Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (189)

Search Parameters:
Keywords = multienzyme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3583 KiB  
Review
Hyaluronic Acid and Its Synthases—Current Knowledge
by Klaudia Palenčárová, Romana Köszagová and Jozef Nahálka
Int. J. Mol. Sci. 2025, 26(15), 7028; https://doi.org/10.3390/ijms26157028 - 22 Jul 2025
Viewed by 251
Abstract
Hyaluronic acid (HA) is a linear heteropolysaccharide that naturally occurs in vertebrates. Thanks to its unique physico-chemical properties, it is involved in many key processes in living organisms. These biological activities provide the basis for its broad applications in cosmetics, medicine, and the [...] Read more.
Hyaluronic acid (HA) is a linear heteropolysaccharide that naturally occurs in vertebrates. Thanks to its unique physico-chemical properties, it is involved in many key processes in living organisms. These biological activities provide the basis for its broad applications in cosmetics, medicine, and the food industry. The molecular weight of HA might vary significantly, as it can be less than 10 kDa or reach more than 6000 kDa. There is a strong correlation between variations in its molecular weight and bioactivities, as well as with various pathological processes. Consequently, monodispersity is a crucial requirement for HA production, together with purity and safety. Common industrial approaches, such as extraction from animal sources and microbial fermentation, have limits in fulfilling these requests. Research and protein engineering with hyaluronic acid synthases can provide a strong tool for the production of monodisperse HA. One-pot multi-enzyme reactions that include in situ nucleotide phosphate regeneration systems might represent the future of HA production. In this review, we explore the current knowledge about HA, its production, hyaluronic synthases, the most recent stage of in vitro enzymatic synthesis research, and one-pot approaches. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

14 pages, 4505 KiB  
Article
Electrochemical Determination of Creatinine Based on Multienzyme Cascade-Modified Nafion/Gold Nanoparticles/Screen-Printed Carbon Composite Biosensors
by Jialin Yang, Ruizhi Yu, Wanxin Zhang, Yijia Wang and Zejun Deng
Sensors 2025, 25(13), 4132; https://doi.org/10.3390/s25134132 - 2 Jul 2025
Viewed by 358
Abstract
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of [...] Read more.
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of AuNPs onto the surface of a pre-activated SPCE by electrochemical activation, followed by the surface modification of a Nafion membrane. The developed AuNPs/SCPE exhibited excellent reproducibility, and the proposed Nafion/AuNPs/SPCE sensor showed excellent detection sensitivity and selectivity toward creatinine. In comparison, the enzymatic creatinine biosensor was gradually established by the electrodeposition of a Prussian blue (PB) membrane on the optimal AuNPs/SCPE surface, followed by multi-enzyme cascade modification (which consisted of creatinine amidohydrolase (CA), creatine oxidase (CI) and sarcosine oxidase (SOx)) and drop-casting the Nafion membrane to stabilize the interface. The introduction of a PB interlayer acted as the redox layer to monitor the generation of hydrogen peroxide (H2O2) produced by the enzymatic reaction, while the Nafion membrane enhanced the detection selectivity toward creatine, and the multi-enzyme cascade modification further increased the detection specificity. Both non-enzymatic and enzymatic creatinine sensors could detect the lowest concentrations of less than or equal to 10 μM. In addition, the efficiency and reproducibility of the proposed composite biosensor were also confirmed by repetitive electrochemical measurements in human serum, which showed a positive linear calibration relation of peak currents versus the logarithm of the concentration between 10 μM and 1000 μM, namely, ip (μA) = −7.06 lgC (μM) −5.30, R2 = 0.996. This work offers a simple and feasible approach to the development of enzymatic and non-enzymatic creatinine biosensors. Full article
Show Figures

