktop-scale physical experimental platform for recovery compensation was designed and constructed. The system integrates attitude feedback provided by an attitude sensor and dual-motor actuation to achieve active roll and pitch compensation of the capture window. Based on the structural and geometric characteristics of the platform, a dual-channel closed-loop control strategy was proposed utilizing midpoint tracking of the capture window, accompanied by multi-level software limit protection and automatic centering mechanisms. The control algorithm was implemented using a discrete-time PID structure, with gain parameters optimized through experimental tuning under repeatable disturbance conditions. A first-order system approximation was adopted to model the actuator dynamics. Experiments were conducted under various disturbance scenarios and multiple control parameter configurations to evaluate the attitude tracking performance, dynamic response, and repeatability of the system. The results show that, compared to the uncompensated case, the proposed compensation mechanism reduces the MSE by up to 76.4% and the MaxAE by 73.5%, significantly improving the tracking accuracy and dynamic stability of the recovery window. The study also discusses the platform’s limitations and future optimization directions, providing theoretical and engineering references for practical AUV recovery operations. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 899 KiB  
Article
Multi-Robot Path Planning for High-Density Parking Environments Considering Efficiency and Fairness
by Jinhyuk Lee and Woojin Chung
Sensors 2025, 25(14), 4342; https://doi.org/10.3390/s25144342 - 11 Jul 2025
Viewed by 241
Abstract
As parking congestion at airport parking lots intensifies, high-density parking (HDP) systems with multiple parking robots are gaining attention for improving operational efficiency. However, conventional multi-agent pathfinding (MAPF) methods primarily focus on overall efficiency improvement, often neglecting the priority of individual parking tasks. [...] Read more.
As parking congestion at airport parking lots intensifies, high-density parking (HDP) systems with multiple parking robots are gaining attention for improving operational efficiency. However, conventional multi-agent pathfinding (MAPF) methods primarily focus on overall efficiency improvement, often neglecting the priority of individual parking tasks. Additionally, these methods assume robots are ideal agents, resulting in physically infeasible paths for parking robots. We propose a multi-robot path planning approach that balances efficiency and priority. The proposed method improves priority-based search (PBS) by dynamically adjusting priorities, thereby ensuring both operational efficiency and priority of individual vehicles. A simulator replicating a real airport parking environment with 100 parking slots and parking robots under development was implemented to validate the approach. Real-world parking data from an airport was used as input, demonstrating that the proposed autonomous parking system can effectively handle peak-season parking demand. The proposed method achieves a throughput exceeding 41 vehicles per hour with appropriate weight value, meeting the peak-season demand while maintaining acceptable fairness. Our approach provides a practical foundation for establishing time-based parking operation strategies and estimating the number of robots recommended for a given parking scenario. Full article
(This article belongs to the Special Issue AI and Smart Sensors for Intelligent Transportation Systems)
Show Figures

Figure 1

22 pages, 2867 KiB  
Article
Hierarchical Deep Reinforcement Learning-Based Path Planning with Underlying High-Order Control Lyapunov Function—Control Barrier Function—Quadratic Programming Collision Avoidance Path Tracking Control of Lane-Changing Maneuvers for Autonomous Vehicles
by Haochong Chen and Bilin Aksun-Guvenc
Electronics 2025, 14(14), 2776; https://doi.org/10.3390/electronics14142776 - 10 Jul 2025
Viewed by 358
Abstract
Path planning and collision avoidance are essential components of an autonomous driving system (ADS), ensuring safe navigation in complex environments shared with other road users. High-quality planning and reliable obstacle avoidance strategies are essential for advancing the SAE autonomy level of autonomous vehicles, [...] Read more.
Path planning and collision avoidance are essential components of an autonomous driving system (ADS), ensuring safe navigation in complex environments shared with other road users. High-quality planning and reliable obstacle avoidance strategies are essential for advancing the SAE autonomy level of autonomous vehicles, which can largely reduce the risk of traffic accidents. In daily driving scenarios, lane changing is a common maneuver used to avoid unexpected obstacles such as parked vehicles or suddenly appearing pedestrians. Notably, lane-changing behavior is also widely regarded as a key evaluation criterion in driver license examinations, highlighting its practical importance in real-world driving. Motivated by this observation, this paper aims to develop an autonomous lane-changing system capable of dynamically avoiding obstacles in multi-lane traffic environments. To achieve this objective, we propose a hierarchical decision-making and control framework in which a Double Deep Q-Network (DDQN) agent operates as the high-level planner to select lane-level maneuvers, while a High-Order Control Lyapunov Function–High-Order Control Barrier Function–based Quadratic Program (HOCLF-HOCBF-QP) serves as the low-level controller to ensure safe and stable trajectory tracking under dynamic constraints. Simulation studies are used to evaluate the planning efficiency and overall collision avoidance performance of the proposed hierarchical control framework. The results demonstrate that the system is capable of autonomously executing appropriate lane-changing maneuvers to avoid multiple obstacles in complex multi-lane traffic environments. In computational cost tests, the low-level controller operates at 100 Hz with an average solve time of 0.66 ms per step, and the high-level policy operates at 5 Hz with an average solve time of 0.60 ms per step. The results demonstrate real-time capability in autonomous driving systems. Full article
(This article belongs to the Special Issue Intelligent Technologies for Vehicular Networks, 2nd Edition)
Show Figures

