Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (708)

Search Parameters:
Keywords = multifunctional agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2710 KiB  
Review
Polyphosphazene-Based Nanotherapeutics
by Sara Gutierrez-Gutierrez, Rocio Mellid-Carballal, Noemi Csaba and Marcos Garcia-Fuentes
J. Funct. Biomater. 2025, 16(8), 285; https://doi.org/10.3390/jfb16080285 (registering DOI) - 2 Aug 2025
Abstract
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide [...] Read more.
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide spectrum of functional properties, including the formation of multifunctional nanostructures tailored for specific therapeutic needs. These attributes enable PPZs to address several critical challenges associated with conventional drug delivery systems, such as poor pharmacokinetics and pharmacodynamics. By modulating solubility profiles, enhancing drug stability, enabling targeted delivery, and supporting controlled release, PPZs offer a robust platform for improving therapeutic efficacy and patient outcomes. This review explores the fundamental chemistry, biopharmaceutical characteristics, and biomedical applications of PPZs, particularly emphasizing their role in zero-dimensional nanotherapeutic systems, including various nanoparticle formulations. PPZ-based nanotherapeutics are further examined based on their drug-loading mechanisms, which include electrostatic complexation in polyelectrolytic systems, self-assembly in amphiphilic constructs, and covalent conjugation with active pharmaceutical agents. Together, these strategies underscore the potential of PPZs as a next-generation material for advanced drug delivery platforms. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery (2nd Edition))
Show Figures

Graphical abstract

17 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 (registering DOI) - 31 Jul 2025
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

19 pages, 950 KiB  
Review
A Narrative Review of Theranostics in Neuro-Oncology: Advancing Brain Tumor Diagnosis and Treatment Through Nuclear Medicine and Artificial Intelligence
by Rafail C. Christodoulou, Platon S. Papageorgiou, Rafael Pitsillos, Amanda Woodward, Sokratis G. Papageorgiou, Elena E. Solomou and Michalis F. Georgiou
Int. J. Mol. Sci. 2025, 26(15), 7396; https://doi.org/10.3390/ijms26157396 (registering DOI) - 31 Jul 2025
Viewed by 78
Abstract
This narrative review explores the integration of theranostics and artificial intelligence (AI) in neuro-oncology, addressing the urgent need for improved diagnostic and treatment strategies for brain tumors, including gliomas, meningiomas, and pediatric central nervous system neoplasms. A comprehensive literature search was conducted through [...] Read more.
This narrative review explores the integration of theranostics and artificial intelligence (AI) in neuro-oncology, addressing the urgent need for improved diagnostic and treatment strategies for brain tumors, including gliomas, meningiomas, and pediatric central nervous system neoplasms. A comprehensive literature search was conducted through PubMed, Scopus, and Embase for articles published between January 2020 and May 2025, focusing on recent clinical and preclinical advancements in personalized neuro-oncology. The review synthesizes evidence on novel theranostic agents—such as Lu-177-based radiopharmaceuticals, CXCR4-targeted PET tracers, and multifunctional nanoparticles—and highlights the role of AI in enhancing tumor detection, segmentation, and treatment planning through advanced imaging analysis, radiogenomics, and predictive modeling. Key findings include the emergence of nanotheranostics for targeted drug delivery and real-time monitoring, the application of AI-driven algorithms for improved image interpretation and therapy guidance, and the identification of current limitations such as data standardization, regulatory challenges, and limited multicenter validation. The review concludes that the convergence of AI and theranostic technologies holds significant promise for advancing precision medicine in neuro-oncology, but emphasizes the need for collaborative, multidisciplinary research to overcome existing barriers and enable widespread clinical adoption. Full article
(This article belongs to the Special Issue Biomarker Discovery and Validation for Precision Oncology)
Show Figures