Figure 1

13 pages, 2677 KiB  
Article
A Single-Tube Two-Step MIRA-CRISPR/Cas12b Assay for the Rapid Detection of Mpox Virus
by Ge Hu, Zhijie Wei, Jinlei Guo, Kangchen Zhao, Qiao Qiao, Xiaojuan Zhu, Tao Wu, Heng Rong, Shuo Ning, Ziyang Hao, Ying Chi, Lunbiao Cui and Yiyue Ge
Viruses 2025, 17(6), 841; https://doi.org/10.3390/v17060841 - 12 Jun 2025
Viewed by 573
Abstract
Mpox is a zoonotic disease caused by the Mpox virus (MPXV). The rapid and accurate diagnosis of MPXV is essential for the timely and effective prevention, control, and treatment of the disease. In this study, we combined Multienzyme Isothermal Rapid Amplification (MIRA) (at [...] Read more.
Mpox is a zoonotic disease caused by the Mpox virus (MPXV). The rapid and accurate diagnosis of MPXV is essential for the timely and effective prevention, control, and treatment of the disease. In this study, we combined Multienzyme Isothermal Rapid Amplification (MIRA) (at 42 °C) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 12b(CRISPR/Cas12b) (at 60 °C) to develop a single-tube two-step assay for rapid MPXV detection, leveraging the distinct physical states of tricosane at these temperatures. MIRA amplification primers and CRISPR/cas12b SgRNA were designed based on the MPXV F3L gene. After screening the primers and sgRNAs, the reaction conditions were optimized, and the performances of the assay were evaluated. The detection limit (LOD) of this single-tube two-step MIRA-CRISPR/Cas12b assay for MPXV is four copies of DNA molecules. No cross-reactivity with other pathogens (herpes simplex virus (HSV), Epstein–Barr virus (EBV), Coxsackievirus A16 (CVA16), Enterovirus A71 (EV-A71), and measles virus (MeV)) was found. The assay also showed good consistency with quantitative real-time PCR (qPCR) (Kappa = 0.9547, p < 0.05, n = 100) in the detection of clinical samples, with a sensitivity of 98.5% and a specificity of 97.0%. The single-tube two-step MIRA-CRISPR/Cas12b assay permits the rapid (within 45 min), sensitive, and specific detection of MPXV. The lack of need for opening the reaction tube eliminates the risk of product contamination. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

19 pages, 2524 KiB  
Article
Efficient Preparation and Bioactivity Evaluation of Aglycone Soy Isoflavones via a Multi-Enzyme Synergistic Catalysis Strategy
by Yating Zhao, Yanhong Fu, Peng Du, Nan Li, Yaru Lv, Lizhen Hao, Wenlong Liu and Jing Xiao
Processes 2025, 13(6), 1831; https://doi.org/10.3390/pr13061831 - 10 Jun 2025
Viewed by 468
Abstract
Aglycone-type soy isoflavones, recognized for their bioactive phytoestrogen properties, face industrial limitations due to their low natural abundance and inefficient conversion. This study optimized a multi-enzyme synergistic catalysis system using soybean sprout powder, achieving high conversion rates and purity through response surface methodology. [...] Read more.
Aglycone-type soy isoflavones, recognized for their bioactive phytoestrogen properties, face industrial limitations due to their low natural abundance and inefficient conversion. This study optimized a multi-enzyme synergistic catalysis system using soybean sprout powder, achieving high conversion rates and purity through response surface methodology. The optimal enzyme system comprised β-glucosidase (25 U/mL), cellulase (200 U/mL), hemicellulase (400 U/mL), and β-galactosidase (900 U/mL) at pH 5.0, 50 °C, and 3.2 h. This system yielded an aglycone conversion rate of 92% and glycoside hydrolysis rate of 97%, outperforming single-enzyme approaches. Upon post-purification with AB-8 macroporous resin, the product reached a purity of 58.1 ± 0.54% and exhibited strong antioxidant activity, with DPPH and ABTS radical scavenging rates of 81.01 ± 0.78% and 71.37 ± 1.01%, respectively. In a zebrafish central nervous system injury model induced by mycophenolate mofetil, the 500 μg/mL sample group significantly reduced neural apoptosis fluorescence intensity compared to controls (p < 0.05), achieving a neuroprotective rate of 76.58%, which was similar to the effect of L-reducing glutathione. This study offers an efficient, cost-effective enzymatic strategy for producing aglycone soy isoflavones, highlighting their potential in functional foods and neuroprotective applications. Full article
Show Figures