Figure 1

39 pages, 1775 KiB  
Article
A Survey on UAV Control with Multi-Agent Reinforcement Learning
by Chijioke C. Ekechi, Tarek Elfouly, Ali Alouani and Tamer Khattab
Drones 2025, 9(7), 484; https://doi.org/10.3390/drones9070484 - 9 Jul 2025
Viewed by 1288
Abstract
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned Aerial Vehicles (UAVs). Traditional control techniques often fall short in dynamic, uncertain, or large-scale environments where decentralized decision-making and inter-agent cooperation are crucial. A potentially effective technique used for UAV fleet operation is Multi-Agent Reinforcement Learning (MARL). MARL offers a powerful framework for addressing these challenges by enabling UAVs to learn optimal behaviors through interaction with the environment and each other. Despite significant progress, the field remains fragmented, with a wide variety of algorithms, architectures, and evaluation metrics spread across domains. This survey aims to systematically review and categorize state-of-the-art MARL approaches applied to UAV control, identify prevailing trends and research gaps, and provide a structured foundation for future advancements in cooperative aerial robotics. The advantages and limitations of these techniques are discussed along with suggestions for further research to improve the effectiveness of MARL application to UAV fleet management. Full article
Show Figures

Figure 1

27 pages, 5890 KiB  
Article
Variable Structure Depth Controller for Energy Savings in an Underwater Device: Proof of Stability
by João Bravo Pinto, João Falcão Carneiro, Fernando Gomes de Almeida and Nuno A. Cruz
Actuators 2025, 14(7), 340; https://doi.org/10.3390/act14070340 - 8 Jul 2025
Viewed by 218
Abstract
Underwater exploration is vital for advancing scientific understanding of marine ecosystems, biodiversity, and oceanic processes. Autonomous underwater vehicles and sensor platforms play a crucial role in continuous monitoring, but their operational endurance is often limited by energy constraints. Various control strategies have been [...] Read more.
Underwater exploration is vital for advancing scientific understanding of marine ecosystems, biodiversity, and oceanic processes. Autonomous underwater vehicles and sensor platforms play a crucial role in continuous monitoring, but their operational endurance is often limited by energy constraints. Various control strategies have been proposed to enhance energy efficiency, including robust and optimal controllers, energy-optimal model predictive control, and disturbance-aware strategies. Recent work introduced a variable structure depth controller for a sensor platform with a variable buoyancy module, resulting in a 22% reduction in energy consumption. This paper extends that work by providing a formal stability proof for the proposed switching controller, ensuring safe and reliable operation in dynamic underwater environments. In contrast to the conventional approach used in controller stability proofs for switched systems—which typically relies on the existence of multiple Lyapunov functions—the method developed in this paper adopts a different strategy. Specifically, the stability proof is based on a novel analysis of the system’s trajectory in the net buoyancy force-versus-depth error plane. The findings were applied to a depth-controlled sensor platform previously developed by the authors, using a well-established system model and considering physical constraints. Despite adopting a conservative approach, the results demonstrate that the control law can be implemented while ensuring formal system stability. Moreover, the study highlights how stability regions are affected by different controller parameter choices and mission requirements, namely, by determining how these aspects affect the bounds of the switching control action. The results provide valuable guidance for selecting the appropriate controller parameters for specific mission scenarios. Full article
(This article belongs to the Special Issue Advanced Underwater Robotics)
Show Figures

