Role of In-House Enzymatic Cocktails from Endophytic Fungi in the Saccharification of Corn Wastes Towards a Sustainable and Integrated Biorefinery Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Enzyme Production via Solid State Fermentation (SSF)
2.3. Determination of Enzymatic Activities
2.4. β-Glucosidase Characterization
2.5. Organosolv Pretreatment
2.6. Enzymatic Hydrolysis
2.7. Data Analysis
3. Results
3.1. Production of Cellulases and Hemicellulases
3.2. Effects of pH and Temperature in M. anisopliae β-Glucosidase
3.3. Chemical Composition of Raw and Organosolv-Pretreated Biomasses
3.4. Enzymatic Hydrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baêta, B.E.L.; Lima, D.R.S.; Filho, J.G.B.; Adarme, O.F.H.; Gurgel, L.V.A.; de Aquino, S.F. Evaluation of Hydrogen and Methane Production from Sugarcane Bagasse Hemicellulose Hydrolysates by Two-Stage Anaerobic Digestion Process. Bioresour. Technol. 2016, 218, 436–446. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Rodrigues, P.; Moreira, F.S.; Cardoso, V.L.; Santos, L.D.; Gurgel, L.V.A.; Pasquini, D.; Baffi, M.A. Combination of High Solid Load, On-Site Enzyme Cocktails and Surfactant in the Hydhydrolysis of Hydrothermally Pretreated Sugarcane Bagasse and Ethanol Production. Waste Biomass Valorization 2022, 13, 3085–3094. [Google Scholar] [CrossRef]
- Bayu, A.; Abudula, A.; Guan, G. Reaction Pathways and Selectivity in Chemo-Catalytic Conversion of Biomass-Derived Carbohydrates to High-Value Chemicals: A Review. Fuel Process. Technol. 2019, 196, 106162. [Google Scholar] [CrossRef]
- Wan Azelee, N.I.; Mahdi, H.I.; Cheng, Y.S.; Nordin, N.; Illias, R.M.; Rahman, R.A.; Shaarani, S.M.; Bhatt, P.; Yadav, S.; Chang, S.W.; et al. Biomass Degradation: Challenges and Strategies in Extraction and Fractionation of Hemicellulose. Fuel 2023, 339, 126982. [Google Scholar] [CrossRef]
- Capetti, C.C.d.M.; Pellegrini, V.O.A.; Espirito Santo, M.C.; Cortez, A.A.; Falvo, M.; Curvelo, A.A.d.S.; Campos, E.; Filgueiras, J.G.; Guimaraes, F.E.G.; de Azevedo, E.R.; et al. Enzymatic Production of Xylooligosaccharides from Corn Cobs: Assessment of Two Different Pretreatment Strategies. Carbohydr. Polym. 2023, 299, 120174. [Google Scholar] [CrossRef]
- Geng, W.; Venditti, R.A.; Pawlak, J.J.; Chang, H.M. Effect of Delignification on Hemicellulose Extraction from Switchgrass, Poplar, and Pine and Its Effect on Enzymatic Convertibility of Cellulose-Rich Residues. Bioresources 2019, 13, 4946–4963. [Google Scholar] [CrossRef]
- Park, J.; Riaz, A.; Insyani, R.; Kim, J. Understanding the Relationship between the Structure and Depolymerization Behavior of Lignin. Fuel 2018, 217, 202–210. [Google Scholar] [CrossRef]
- Choi, J.H.; Jang, S.K.; Kim, J.H.; Park, S.Y.; Kim, J.C.; Jeong, H.; Kim, H.Y.; Choi, I.G. Simultaneous Production of Glucose, Furfural, and Ethanol Organosolv Lignin for Total Utilization of High Recalcitrant Biomass by Organosolv Pretreatment. Renew. Energy 2019, 130, 952–960. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Taherzadeh, M.J. Improving the Economy of Lignocellulose-Based Biorefineries with Organosolv Pretreatment. Bioresour. Technol. 2020, 299, 122695. [Google Scholar] [CrossRef]