Figure 1

33 pages, 2401 KiB  
Review
Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems
by Melesse Tadesse and Yun Liu
Catalysts 2025, 15(6), 571; https://doi.org/10.3390/catal15060571 - 9 Jun 2025
Cited by 1 | Viewed by 3683
Abstract
Enzymes, as nature’s precision biocatalysts, hold transformative potential across industrial, environmental, and biomedical sectors. However, their instability, solvent sensitivity, and limited reusability in their free form necessitate advanced immobilization strategies to enhance their robustness and scalability. This review critically examines cutting-edge advancements in [...] Read more.
Enzymes, as nature’s precision biocatalysts, hold transformative potential across industrial, environmental, and biomedical sectors. However, their instability, solvent sensitivity, and limited reusability in their free form necessitate advanced immobilization strategies to enhance their robustness and scalability. This review critically examines cutting-edge advancements in enzyme immobilization, focusing on the integration of artificial intelligence (AI), novel nanomaterials, and dynamic carrier systems to overcome the traditional limitations of mass transfer, enzyme leakage, and cost inefficiency. Key innovations such as metal–organic frameworks (MOFs), magnetic nanoparticles, self-healing hydrogels, and 3D-printed scaffolds are highlighted for their ability to optimize enzyme orientation, stability, and catalytic efficiency under extreme conditions. Moreover, AI-driven predictive modeling and machine learning emerge as pivotal tools for rationalizing nanomaterial synthesis, multi-enzyme cascade design, and toxicity assessment, while microfluidic systems enable precise biocatalyst fabrication. This review also explores emerging carrier-free strategies, including cross-linked enzyme aggregates (CLEAs) and DNA-directed immobilization, which minimize diffusion barriers and enhance substrate affinity. Despite progress, challenges persist in regards to eco-friendly nanomaterial production, industrial scalability, and real-world application viability. Future directions emphasize sustainable hybrid material design, AI-aided lifecycle assessments, and interdisciplinary synergies between synthetic biology, nanotechnology, and data analytics. By connecting laboratory innovation with industrial needs, this work provides a forward-thinking framework to harness immobilized enzymes for achieving global sustainability goals, particularly in bioremediation, bioenergy, and precision medicine. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

20 pages, 6095 KiB  
Article
Phase-Separated Multienzyme Condensates for Efficient Synthesis of Imines from Carboxylic Acids with Enhanced Dual-Cofactor Recycling
by Tingxiao Guo, Lifang Zeng, Jiaxu Liu, Xiaoyan Zhang and Yunpeng Bai
Int. J. Mol. Sci. 2025, 26(10), 4795; https://doi.org/10.3390/ijms26104795 - 16 May 2025
Cited by 1 | Viewed by 424
Abstract
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5′-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle [...] Read more.
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5′-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle cofactors through spatially organized enzymes, replicating this efficiency in vitro remains challenging. Here, we prepare a five-enzyme condensate system using liquid–liquid phase separation (LLPS) mediated by intrinsically disordered proteins (IDPs). By colocalizing a carboxylic acid reductase from Norcadia iowensis (NiCAR) with a reductive aminase from Aspergillus oryzae (AspRedAm) and three cofactor-regenerating enzymes, we generated a phase-separated catalytic condensate that enhanced ATP and NADPH recycling efficiency by 4.7-fold and 1.9-fold relative to free enzymes, respectively. Catalytic performance was correlated with the extent of phase separation, as confirmed by fluorescence microscopy, which revealed clear enrichment of ATP and NADPH within the condensates. This proximity effect enabled efficient cofactor turnover in the one-step reaction, achieving substrate conversion above 90% within 6 h and enhancing the space–time yield (STY) of the chiral imines 1.6-fold, with only one-fifth of the standard cofactor load. This approach creates a scalable and economic tool for performing multienzyme cascade reactions in vitro that are driven by the efficient recycling of multiple cofactors. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