Figure 1

18 pages, 762 KiB  
Review
Djulis (Chenopodium formosanum) Extract as a Promising Natural Agent Against Skin Aging
by Jia-Ling Lyu, Po-Yuan Wu, Hsiao-Fang Liao, Chia-Lin Lee, Kuo-Ching Wen, Chang-Cheng Chang and Hsiu-Mei Chiang
Molecules 2025, 30(15), 3209; https://doi.org/10.3390/molecules30153209 (registering DOI) - 31 Jul 2025
Viewed by 198
Abstract
Photoaging, predominantly induced by ultraviolet radiation, is a primary driver of premature skin aging, characterized by complex molecular mechanisms including oxidative stress, inflammation, matrix metalloproteinase activation, and extracellular matrix degradation. Consequently, there is growing scientific interest in identifying effective natural agents to counteract [...] Read more.
Photoaging, predominantly induced by ultraviolet radiation, is a primary driver of premature skin aging, characterized by complex molecular mechanisms including oxidative stress, inflammation, matrix metalloproteinase activation, and extracellular matrix degradation. Consequently, there is growing scientific interest in identifying effective natural agents to counteract skin aging and photoaging. Djulis (Chenopodium formosanum), an indigenous Taiwanese pseudocereal from the Amaranthaceae family, has emerged as a promising candidate for skincare applications because of its rich phytochemicals and diverse bioactivities. This review describes the current understanding of the molecular mechanisms underlying photoaging and examines the therapeutic potential of djulis extract as a multifunctional agent for skin aging. Its mechanisms of action include enhancing antioxidant defenses, modulating inflammatory pathways, preserving the extracellular matrix, and inhibiting the formation of advanced glycation end products. Bioactive constituents of djulis extract, including phenolic compounds, flavonoids, and betanin, are known to exhibit potent antioxidant and photoprotective activities by modulating multiple molecular pathways essential for skin protection. The bioactivities of djulis in in vitro and animal studies, and four skin clinical trials of djulis extract products are presented in this review article. Ultimately, this review provides an overview that supports the potential of djulis extract in the development of evidence-based skincare formulations for the prevention and treatment of skin aging. Full article
Show Figures

Graphical abstract

28 pages, 9865 KiB  
Article
Enhanced Stability of Multi-Functionalized Gold Nanoparticles and Potential Anticancer Efficacy on Human Cervical Cancer Cells
by Aurora Mocanu, Madalina Anca Ujica, Ossi Horovitz, Gheorghe Tomoaia, Olga Soritau, Cristina Teodora Dobrota, Cristina Roxana Popa, Attila Kun, Horea-Rares-Ciprian Benea, Ionel Marius Mang, Gheorghe Borodi, Viorica Raischi, Marius Roman, Lucian Cristian Pop and Maria Tomoaia-Cotisel
Biomedicines 2025, 13(8), 1861; https://doi.org/10.3390/biomedicines13081861 - 31 Jul 2025
Viewed by 215
Abstract
Objectives: In this research study, we introduce a novel approach to develop an innovative nanocarrier system comprising gold nanoparticles (GNPs) loaded with doxorubicin (D) in combination with natural molecules, such as trans-resveratrol (R), piperine (P), and icariin (Ic), against human cervical cancer. The [...] Read more.
Objectives: In this research study, we introduce a novel approach to develop an innovative nanocarrier system comprising gold nanoparticles (GNPs) loaded with doxorubicin (D) in combination with natural molecules, such as trans-resveratrol (R), piperine (P), and icariin (Ic), against human cervical cancer. The final objective is to improve the anticancer efficacy of doxorubicin on HeLa and CaSki cell lines. Methods: Resveratrol was also used for the synthesis of GNP_R1 nanoparticles. Multi-functional GNPs loaded with D, R, P, and Ic (e.g., GNP_R1@D/R/P/Ic) were successfully prepared and fully characterized by SPR, TEM, HR-TEM, XRD, AFM, DLS, and zeta potential. They were investigated for in vitro stability in various biological media. The cytotoxicity activity was tested on HeLa and CaSki cell lines, using the MTT assay, for their applications as anticancer agents. Results: Our results demonstrate that the novel multi-functional GNPs (such as GNP_R1@D/R and GNP_R1@D/R/P/Ic) can effectively target the cervical cancer cells, improving the bioavailability of therapeutic agents and enhancing their cytotoxicity against cervical cancer cells. In vitro assessments demonstrated that the multi-functional GNPs exhibited improved stability and potential anticancer efficacy on human cervical cancer cells. Conclusions: The described strategy connects the benefits of biomolecules with functional nanoparticles toward the development of various GNP_R1@D/R/P/Ic nanocarriers for their applications as anticancer agents against human cervical cancer. This study provides compelling evidence that the innovative nanoparticles can enhance the therapeutic efficacy of doxorubicin against cervical cancer and offer a more advantageous alternative compared to doxorubicin monotherapy. Full article
Show Figures