- Das, A.; Mohanty, K. Optimization of Lignin Extraction from Bamboo by Ultrasound-Assisted Organosolv Pretreatment. Bioresour. Technol. 2023, 376, 128884. [Google Scholar] [CrossRef]
- Jomnonkhaow, U.; Sittijunda, S.; Reungsang, A. Assessment of Organosolv, Hydrothermal, and Combined Organosolv and Hydrothermal with Enzymatic Pretreatment to Increase the Production of Biogas from Napier Grass and Napier Silage. Renew. Energy 2022, 181, 1237–1249. [Google Scholar] [CrossRef]
- Zhong, L.; Zhang, X.; Tang, C.; Chen, Y.; Shen, T.; Zhu, C.; Ying, H. Hydrazine Hydrate and Organosolv Synergetic Pretreatment of Corn Stover to Enhance Enzymatic Saccharification and Co-Production of High-Quality Antioxidant Lignin. Bioresour. Technol. 2018, 268, 677–683. [Google Scholar] [CrossRef]
- Mahmood, H.; Moniruzzaman, M.; Iqbal, T.; Khan, M.J. Recent Advances in the Pretreatment of Lignocellulosic Biomass for Biofuels and Value-Added Products. Curr. Opin. Green. Sustain. Chem. 2019, 20, 18–24. [Google Scholar] [CrossRef]
- de Cassia Pereira, J.; Travaini, R.; Paganini Marques, N.; Bolado, S.; Bocchini Martins, D.A. Saccharification of Ozonated Sugarcane Bagasse Using Enzymes from Myceliophthora Thermophila JCP 1-4 for Sugars Release and Ethanol Production. Bioresour. Technol. 2016, 204, 122–129. [Google Scholar] [CrossRef]
- de Oliveira Rodrigues, P.; de Cássia Pereira, J.; dos Santos, D.Q.; Gurgel, L.V.A.; Pasquini, D.; Baffi, M.A. Synergistic Action of an Aspergillus (Hemi-)Cellulolytic Consortium on Sugarcane Bagasse Saccharification. Ind. Crops Prod. 2017, 109, 173–181. [Google Scholar] [CrossRef]
- Marques, N.P.; de Cassia Pereira, J.; Gomes, E.; da Silva, R.; Araújo, A.R.; Ferreira, H.; Rodrigues, A.; Dussán, K.J.; Bocchini, D.A. Cellulases and Xylanases Production by Endophytic Fungi by Solid State Fermentation Using Lignocellulosic Substrates and Enzymatic Saccharification of Pretreated Sugarcane Bagasse. Ind. Crops Prod. 2018, 122, 66–75. [Google Scholar] [CrossRef]
- Rodrigues, P.d.O.; Gurgel, L.V.A.; Pasquini, D.; Badotti, F.; Góes-Neto, A.; Baffi, M.A. Lignocellulose-Degrading Enzymes Production by Solid-State Fermentation through Fungal Consortium among Ascomycetes and Basidiomycetes. Renew. Energy 2020, 145, 2683–2693. [Google Scholar] [CrossRef]
- Pereira Scarpa, J.d.C.; Paganini Marques, N.; Alves Monteiro, D.; Martins, G.M.; de Paula, A.V.; Boscolo, M.; da Silva, R.; Gomes, E.; Alonso Bocchini, D. Saccharification of Pretreated Sugarcane Bagasse Using Enzymes Solution from Pycnoporus Sanguineus MCA 16 and Cellulosic Ethanol Production. Ind. Crops Prod. 2019, 141, 111795. [Google Scholar] [CrossRef]
- de Oliveira Rodrigues, P.; da Silva Barreto, E.; Brandão, R.L.; Gurgel, L.V.A.; Pasquini, D.; Baffi, M.A. On-Site Produced Enzyme Cocktails for Saccharification and Ethanol Production from Sugarcane Bagasse Fractionated by Hydrothermal and Alkaline Pretreatments. Waste Biomass Valorization 2022, 13, 95–106. [Google Scholar] [CrossRef]