24 pages, 5186 KiB  
Article
Shift of Microbiota and Modulation of Resistome in the Ceca of Broiler Chicken Fed Berry Pomace Alone or in Combination of a Multienzyme Mixture
by Munene Kithama, Yousef I. Hassan, Xianhua Yin, Joshua Tang, Lindsey Clairmont, Olimpia Sienkiewicz, Kelly Ross, Calvin Ho-Fung Lau, Dion Lepp, Xin Zhao, Elijah G. Kiarie and Moussa S. Diarra
Microorganisms 2025, 13(5), 1044; https://doi.org/10.3390/microorganisms13051044 - 30 Apr 2025
Viewed by 370
Abstract
Alternative feed additives are being investigated due to the restriction of antibiotics use to decrease antimicrobial resistance (AMR) in food-producing animals. This study investigated the effects of dietary American cranberry (Vaccinium macrocarpon) and wild blueberry (V. angustifolium) pomaces on [...] Read more.
Alternative feed additives are being investigated due to the restriction of antibiotics use to decrease antimicrobial resistance (AMR) in food-producing animals. This study investigated the effects of dietary American cranberry (Vaccinium macrocarpon) and wild blueberry (V. angustifolium) pomaces on the cecal microbiota and resistome profiles as well as the short-chain fatty acid levels. Male broiler chickens Cobb500 were fed a basal diet with either 55 ppm bacitracin methylene disalicylate (BMD); 0.5% (CRP0.5) and 1% (CRP1) cranberry pomace; and 0.5% (LBP0.5) and 1% (LBP1) lowbush blueberry pomace with or without a multienzyme mixture (ENZ). The results showed that at 21 days of age, the total coliform counts decreased in the CRP0.5-fed birds compared to BMD (p < 0.05). The use of pomace significantly increased the abundance of Lactobacillus and Bacteroides regardless of ENZ, while CRP decreased the Proteobacteria phylum abundance. In-feed ENZ tended to increase the relative abundance of genes conferring aminoglycoside resistance. Treatment with CRP0.5 decreased the abundance of cepA genes encoding for macrolide (MACROLIDE) and lincomycin (InuD) resistance while increasing those for tetracycline (tetO and tetX) resistance. These results showed, for the first time, the potential of the studied enzymes in influencing berry pomace’s effects on antimicrobial resistance gene profiles in broilers. Full article
Show Figures