Figure 1

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 (registering DOI) - 30 Jul 2025
Viewed by 91
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

23 pages, 3019 KiB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Viewed by 109
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

30 pages, 3370 KiB  
Article
Rivastigmine Templates with Antioxidant Motifs—A Medicinal Chemist’s Toolbox Towards New Multipotent AD Drugs
by Inês Dias, Marlène Emmanuel, Paul Vogt, Catarina Guerreiro-Oliveira, Inês Melo-Marques, Sandra M. Cardoso, Rita C. Guedes, Sílvia Chaves and M. Amélia Santos
Antioxidants 2025, 14(8), 921; https://doi.org/10.3390/antiox14080921 (registering DOI) - 28 Jul 2025
Viewed by 170
Abstract
A series of rivastigmine hybrids, incorporating rivastigmine fragments (RIV) and a set of different antioxidant scaffolds, were designed, synthesized, and evaluated as multifunctional agents for the potential therapy of Alzheimer’s disease (AD). In vitro bioactivity assays indicated that some compounds have very good [...] Read more.
A series of rivastigmine hybrids, incorporating rivastigmine fragments (RIV) and a set of different antioxidant scaffolds, were designed, synthesized, and evaluated as multifunctional agents for the potential therapy of Alzheimer’s disease (AD). In vitro bioactivity assays indicated that some compounds have very good antioxidant (radical-scavenging) activity. The compounds also displayed good inhibitory activity against cholinesterases, though the bigger-sized hybrids showed higher inhibitory ability for butyrylcholinesterase (BChE) than for acetylcholinesterase (AChE), due to the larger active site cavity of BChE. All the hybrids exhibited an inhibition capacity for self-induced amyloid-β (Aβ1–42) aggregation. Furthermore, cell assays demonstrated that some compounds showed capacity for rescuing neuroblastoma cells from toxicity induced by reactive oxygen species (ROS). Among these RIV hybrids, the best in vitro multifunctional capacity was found for the caffeic acid derivatives enclosing catechol moieties (4AY5, 4AY6), though the Trolox derivatives (4AY2, 4BY2) presented the best cell neuroprotective activity against oxidative damage. Molecular-docking studies provided structural insights into the binding modes of RIV-based hybrids to the cholinesterases, revealing key interaction patterns despite some lack of correlation with inhibitory potency. Overall, the balanced multifunctional profiles of these hybrids render them potentially promising candidates for treating AD, thus deserving further investigation. Full article
(This article belongs to the Special Issue Oxidative Stress as a Therapeutic Target of Alzheimer’s Disease)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 221
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