- Khaswal, A.; Mishra, S.K.; Chaturvedi, N.; Saini, S.; Pletschke, B.; Kuhad, R.C. Microbial Enzyme Production: Unlocking the Potential of Agricultural and Food Waste through Solid-State Fermentation. Bioresour. Technol. Rep. 2024, 27, 101880. [Google Scholar] [CrossRef]
- Alves, G.S.; Bertini, S.C.B.; Barbosa, B.B.; Pimentel, J.P.; Ribeiro Junior, V.A.; Mendes, G.d.O.; Azevedo, L.C.B. Fungal Endophytes Inoculation Improves Soil Nutrient Availability, Arbuscular Mycorrhizal Colonization and Common Bean Growth. Rhizosphere 2021, 18, 100330. [Google Scholar] [CrossRef]
- Barra-Bucarei, L.; González, M.G.; Iglesias, A.F.; Aguayo, G.S.; Peñalosa, M.G.; Vera, P.V. Beauveria Bassiana Multifunction as an Endophyte: Growth Promotion and Biologic Control of Trialeurodes Vaporariorum, (Westwood) (Hemiptera: Aleyrodidae) in Tomato. Insects 2020, 11, 591. [Google Scholar] [CrossRef] [PubMed]
- Amobonye, A.; Bhagwat, P.; Singh, S.; Pillai, S. Enhanced Xylanase and Endoglucanase Production from Beauveria Bassiana SAN01, an Entomopathogenic Fungal Endophyte. Fungal Biol. 2021, 125, 39–48. [Google Scholar] [CrossRef]
- Amobonye, A.; Bhagwat, P.; Mthethwa, N.; Kwenda, S.; Ismail, A.; Kumari, S.; Singh, S.; Pillai, S. Transcriptomic Profiling of Beauveria Bassiana SAN01, an Endophytic Fungal Entomopathogen, for the Production of Lignocellulosic Enzymes. Biocatal. Agric. Biotechnol. 2023, 54, 102918. [Google Scholar] [CrossRef]
- Aita, B.C.; Spannemberg, S.S.; Schmaltz, S.; Zabot, G.L.; Tres, M.V.; Kuhn, R.C.; Mazutti, M.A. Production of Cell-Wall Degrading Enzymes by Solid-State Fermentation Using Agroindustrial Residues as Substrates. J. Environ. Chem. Eng. 2019, 7, 103193. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, L.; Yu, D.; Lin, H.; Shen, Q.; Zhao, Y. Excellent Waste Biomass-Degrading Performance of Trichoderma Asperellum T-1 during Submerged Fermentation. Sci. Total Environ. 2017, 609, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Chen, J.; Wang, J.; Zhuang, H. Transformation of Corncob into High-Value Xylooligosaccharides Using Glycoside Hydrolase Families 10 and 11 Xylanases from Trichoderma Asperellum ND-1. Bioresour. Technol. 2024, 394, 130249. [Google Scholar] [CrossRef]
- Ezeilo, U.R.; Lee, C.T.; Huyop, F.; Zakaria, I.I.; Wahab, R.A. Raw Oil Palm Frond Leaves as Cost-Effective Substrate for Cellulase and Xylanase Productions by Trichoderma Asperellum UC1 under Solid-State Fermentation. J. Environ. Manag. 2019, 243, 206–217. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Corrêa, A.G.; de Oliveira Rodrigues, P.; de Azevedo, L.C.B.; Pasquini, D.; Baffi, M.A. Reuse of Grape Pomace and Wheat Bran for Biosynthesis of On-Site Lignocellulose-Degrading Enzymes by Trametes Villosa and Trichoderma Asperellum Under Solid State Fermentation. Waste Biomass Valorization 2024, 15, 4747–4760. [Google Scholar] [CrossRef]