Figure 1

13 pages, 2818 KiB  
Article
Dual Detection of Pathogenic tdh and trh Genes of Vibrio parahaemolyticus in Oysters Using Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay
by Seong Bin Park, Sam K. C. Chang, Lin Bi, Yunim Cha and Yan Zhang
Microbiol. Res. 2025, 16(5), 87; https://doi.org/10.3390/microbiolres16050087 - 22 Apr 2025
Viewed by 641
Abstract
Vibrio parahaemolyticus is a foodborne pathogen commonly associated with the consumption of contaminated seafood, particularly oysters. While PCR and real-time PCR are widely used to detect its pathogenicity through tdh and trh gene detection, these methods may not be practical in resource-limited settings [...] Read more.
Vibrio parahaemolyticus is a foodborne pathogen commonly associated with the consumption of contaminated seafood, particularly oysters. While PCR and real-time PCR are widely used to detect its pathogenicity through tdh and trh gene detection, these methods may not be practical in resource-limited settings such as field environments. To address this limitation, a rapid, sensitive, and specific duplex detection method was developed using the multienzyme isothermal rapid amplification (MIRA) assay in combination with lateral flow dipstick (LFD) technology. The assay utilized specific primer sets and probes to simultaneously amplify tdh and trh fragments tagged with 3′-FAM and 5′-Digoxigenin or Biotin during MIRA amplification, enabling the detection via respective antibody capture on the LFD strip. This duplex MIRA-LFD assay demonstrated a detection limit of 100 fg of DNA, 300 CFU/reaction for bacterial culture, and 3000 CFU/reaction for seeded oyster samples at 40 °C within 20 min. Notably, the assay exhibited no cross-reactivity with nine other Vibrio species or 18 foodborne pathogens, confirming its high specificity. Due to its simplicity, rapid turnaround time, and high sensitivity, this duplex MIRA-LFD assay offers a valuable tool for the surveillance of V. parahaemolyticus pathogenicity, aiding in public health protection and supporting the local seafood industry. Full article
Show Figures

Figure 1

22 pages, 8217 KiB  
Review
Cellulosome Systems in the Digestive Tract: Underexplored Enzymatic Machine for Lignocellulose Bioconversion
by Jiajing Qi, Mengke Zhang, Chao Chen, Yingang Feng and Jinsong Xuan
Catalysts 2025, 15(4), 387; https://doi.org/10.3390/catal15040387 - 16 Apr 2025
Viewed by 668
Abstract
Cellulosomes are sophisticated multi-enzyme complexes synthesized and secreted by anaerobic microorganisms, characterized by intricate structural components and highly organized modular assembly mechanisms. These complexes play a pivotal role in the efficient degradation of lignocellulosic biomass, significantly enhancing its bioconversion efficiency, and are thus [...] Read more.
Cellulosomes are sophisticated multi-enzyme complexes synthesized and secreted by anaerobic microorganisms, characterized by intricate structural components and highly organized modular assembly mechanisms. These complexes play a pivotal role in the efficient degradation of lignocellulosic biomass, significantly enhancing its bioconversion efficiency, and are thus regarded as invaluable enzymatic molecular machines. Cellulosomes are not only prevalent in anaerobic bacteria from soil and compost environments but are also integral to the digestive systems of herbivorous animals, primates and termites. The cellulosomes produced by digestive tract microbiota exhibit unique properties, providing novel enzymes and protein modules that are instrumental in biomass conversion and synthetic biology, thereby showcasing substantial application potential. Despite their promise, the isolation and cultivation of digestive tract microorganisms that produce cellulosomes present significant challenges. Additionally, the lack of comprehensive genetic and biochemical studies has impeded a thorough understanding of these cellulosomes, leaving them largely underexplored. This paper provides a comprehensive overview of the digestive tract cellulosome system, with a particular focus on the structural and functional attributes of cellulosomes in various animal digestive tracts. It also discusses the application prospects of digestive tract cellulosomes, highlighting their potential as a treasure in diverse fields. Full article
(This article belongs to the Special Issue Feature Review Papers in Biocatalysis and Enzyme Engineering)
Show Figures