26 pages, 1943 KiB  
Review
Alternative Solvents for Pectin Extraction: Effects of Extraction Agents on Pectin Structural Characteristics and Functional Properties
by Alisa Pattarapisitporn and Seiji Noma
Foods 2025, 14(15), 2644; https://doi.org/10.3390/foods14152644 - 28 Jul 2025
Viewed by 147
Abstract
Pectin is a multifunctional polysaccharide whose structural attributes, including degree of esterification (DE), molecular weight (MW), and branching, directly affect its gelling, emulsifying, and bioactive properties. Conventional pectin extraction relies on acid- or alkali-based methods that degrade the pectin structure, generate chemical waste, [...] Read more.
Pectin is a multifunctional polysaccharide whose structural attributes, including degree of esterification (DE), molecular weight (MW), and branching, directly affect its gelling, emulsifying, and bioactive properties. Conventional pectin extraction relies on acid- or alkali-based methods that degrade the pectin structure, generate chemical waste, and alter its physicochemical and functional properties. Although novel methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE) are recognized as environmentally friendly alternatives, they frequently use acids or alkalis as solvents. This review focuses on pectin extraction methods that do not involve acidic or alkaline solvents such as chelating agents, super/subcritical water, and deep eutectic solvents (DESs) composed of neutral components. This review also discusses how these alternative extraction methods can preserve or modify the key structural features of pectin, thereby influencing its monosaccharide composition, molecular conformation, and interactions with other biopolymers. Furthermore, the influence of these structural variations on the rheological properties, gelling behaviors, and potential applications of pectin in the food, pharmaceutical, and biomedical fields are discussed. This review provides insights into alternative strategies for obtaining structurally intact and functionally diverse pectin by examining the relationship between the extraction conditions and pectin functionality. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 3605 KiB  
Article
Luminescent Properties and Cytotoxic Activity of 2-phenylbenzoxazole Fluorosulfate Derivatives
by Nadezhda V. Danilenko, Mariia O. Lutsuk, Alexey A. Ryadun, Dmitry I. Pavlov, Evgenii V. Plotnikov, Daria D. Eskova, Yulia D. Klimenko, Andrei S. Potapov and Andrei I. Khlebnikov
Int. J. Mol. Sci. 2025, 26(15), 7261; https://doi.org/10.3390/ijms26157261 - 27 Jul 2025
Viewed by 216
Abstract
The synthesis of 2-phenylbenzoxazole fluorosulfate derivatives was carried out using the SuFEx reaction. To study the anticancer properties of the obtained compounds, the cell lines PC-3 (obtained from prostate adenocarcinoma), BT-474, and MCF-7 (both obtained from breast carcinoma) were used. The cytotoxicity on [...] Read more.
The synthesis of 2-phenylbenzoxazole fluorosulfate derivatives was carried out using the SuFEx reaction. To study the anticancer properties of the obtained compounds, the cell lines PC-3 (obtained from prostate adenocarcinoma), BT-474, and MCF-7 (both obtained from breast carcinoma) were used. The cytotoxicity on murine 3T3L1 embryonic was also investigated. Among the tested compounds, the ortho-substituted fluorosulfate derivative (BOSo) exhibited significant cytotoxicity against MCF-7 cells. The biological findings are consistent with molecular docking results, which revealed a structural similarity between BOSo and known inhibitors of hER and HER2 receptors—tamoxifen and SYR127063. Therefore, BOSo shows promise as a potential therapeutic agent with antiproliferative properties. The photoluminescent characteristics of the fluorosulfate derivatives were examined in the solid state, in acetonitrile solution and in PBS, with the highest quantum yields reaching up to 64% for the para-fluorosulfate derivative in acetonitrile. Overall, these compounds demonstrate considerable potential for the development of new multifunctional molecular tools that combine biological activity with fluorescent properties. Full article
Show Figures

Figure 1

19 pages, 3224 KiB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 309
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

20 pages, 4660 KiB  
Article
Neuroprotective Evaluation of Murraya Carbazoles: In Vitro and Docking Insights into Their Anti-AChE and Anti-Aβ Activities
by Himadri Sharma, Niti Sharma and Seong Soo A. An
Molecules 2025, 30(15), 3138; https://doi.org/10.3390/molecules30153138 - 26 Jul 2025
Viewed by 175
Abstract
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as [...] Read more.
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as up-and-coming drug candidates. Molecular docking was used to investigate the interactions of the compounds with Aβ (PDB: 1IYT, 2BEG, and 8EZE) and AChE receptors (PDB: 4EY7 and 1C2B). The results from the in vitro assays were used to validate and support the findings from the in silico assays. The compounds demonstrated significant inhibition of acetylcholinesterase (AChE), a key target in neurodegenerative disorders. Murrayanol and mahanimbine presented superior inhibitory activity (IC50 ~0.2 μg/mL), outperforming the reference drug, galantamine. The inhibition mechanisms were competitive (murrayanol, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde) and non-competitive (mahanimbine), supported by low Ki values and strong docking affinities. The compounds also proved effective in reducing Aβ fibrillization (murrayanol: 40.83 ± 0.30%; murrayafoline A: 33.60 ± 0.55%, mahanimbine: 27.68 ± 2.71%). These findings highlight Murraya carbazoles as promising scaffolds for multifunctional agents in AD therapy. Further optimization and mechanistic studies are warranted to advance their development into clinically relevant neuroprotective agents. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Graphical abstract