- Miller, G.L. Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- De Cassia Pereira, J.; Paganini Marques, N.; Rodrigues, A.; Brito de Oliveira, T.; Boscolo, M.; Da Silva, R.; Gomes, E.; Bocchini Martins, D.A. Thermophilic Fungi as New Sources for Production of Cellulases and Xylanases with Potential Use in Sugarcane Bagasse Saccharification. J. Appl. Microbiol. 2015, 118, 928–939. [Google Scholar] [CrossRef]
- Baffi, M.A.; Tobal, T.; Henrique, J.; Lago, G.; Leite, R.S.R.; Boscolo, M.; Gomes, E.; Da-Silva, R. A Novel β-Glucosidase FromSporidiobolus Pararoseus: Characterization and Application in Winemaking. J. Food Sci. 2011, 76, 997–1002. [Google Scholar] [CrossRef]
- Dos Santos, B.S.L.; Gomes, A.F.S.; Franciscon, E.G.; De Oliveira, J.M.; Baffi, M.A. Thermotolerant and Mesophylic Fungi from Sugarcane Bagasse and Their Prospection for Biomass-Degrading Enzyme Production. Braz. J. Microbiol. 2015, 46, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.J.; Knott, M. A cluster analysis method for grouping means in the analysis of variance. Biometrics 1974, 30, 507–512. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A Computer Statistical Analysis System. Ciência E Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Sanguine, I.S.; Cavalheiro, G.F.; Garcia, N.F.L.; dos Santos, M.V.; Gandra, J.R.; de Tonissi e Buschinelli de Goes, R.H.; da Paz, M.F.; Fonseca, G.G.; Leite, R.S.R. Xylanases of Trichoderma Koningii and Trichoderma Pseudokoningii: Production, Characterization and Application as Additives in the Digestibility of Forage for Cattle. Biocatal. Agric. Biotechnol. 2022, 44, 102482. [Google Scholar] [CrossRef]
- Noguchi, T.; Nishiyama, R.; Shimokawa, T.; Yamada, K.; Kagawa, Y. Simultaneous Production of Cellobiose and Xylobiose from Alkali-Treated Bagasse Using Cellulase Secreted by Fe-Ion-Irradiated Trichoderma Reesei Mutant. J. Biosci. Bioeng. 2022, 134, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Ajijolakewu, K.A.; Leh, C.P.; Lee, C.K.; Wan Nadiah, W.A. Characterization of Novel Trichoderma Hemicellulase and Its Use to Enhance Downstream Processing of Lignocellulosic Biomass to Simple Fermentable Sugars. Biocatal. Agric. Biotechnol. 2017, 11, 166–175. [Google Scholar] [CrossRef]
- Mohamad Ikubar, M.R.; Abdul Manan, M.; Md. Salleh, M.; Yahya, A. Solid-State Fermentation of Oil Palm Frond Petiole for Lignin Peroxidase and Xylanase-Rich Cocktail Production. 3 Biotech 2018, 8, 259. [Google Scholar] [CrossRef]
- Raghuwanshi, S.; Deswal, D.; Karp, M.; Kuhad, R.C. Bioprocessing of Enhanced Cellulase Production from a Mutant of Trichoderma Asperellum RCK2011 and Its Application in Hydrolysis of Cellulose. Fuel 2014, 124, 183–189. [Google Scholar] [CrossRef]
- Marx, I.J.; Van Wyk, N.; Smit, S.; Jacobson, D.; Viljoen-Bloom, M.; Volschenk, H. Comparative Secretome Analysis of Trichoderma Asperellum S4F8 and Trichoderma Reesei Rut C30 during Solid-State Fermentation on Sugarcane Bagasse. Biotechnol Biofuels 2013, 29, 172. [Google Scholar] [CrossRef]