Graphical abstract

22 pages, 1958 KiB  
Review
Regulation of Ergosterol Biosynthesis in Pathogenic Fungi: Opportunities for Therapeutic Development
by Lingyun Song, Sha Wang, Hang Zou, Xiaokang Yi, Shihan Jia, Rongpeng Li and Jinxing Song
Microorganisms 2025, 13(4), 862; https://doi.org/10.3390/microorganisms13040862 - 10 Apr 2025
Cited by 2 | Viewed by 1869
Abstract
Ergosterol plays a dual role in fungal pathogenesis and azole resistance, driving key advancements in the understanding of its biosynthesis regulation. This review integrates the latest research progress on the regulation of fungal ergosterol biosynthesis and its role in drug resistance and pathogenicity. [...] Read more.
Ergosterol plays a dual role in fungal pathogenesis and azole resistance, driving key advancements in the understanding of its biosynthesis regulation. This review integrates the latest research progress on the regulation of fungal ergosterol biosynthesis and its role in drug resistance and pathogenicity. We comprehensively discuss the functions of key enzymes (such as Erg11p/Cyp51A, Erg6p, Erg3p, and Erg25p) in the mevalonate, late, and alternative pathways. Notably, we highlight the complex regulation of cyp51A expression by factors such as SrbA, AtrR, CBC, HapX, and NCT in Aspergillus fumigatus, and elucidate the distinctive roles of Upc2, Adr1, and Rpn4 in Candida species. Importantly, we summarize recent discoveries on the CprA-dependent regulation of Cyp51A/Erg11p and heme-mediated stability control. Based on these findings, we propose innovative antifungal strategies, including dual-target inhibition and multi-enzyme inhibition by natural products, which provide novel insights and potential directions for the development of next-generation antifungal therapies. Full article
Show Figures

Figure 1

13 pages, 232 KiB  
Article
Apparent Total Tract Digestibility of Energy, Concentrations of Digestible Energy and Metabolizable Energy, and Nitrogen Balance in Growing Pigs Fed Bakery Meal and Biscuit Meal with Multi-Enzyme
by Jihwan Lee, Joeun Kim, Junseon Hong, Hyunju Park, Soojin Sa, Sungwoo Park, Yongmin Kim, Sungdae Lee, Yohan Choi and Yongdae Jeong
Animals 2025, 15(7), 1002; https://doi.org/10.3390/ani15071002 - 30 Mar 2025
Viewed by 523
Abstract
A total of eight ([Landrace × Yorkshire] × Duroc) barrows with an initial body weight (BW) of 33.06 ± 1.16 kg were placed in metabolism crates. The dietary treatments were structured using a 4 × 2 factorial design, which included two factors: four [...] Read more.
A total of eight ([Landrace × Yorkshire] × Duroc) barrows with an initial body weight (BW) of 33.06 ± 1.16 kg were placed in metabolism crates. The dietary treatments were structured using a 4 × 2 factorial design, which included two factors: four diet types (i.e., corn-based diet, CON; corn-plain bread meal (PBM)-based diet, PBMD; corn-sweet bread meal (SBM)-based diet, SBMD; and corn-biscuit meal (BM)-based diet (BMD) with or without 0.1% multi-enzyme supplementation). In this study, the concentrations of DE and ME were 4075 and 3981 kcal/kg dry matter (DM) in two-source bakery meals (i.e., PBM and SBM) and 4153 and 4075 kcal/kg DM in BM. The DE and ME (on a DM basis) in the bakery meals (i.e., PBM and SBM) and BM were significantly higher (p < 0.05) than in corn. However, there was no significant difference (p > 0.05) in the ATTD of DM, GE, and N among the dietary treatments, multi-enzyme, and their interaction. In summary, the bakery meals and biscuit meals investigated in this study have the potential to partially replace corn. Further research is necessary to ascertain the effects of multi-enzyme supplements on bakery meals and biscuit meals. Full article
(This article belongs to the Special Issue Exploration of Sustainable Feed Resources and Pig Dietary Strategies)
12 pages, 7273 KiB  
Article
Enhancement of Lycopene Biosynthesis Using Self-Assembled Multi-Enzymic Protein Cages
by Yulong Zhou, Yonghua Yao, Furong Zhang, Ning Yu, Binqiang Wang and Bing Tian
Microorganisms 2025, 13(4), 747; https://doi.org/10.3390/microorganisms13040747 - 26 Mar 2025
Viewed by 607
Abstract
Constructions of self-assembled protein nanocages for enzyme immobilization and cargo transport are very promising in biotechnology fields such as natural product biosynthesis. Here, we present an engineered isopentenyl pyrophosphate (IPP) synthetic nanocage with multiple enzymes for lycopene production in bacteria. The enzymes involved [...] Read more.
Constructions of self-assembled protein nanocages for enzyme immobilization and cargo transport are very promising in biotechnology fields such as natural product biosynthesis. Here, we present an engineered isopentenyl pyrophosphate (IPP) synthetic nanocage with multiple enzymes for lycopene production in bacteria. The enzymes involved in IPP biosynthesis (ScCK, AtIPK, and MxanIDI) were assembled onto the exterior of an engineered protein cage based on α-carboxysome. The IPP synthetic nanocage was co-expressed with CrtE/CrtB/CrtI in Escherichia coli. This approach increased the metabolic flux and resulted in a 1.7-fold increase in lycopene production in the engineered E. coli compared with the control strain. The results provide insights into the immobilization and assembling of IPP biosynthetic enzymes in protein nanocages, which serve as a powerful tool for achieving efficient synthesis of lycopene. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