37 pages, 13718 KiB  
Review
Photothermal and Photodynamic Strategies for Diagnosis and Therapy of Alzheimer’s Disease by Modulating Amyloid-β Aggregation
by Fengli Gao, Yupeng Hou, Yaru Wang, Linyuan Liu, Xinyao Yi and Ning Xia
Biosensors 2025, 15(8), 480; https://doi.org/10.3390/bios15080480 - 24 Jul 2025
Viewed by 438
Abstract
Amyloid-β (Aβ) aggregates are considered as the important factors of Alzheimer’s disease (AD). Multifunctional materials have shown significant effects in the diagnosis and treatment of AD by modulating the aggregation of Aβ and production of reactive oxygen species (ROS). Compared to traditional surgical [...] Read more.
Amyloid-β (Aβ) aggregates are considered as the important factors of Alzheimer’s disease (AD). Multifunctional materials have shown significant effects in the diagnosis and treatment of AD by modulating the aggregation of Aβ and production of reactive oxygen species (ROS). Compared to traditional surgical treatment and radiotherapy, phototherapy has the advantages, including short response time, significant efficacy, and minimal side effects in disease diagnosis and treatment. Recent studies have shown that local thermal energy or singlet oxygen generated by irradiating certain organic molecules or nanomaterials with specific laser wavelengths can effectively degrade Aβ aggregates and depress the generation of ROS, promoting progress in AD diagnosis and therapy. Herein, we outline the development of photothermal therapy (PTT) and photodynamic therapy (PDT) strategies for the diagnosis and therapy of AD by modulating Aβ aggregation. The materials mainly include organic photothermal agents or photosensitizers, polymer materials, metal nanoparticles, quantum dots, carbon-based nanomaterials, etc. In addition, compared to traditional fluorescent dyes, aggregation-induced emission (AIE) molecules have the advantages of good stability, low background signals, and strong resistance to photobleaching for bioimaging. Some AIE-based materials exhibit excellent photothermal and photodynamic effects, showing broad application prospects in the diagnosis and therapy of AD. We further summarize the advances in the detection of Aβ aggregates and phototherapy of AD using AIE-based materials. Full article
(This article belongs to the Special Issue Biosensors Based on Self-Assembly and Boronate Affinity Interaction)
Show Figures

Figure 1

23 pages, 3376 KiB  
Article
Physicochemical and Instrumental Flavor Analysis of Plant-Based Drinks with Plant Powder Additions
by Joanna Kolniak-Ostek, Agnieszka Kita, Davide Giacalone, Laura Vázquez-Araújo, Luis Noguera-Artiaga, Jessica Brzezowska and Anna Michalska-Ciechanowska
Foods 2025, 14(15), 2593; https://doi.org/10.3390/foods14152593 - 24 Jul 2025
Viewed by 304
Abstract
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders [...] Read more.
This study explored the use of fruit- and herb-based powders as fortifying agents in soy- and oat-based beverages. Developed using a New Product Development approach, the powders were derived from underutilized plants rich in bioactives but with limited sensory appeal. Formulations included powders from both widely available fruits, such as apple and pear, chosen for their accessibility and economic relevance, and less commonly consumed fruits, such as Japanese quince, rosehip, and rhubarb, which are often discarded due to sour or astringent flavors. Processing these into powders helped mask undesirable sensory traits and enabled incorporation into beverage matrices. Physicochemical analyses confirmed their technological suitability, while high polyphenol content indicated potential health benefits. Importantly, no process contaminants (furfural, 5-hydroxymethyl-L-furfural, and acrylamide) were detected, supporting the powders’ safety for food use. The integrated application of an electronic tongue and nose enabled objective profiling of taste and aroma. The electronic tongue distinguished taste profiles across formulations, revealing matrix-dependent effects and interactions, particularly with trehalose, that influenced sweetness and bitterness. The electronic nose provided consistent aroma differentiation. Overall, the results highlight the potential of these underutilized plant powders as multifunctional ingredients in plant-based beverage development. They support product innovation aligned with consumer expectations for natural, health-promoting foods. Future work will include sensory validation with consumer panels. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

Back to TopTop