- García Riaño, J.L.; Barrera, G.P.; Hernández, L.C.; Villamizar, L.F. Microsclerotia from Metarhizium Robertsii: Production, Ultrastructural Analysis, Robustness, and Insecticidal Activity. Fungal Biol. 2024, 128, 1643–1656. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.d.S.; Abati, K.; Mendoza, N.V.R.; Mascarin, G.M.; Delalibera Júnior, I. Nutritional Impact of Low-Cost Substrates on Biphasic Fermentation for Conidia Production of the Fungal Biopesticide Metarhizium Anisopliae. Bioresour. Technol. Rep. 2021, 13, 100619. [Google Scholar] [CrossRef]
- de Gouveia, A.S.; Monteiro, T.S.A.; Balbino, H.M.; de Magalhães, F.C.; Ramos, M.E.S.; Moura, V.A.S.; Luiz, P.H.D.; de Oliveira, M.G.A.; de Freitas, L.G.; de Ramos, H.J.O. Inoculation of Pochonia Chlamydosporia Triggers a Defense Response in Tomato Roots, Affecting Parasitism by Meloidogyne Javanica. Microbiol. Res. 2023, 266, 127242. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Artola, A.; Barrena, R.; Sánchez, A. Harnessing Packed-Bed Bioreactors’ Potential in Solid-State Fermentation: The Case of Beauveria Bassiana Conidia Production. Fermentation 2024, 10, 481. [Google Scholar] [CrossRef]
- Magwaza, B.; Amobonye, A.; Bhagwat, P.; Pillai, S. Biochemical and in Silico Structural Properties of a Thermo-Acid Stable β-Glucosidase from Beauveria Bassiana. Heliyon 2024, 10, e28667. [Google Scholar] [CrossRef]
- Alves, E.A.; Schmaltz, S.; Tres, M.V.; Zabot, G.L.; Kuhn, R.C.; Mazutti, M.A. Process Development to Obtain a Cocktail Containing Cell-Wall Degrading Enzymes with Insecticidal Activity from Beauveria Bassiana. Biochem. Eng. J. 2020, 156, 107484. [Google Scholar] [CrossRef]
- Park, Y.C.; Kim, T.H.; Kim, J.S. Flow-through Pretreatment of Corn Stover by Recycling Organosolv to Reduce Waste Solvent. Energies 2018, 11, 879. [Google Scholar] [CrossRef]
- Rabelo, S.C.; Nakasu, P.Y.S.; Scopel, E.; Araújo, M.F.; Cardoso, L.H.; da Costa, A.C. Organosolv Pretreatment for Biorefineries: Current Status, Perspectives, and Challenges. Bioresour. Technol. 2023, 369, 128331. [Google Scholar] [CrossRef]
- Sulbarán-Rangel, B.; Aguirre, J.S.A.; Breton-Deval, L.; del Real-Olvera, J.; Tun, K.J.G. Improvement of Anaerobic Digestion of Hydrolysed Corncob Waste by Organosolv Pretreatment for Biogas Production. Appl. Sci. 2020, 10, 2785. [Google Scholar] [CrossRef]
- Taiwo, A.E.; Tom-James, A.; Falowo, O.A.; Okoji, A.; Adeyi, O.; Olalere, A.O.; Eloka-Eboka, A. Techno-Economic Analysis of Cellulase Production by Trichoderma Reesei in Submerged Fermentation Processes Using a Process Simulator. S. Afr. J. Chem. Eng. 2022, 42, 98–105. [Google Scholar] [CrossRef]
- Carpio, R.R.; Secchi, S.G.; Barros, R.O.; Oliveira, R.A.; Queiroz, S.; Teixeira, R.S.S.; Bon, E.P.S.; Secchi, A.R. Techno-Economic Evaluation of Second-Generation Ethanol from Sugarcane Bagasse: Commercial versus on-Site Produced Enzymes and Use of the Xylose Liquor. J. Clean. Prod. 2022, 369, 133340. [Google Scholar] [CrossRef]