5 pages, 289 KiB  
Proceeding Paper
Multi-Target In Silico Evaluation of New 2-Pyrazolines as Antimicrobial Agents
by Zukhruf Salami, Asmau Hamza, Abdullahi Idris and Yusuf Jimoh
Chem. Proc. 2024, 16(1), 110; https://doi.org/10.3390/ecsoc-28-20226 - 21 Mar 2025
Viewed by 598
Abstract
The world today is being ravaged by the emergence and re-emergence of microbial infections caused by antimicrobial-resistant strains, brought about primarily by the frequent and perhaps unnecessary use of antimicrobial agents. A need therefore arises to develop new antimicrobial drugs that can combat [...] Read more.
The world today is being ravaged by the emergence and re-emergence of microbial infections caused by antimicrobial-resistant strains, brought about primarily by the frequent and perhaps unnecessary use of antimicrobial agents. A need therefore arises to develop new antimicrobial drugs that can combat these pathogens resistant to currently available antibiotics. This present study has adopted a multi-enzyme in silico approach in evaluating new 2-pyrazolines as antimicrobial agents, targeting and aiming to inhibit three pivotal enzymes in the bacteria’s life cycle. A library of 2-pyrazolines was tailored to achieve the desired activity. The library of compounds and amoxicillin, a standard antimicrobial drug, were docked into the molecular target enzymes. They were also subjected to toxicity and drug-likeness tests, using PROTOX and swissADME, respectively. A moderate toxicity profile was indicated, as more than 90% of the ligands were in ProTox class 4. The majority exhibited advantageous ADME characteristics. A significant number of them demonstrated a binding affinity for the target proteins that was stronger than both the native ligand and the binding affinity of amoxicillin. Ligands 30, 20, and 8 are the notable ones across all target enzymes. These results suggest that these novel ligands may be powerful inhibitors, particularly when it comes to interfering with the formation of bacterial cell walls, folic acid, and nucleotide metabolism. Additional in vivo and in vitro research is required to confirm these results and evaluate their therapeutic potential. Full article
Show Figures