Figure 1

17 pages, 3285 KiB  
Article
CF-mMIMO-Based Computational Offloading for UAV Swarms: System Design and Experimental Results
by Jian Sun, Hongxin Lin, Wei Shi, Wei Xu and Dongming Wang
Electronics 2025, 14(13), 2708; https://doi.org/10.3390/electronics14132708 - 4 Jul 2025
Viewed by 342
Abstract
Swarm-based unmanned aerial vehicle (UAV) systems offer enhanced spatial coverage, collaborative intelligence, and mission scalability for various applications, including environmental monitoring and emergency response. However, their onboard processing is limited by stringent size, weight, and power constraints, posing challenges for real-time computation and [...] Read more.
Swarm-based unmanned aerial vehicle (UAV) systems offer enhanced spatial coverage, collaborative intelligence, and mission scalability for various applications, including environmental monitoring and emergency response. However, their onboard processing is limited by stringent size, weight, and power constraints, posing challenges for real-time computation and autonomous control. This paper presents an integrated communication and computation framework that combines cloud–edge–end collaboration with cell-free massive multiple-input multiple-output (CF-mMIMO) to enable scalable and efficient task offloading in UAV swarms. Furthermore, we implement a prototype system testbed with nine UAVs and validate the proposed framework through real-time object detection tasks. Results demonstrate over 30% reduction in onboard computation and significant improvements in communication reliability, highlighting the framework’s potential for enabling intelligent, cooperative aerial systems. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

25 pages, 5596 KiB  
Article
Multi-Information-Assisted Bistatic Active Sonar Target Tracking for Autonomous Underwater Vehicles in Shallow Water
by Zhanpeng Bao, Yonglin Zhang, Yupeng Tai, Jun Wang, Haibin Wang, Chao Li, Chenghao Hu and Peng Zhang
Remote Sens. 2025, 17(13), 2250; https://doi.org/10.3390/rs17132250 - 30 Jun 2025
Viewed by 444
Abstract
Bistatic active sonar enables robust and precise target position and tracking, making it a key technology for autonomous underwater vehicles (AUVs) in underwater surveillance. This paper proposes a multi-information-assisted target tracking algorithm for bistatic active sonar, leveraging spatial and temporal echo signal structures [...] Read more.
Bistatic active sonar enables robust and precise target position and tracking, making it a key technology for autonomous underwater vehicles (AUVs) in underwater surveillance. This paper proposes a multi-information-assisted target tracking algorithm for bistatic active sonar, leveraging spatial and temporal echo signal structures to address the challenges of AUVs in shallow water. First, broadened cluster formations in sonar echoes are analyzed, leading to the integration of a spatial clustering-based data association. This paper departs from conventional methods by fusing target position, echo amplitude, and Doppler information during the movement of AUVs, which can improve the efficiency of association probability computation. The re-derived multi-information-assisted association probability calculation method and algorithmic workflow are explicitly designed for real-time implementation in AUV systems. Simulation experiments verify the feasibility of integrating Doppler and amplitude information. The sea trial data from simulated AUV-deployed bistatic sonar contained only amplitude information due to experimental limitations. By utilizing this amplitude information, the algorithm proposed in this paper demonstrates a 23.95% performance improvement over the traditional probabilistic data association algorithm. The proposed algorithm provides AUVs with enhanced tracking autonomy, significantly advancing their capability in ocean engineering applications. Full article
Show Figures

Figure 1

22 pages, 5161 KiB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 261
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