- Knesebeck, M.; Schäfer, D.; Schmitz, K.; Rüllke, M.; Benz, J.P.; Weuster-Botz, D. Enzymatic One-Pot Hydrolysis of Extracted Sugar Beet Press Pulp after Solid-State Fermentation with an Engineered Aspergillus Niger Strain. Fermentation 2023, 9, 582. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, X.; Cao, F.; Guo, Q.; Wang, J. Efficient Saccharification of Lycium Barbarum Leaf Biomass by Using Enzyme Cocktails Produced by a Novel Fungus Aspergillus Costaricensis LS18. J. Environ. Manag. 2022, 321, 115969. [Google Scholar] [CrossRef]
- Teixeira, W.F.A.; Batista, R.D.; do Amaral Santos, C.C.A.; Júnior, A.C.F.; Terrasan, C.R.F.; de Santana, M.W.P.R.; de Siqueira, F.G.; de Paula-Elias, F.C.; de Almeida, A.F. Minimal Enzymes Cocktail Development by Filamentous Fungi Consortia in Solid-State Cultivation and Valorization of Pineapple Crown Waste by Enzymatic Saccharification. Waste Biomass Valorization 2021, 12, 2521–2539. [Google Scholar] [CrossRef]
- Klein, G.H.; Longo, V.D.; Romani, L.C.; Saldanha, L.F.; Fornari, A.C.; Bazoti, S.F.; Camargo, A.F.; Alves, S.L.; Treichel, H. Utilization of Banana Peel Waste for the Production of Bioethanol and Other High-Value-Added Compounds. Food Humanit. 2024, 3, 100376. [Google Scholar] [CrossRef]
- Zhu, J.; Song, W.; Chen, X.; Sun, S. Integrated Process to Produce Biohydrogen from Wheat Straw by Enzymatic Saccharification and Dark Fermentation. Int. J. Hydrogen Energy 2023, 48, 11153–11161. [Google Scholar] [CrossRef]
- Verma, N.; Kumar, V.; Bansal, M.C. Valorization of Waste Biomass in Fermentative Production of Cellulases: A Review. Waste Biomass Valorization 2020, 12, 613–640. [Google Scholar] [CrossRef]
Enzyme | Fungal Strain | Activity (U/g) | Substrate | Reference |
---|---|---|---|---|
CMCase | T. asperellum MR 1 | 1.53 ± 0.50 | POPPF | Ikubar et al. [40] |
T. asperellum RCK2011 | 10.25 ± 0.45 | WB | Raghuwanshi et al. [41] | |
T. asperellum UC1 | 136.16 ± 0.02 | OPFL | Ezeilo et al. [28] | |
T. asperellum USM SD4 | 0.59 ± 0.01 | OPEFB | Ajijolakewu et al. [39] | |
T. asperellum HTM | 75.32 ± 1.93 | SB/WB (1:1) | This study | |
Avicelase * | T. asperellum HTM | 21.63 ± 0.74 | SB/WB (1:1) | This study |
β-glucosidase | T. asperellum MR 1 | 0.43 ± 0.65 | POPPF | Ikubar et al. [40] |
T. asperellum UC1 | 130.09 ± 0.01 | OPFL | Ezeilo et al. [28] | |
T. asperellum USM SD4 | 3.59 ± 0.03 | OPEFB | Ajijolakewu et al. [39] | |
T. asperellum HTM | 32.80 ** | WB | Correa et al. [30] | |
T. asperellum HTM | 45.26 ± 0.63 | SB/WB (1:1) | This study | |
Xylanase | T. asperellum S4F8 | 14.8 ± 0.81 | SB | Marx et al. [42] |
T. asperellum MR 1 | 5.69 ± 0.96 | POPPF | Ikubar et al. [40] | |
T. asperellum UC1 | 255.01 ± 0.01 | OPFL | Ezeilo et al. [28] | |
T. asperellum USM SD4 | 3401 ± 13.33 | OPEFB | Ajijolakewu et al. [39] | |
T. asperellum HTM | 109.41 ** | WB/GP (1:1) | Correa et al. [30] | |
T. asperellum HTM | 785.49 ± 8.99 | SB/WB (1:1) | This study | |
β-Xylosidase | T. asperellum USM SD4 | 3.78 ± 0.01 | OPEFB | Ajijolakewu et al. [39] |
T. asperellum HTM | 3.79 ** | WB | Correa et al. [30] | |
T. asperellum HTM | 14.61 ± 0.86 | SB/WB (1:1) | This study |
Enzyme | Fungal Strain | Activity (U/g) | Substrate | Reference |
---|---|---|---|---|
CMCase | M. anisopliae IBCB 348 | 20.87 ± 0.43 | SB | Aita et al. [25] |