Figure 1

14 pages, 1474 KiB  
Article
Evaluation and Application of the MIRA–qPCR Method for Rapid Detection of Norovirus Genogroup II in Shellfish
by Yanting Zhu, Mengyuan Song, Yingjie Pan, Yong Zhao and Haiquan Liu
Microorganisms 2025, 13(4), 712; https://doi.org/10.3390/microorganisms13040712 - 21 Mar 2025
Viewed by 503
Abstract
Globally, norovirus has become the primary cause of outbreaks of acute gastroenteritis, and an increasing number of norovirus GII infections have been associated with shellfish. This highlights the urgent need to establish sensitive and rapid detection platforms for timely screening of contaminated shellfish [...] Read more.
Globally, norovirus has become the primary cause of outbreaks of acute gastroenteritis, and an increasing number of norovirus GII infections have been associated with shellfish. This highlights the urgent need to establish sensitive and rapid detection platforms for timely screening of contaminated shellfish to reduce the risk of virus transmission. To address this challenge, we developed a novel detection method combining multienzyme isothermal rapid amplification (MIRA) with qPCR, referred to as MIRA–qPCR, specifically targeting norovirus GII. It exhibited robust specificity, demonstrating no cross-reactivity with sapovirus, rotavirus, hepatitis A virus, Escherichia coli, Listeria monocytogenes, or Vibrio parahaemolyticus, and exhibited high sensitivity, detecting as low as 1.62 copies/μL for recombinant plasmid standards. Furthermore, MIRA–qPCR showed good linearity in the 1.62 × 101 to 1.62 × 107 copies/μL range, with an R2 > 0.90. MIRA–qPCR and qPCR assays were performed on 125 fresh shellfish samples; there was good consistency in the detection results, and the Kappa value was 0.90 (p < 0.001). The sensitivity and specificity of the MIRA–qPCR detection were 100.00% and 97.25%, respectively. The MIRA–qPCR technique provides a viable alternative for the rapid screening of norovirus GII-contaminated shellfish to guarantee food safety. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

18 pages, 1246 KiB  
Article
Role of In-House Enzymatic Cocktails from Endophytic Fungi in the Saccharification of Corn Wastes Towards a Sustainable and Integrated Biorefinery Approach
by Patrísia de Oliveira Rodrigues, Anderson Gabriel Corrêa, Lucas Carvalho Basílio de Azevedo, Daniel Pasquini and Milla Alves Baffi
Fermentation 2025, 11(3), 155; https://doi.org/10.3390/fermentation11030155 - 19 Mar 2025
Viewed by 704
Abstract
The valorization of agri-food wastes can provide value-added products, enzymes and biofuels. For the second-generation ethanol (2G) production, pulps rich in cellulose are desirable in order to release fermentable sugars. This study investigated the homemade biosynthesis of cellulases and hemicellulases via solid-state fermentation [...] Read more.
The valorization of agri-food wastes can provide value-added products, enzymes and biofuels. For the second-generation ethanol (2G) production, pulps rich in cellulose are desirable in order to release fermentable sugars. This study investigated the homemade biosynthesis of cellulases and hemicellulases via solid-state fermentation (SSF) using sugarcane bagasse (SB) and wheat bran (WB) for the growth of endophytic fungi (Beauveria bassiana, Trichoderma asperellum, Metarhizium anisopliae and Pochonia chlamydosporia). Cocktails with high enzymatic levels were obtained, with an emphasis for M. anisopliae in the production of β-glucosidase (83.61 U/g after 288 h) and T. asperellum for xylanase (785.50 U/g after 144 h). This novel M. anisopliae β-glucosidase demonstrated acidophile and thermotolerant properties (optimum activity at pH 5.5 and 60 °C and stability in a wide pH range and up to 60 °C), which are suitable for lignocellulose saccharifications. Hence, the M. anisopliae multi-enzyme blend was selected for the hydrolysis of raw and organosolv-pretreated corn straw (CS) and corncob (CC) using 100 CBU/g cellulose. After the ethanol/water (1:1) pretreatment, solid fractions rich in cellulose (55.27 in CC and 50.70% in CS) and with low concentrations of hemicellulose and lignin were found. Pretreated CC and CS hydrolysates reached a maximum TRS release of 12.48 and 13.68 g/L, with increments of 100.80 and 73.82% in comparison to untreated biomass, respectively, emphasizing the fundamental role of a pretreatment in bioconversions. This is the first report on β-glucosidase biosynthesis using M. anisopliae and its use in biomass hydrolysis. These findings demonstrated a closed-loop strategy for internal enzyme biosynthesis integrated to reducing sugar release which would be applied for further usage in biorefineries. Full article
Show Figures

Figure 1

Back to TopTop