23 pages, 9748 KiB  
Article
Driving Pattern Analysis, Gear Shift Classification, and Fuel Efficiency in Light-Duty Vehicles: A Machine Learning Approach Using GPS and OBD II PID Signals
by Juan José Molina-Campoverde, Juan Zurita-Jara and Paúl Molina-Campoverde
Sensors 2025, 25(13), 4043; https://doi.org/10.3390/s25134043 - 28 Jun 2025
Viewed by 803
Abstract
This study proposes an automatic gear shift classification algorithm in M1 category vehicles using data acquired through the onboard diagnostic system (OBD II) and GPS. The proposed approach is based on the analysis of identification parameters (PIDs), such as manifold absolute pressure (MAP), [...] Read more.
This study proposes an automatic gear shift classification algorithm in M1 category vehicles using data acquired through the onboard diagnostic system (OBD II) and GPS. The proposed approach is based on the analysis of identification parameters (PIDs), such as manifold absolute pressure (MAP), revolutions per minute (RPM), vehicle speed (VSS), torque, power, stall times, and longitudinal dynamics, to determine the efficiency and behavior of the vehicle in each of its gears. In addition, the unsupervised K-means algorithm was implemented to analyze vehicle gear changes, identify driving patterns, and segment the data into meaningful groups. Machine learning techniques, including K-Nearest Neighbors (KNN), decision trees, logistic regression, and Support Vector Machines (SVMs), were employed to classify gear shifts accurately. After a thorough evaluation, the KNN (Fine KNN) model proved to be the most effective, achieving an accuracy of 99.7%, an error rate of 0.3%, a precision of 99.8%, a recall of 99.7%, and an F1-score of 99.8%, outperforming other models in terms of accuracy, robustness, and balance between metrics. A multiple linear regression model was developed to estimate instantaneous fuel consumption (in L/100 km) using the gear predicted by the KNN algorithm and other relevant variables. The model, built on over 66,000 valid observations, achieved an R2 of 0.897 and a root mean square error (RMSE) of 2.06, indicating a strong fit. Results showed that higher gears (3, 4, and 5) are associated with lower fuel consumption. In contrast, a neutral gear presented the highest levels of consumption and variability, especially during prolonged idling periods in heavy traffic conditions. In future work, we propose integrating this algorithm into driver assistance systems (ADAS) and exploring its applicability in autonomous vehicles to enhance real-time decision making. Such integration could optimize gear shift timing based on dynamic factors like road conditions, traffic density, and driver behavior, ultimately contributing to improved fuel efficiency and overall vehicle performance. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

20 pages, 19840 KiB  
Article
A Comparison of Segmentation Methods for Semantic OctoMap Generation
by Marcin Czajka, Maciej Krupka, Daria Kubacka, Michał Remigiusz Janiszewski and Dominik Belter
Appl. Sci. 2025, 15(13), 7285; https://doi.org/10.3390/app15137285 - 27 Jun 2025
Viewed by 499
Abstract
Semantic mapping plays a critical role in enabling autonomous vehicles to understand and navigate complex environments. Instead of computationally demanding 3D segmentation of point clouds, we propose efficient segmentation on RGB images and projection of the corresponding LIDAR measurements on the semantic OctoMap. [...] Read more.
Semantic mapping plays a critical role in enabling autonomous vehicles to understand and navigate complex environments. Instead of computationally demanding 3D segmentation of point clouds, we propose efficient segmentation on RGB images and projection of the corresponding LIDAR measurements on the semantic OctoMap. This study presents a comparative evaluation of different semantic segmentation methods and examines the impact of input image resolution on the accuracy of 3D semantic environment reconstruction, inference time, and computational resource usage. The experiments were conducted using an ROS 2-based pipeline that combines RGB images and LiDAR point clouds. Semantic segmentation is performed using ONNX-exported deep neural networks, with class predictions projected onto corresponding 3D LiDAR data using calibrated extrinsic. The resulting semantically annotated point clouds are fused into a probabilistic 3D representation using an OctoMap, where each voxel stores both occupancy and semantic class information. Multiple encoder–decoder architectures with various backbone configurations are evaluated in terms of segmentation quality, latency, memory footprint, and GPU utilization. Furthermore, a comparison between high and low image resolutions is conducted to assess trade-offs between model accuracy and real-time applicability. Full article
Show Figures

Figure 1

Back to TopTop