M. anisopliae HTM | 16.33 ± 0.95 | SB/WB (1:1) | This study | |
Avicelase | M. anisopliae IBCB 348 | 22.30 ± 0.41 | SB | Aita, et al. [25] |
M. anisopliae HTM | 30.25 ± 1.20 | SB/WB (1:1) | This study | |
β-glucosidase * | M. anisopliae HTM | 83.61 ± 2.22 | SB/WB (1:1) | This study |
Xylanase * | M. anisopliae HTM | 125.12 ± 4.49 | SB/WB (1:1) | This study |
β-Xylosidase * | M. anisopliae HTM | 31.83 ± 2.19 | SB/WB (1:1) | This study |
Strain | Avicelase | CMCase | β-Glicosidade | β-Xilosidase | Xilanase |
---|---|---|---|---|---|
B. bassiana HTM | 19.05 ± 1.86 c | 6.54 ± 0.59 e | 41.99 ± 1.22 d | 0.95 ± 0.00 e | 9.10 ± 1.34 e |
M. anisopliae HTM | 30.25 ± 1.20 a | 16.33 ± 0.95 d | 83.60 ± 3.04 a | 31.83 ± 2.19 a | 125.13 ± 6.75 c |
P. chlamydosporia HTM | 28.38 ± 1.34 a | 55.07 ± 1.29 b | 10.26 ± 0.67 e | 17.79 ± 0.27 b | 157.16 ± 8.30 b |
T. asperellum HTM | 21.63 ± 0.74 b | 75.32 ± 1.93 a | 45.25 ± 0.93 c | 14.61 ± 0.86 c | 785.50 ± 11.68 a |
CV(%) | 5.12 | 3.66 | 3.69 | 7.58 | 3.42 |
Biomass | Cellulose | Hemicellulose | Lignin | Mass Balance |
---|---|---|---|---|
Raw CS | 31.97 ± 4.15 | 34.30 ± 3.12 | 21.80 ± 1.29 | 88.07 ± 2.51 |
PT CS | 50.70 ± 3.98 | 25.13 ± 0.77 | 17.51 ± 0.42 | 93.34 ± 1.72 |
Raw CC | 33.18 ± 1.15 | 35.15 ± 1.06 | 19.54 ± 0.85 | 87.87 ± 0.94 |
PT CC | 55.27 ± 2.13 | 18.40 ± 1.19 | 17.74 ± 1.39 | 91.41 ± 1.34 |
Biomass | TRS (g/L) | Percentage of Increase After Pretreatment (%) | CE (%) |
---|---|---|---|
Raw CS | 7.87 ± 0.276 | 13.97 | |
Organosolv-pretreated CS | 13.68 ± 0.589 | 73.82 | 24.28 |
Raw CC | 6.215 ± 0.244 | 10.12 | |
Organosolv-pretreated CC | 12.48 ± 0.774 | 100.80 | 20.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Rodrigues, P.; Corrêa, A.G.; de Azevedo, L.C.B.; Pasquini, D.; Baffi, M.A. Role of In-House Enzymatic Cocktails from Endophytic Fungi in the Saccharification of Corn Wastes Towards a Sustainable and Integrated Biorefinery Approach. Fermentation 2025, 11, 155. https://doi.org/10.3390/fermentation11030155
de Oliveira Rodrigues P, Corrêa AG, de Azevedo LCB, Pasquini D, Baffi MA. Role of In-House Enzymatic Cocktails from Endophytic Fungi in the Saccharification of Corn Wastes Towards a Sustainable and Integrated Biorefinery Approach. Fermentation. 2025; 11(3):155. https://doi.org/10.3390/fermentation11030155
Chicago/Turabian Stylede Oliveira Rodrigues, Patrísia, Anderson Gabriel Corrêa, Lucas Carvalho Basílio de Azevedo, Daniel Pasquini, and Milla Alves Baffi. 2025. "Role of In-House Enzymatic Cocktails from Endophytic Fungi in the Saccharification of Corn Wastes Towards a Sustainable and Integrated Biorefinery Approach" Fermentation 11, no. 3: 155. https://doi.org/10.3390/fermentation11030155
APA Stylede Oliveira Rodrigues, P., Corrêa, A. G., de Azevedo, L. C. B., Pasquini, D., & Baffi, M. A. (2025). Role of In-House Enzymatic Cocktails from Endophytic Fungi in the Saccharification of Corn Wastes Towards a Sustainable and Integrated Biorefinery Approach. Fermentation, 11(3), 155. https://doi.org/10.3390/fermentation11030155