Apparent Total Tract Digestibility of Energy, Concentrations of Digestible Energy and Metabolizable Energy, and Nitrogen Balance in Growing Pigs Fed Bakery Meal and Biscuit Meal with Multi-Enzyme
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animal, Diets, Feeding and Design
2.2. Sample Collection and Chemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Energy Digestibility
3.2. Nitrogen Balance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASF | African Swine Fever |
ADF | Acid detergent fiber |
ANOVA | Analysis of variance |
ATTD | Apparent total tract digestibility |
BM | Biscuit meal |
BW | Body weight |
CP | Crude protein |
PBM | Plain bread meal |
DE | Digestible energy |
DM | Dry matter |
EE | Ether extract |
SBM | Sweet bread meal |
FI | Feed intake |
GE | Gross energy |
GHS | Greenhouse gas |
GWP | Global warming potential |
HSD | Honestly significant difference |
ME | Metabolizable energy |
N | Nitrogen |
NDF | Neutral detergent fiber |
NE | Net energy |
NRC | National Research Council |
SEM | Standard error of means |
References
- Rocadembosch, J.; Amador, J.; Bernaus, J.; Font, J.; Fraile, L. Production parameters and pig production cost: Temporal evolution 2010–2014. Porc. Health. Manag. 2016, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Noblet, J.; Wu, S.-B.; Choct, M. Methodologies for energy evaluation of pig and poultry feeds: A review. Anim. Nutr. 2022, 8, 185–203. [Google Scholar] [CrossRef]
- CoBank. Surging Feed Prices Will Challenge the Protein Sector’s Recovery. 2020. Available online: https://www.wisfarmer.com/ (accessed on 1 August 2021).
- Chassé, É.; Guay, F.; Bach Knudsen, K.E.; Zijlstra, R.T.; Létourneau-Montminy, M.-P. Toward precise nutrient value of feed in growing pigs: Effect of meal size, frequency and dietary fibre on nutrient utilisation. Animals 2021, 11, 2598. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.; Trollman, H.; Trollman, F.; Garcia-Garcia, G.; Parra-López, C.; Duong, L.; Martindale, W.; Munekata, P.E.; Lorenzo, J.M.; Hdaifeh, A. The Russia-Ukraine conflict: Its implications for the global food supply chains. Foods 2022, 11, 2098. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; McCarl, B.; Fei, C. Climate change and livestock production: A literature review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- De Vries, M.; de Boer, I.J. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Van Raamsdonk, L.; Meijer, N.; Gerrits, E.; Appel, M. New approaches for safe use of food by-products and biowaste in the feed production chain. J. Clean. Prod. 2023, 388, 135954. [Google Scholar] [CrossRef]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- Gebert, R.R.; dos Reis, J.H.; Fortuoso, B.F.; Galli, G.M.; Boiago, M.M.; Paiano, D.; Kempka, A.P.; Baldissera, M.D.; Da Silva, A.S. Biscuit residue in the nutrition of laying hens: Effects on animal health, performance and egg quality. Acta. Sci. Vet. 2020, 48, 1736. [Google Scholar]
- Tiwari, M.R.; Dhakal, H.R. Bakery waste as an alternative of maize to reduce the cost of pork production. Int. J. Res. Agric. For. 2020, 7, 28–40. [Google Scholar]
- Slominski, B.; Boros, D.; Campbell, L.; Guenter, W.; Jones, O. Wheat by-products in poultry nutrition. Part I. Chemical and nutritive composition of wheat screenings, bakery by-products and wheat mill run. Can. J. Anim. Sci. 2004, 84, 421–428. [Google Scholar]
- Ojediran, T.K.; Bamigboye, D.O.; Olonade, G.O.; Ajayi, A.F.; Emiola, I.A. Growth response, cost benefit, carcass characteristics and organoleptic properties of pigs fed biscuit dough as a replacement for maize. Acta. Fytotechn. Zootechn. 2019, 22, 58–63. [Google Scholar]
- Rojas, O.; Liu, Y.; Stein, H. Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn coproducts, and bakery meal fed to growing pigs. J. Anim. Sci. 2013, 91, 5326–5335. [Google Scholar]
- Casas, G.; Almeida, J.S.; Stein, H. Amino acid digestibility in rice co-products fed to growing pigs. Anim. Feed. Sci. Technol. 2015, 207, 150–158. [Google Scholar] [CrossRef]
- Adeyemo, G.; Oni, O.; Longe, O. Effect of dietary biscuit waste on performance and carcass characteristics of broilers. Food Sci. Qual. Manag. 2013, 12, 1–9. [Google Scholar]
- Corassa, A.; Ballerini, K.; Komiyama, C.M.; dos Santos Pina, D.; Ballerini, N.; Dal Magro, T.R. Farelo de biscoito em rações para leitões na fase inicial. Comun. Sci. 2013, 4, 231–237. [Google Scholar]
- Pati, N.P.; Sidhu, J.S.; Hunda, J.S.; Kaur, J. Utilization of Biscuit Waste in Poultry Diet-A Review. Int. J. Bioresour. Stress. Manag. 2024, 15, 1–7. [Google Scholar] [CrossRef]
- Giromini, C.; Ottoboni, M.; Tretola, M.; Marchis, D.; Gottardo, D.; Caprarulo, V.; Baldi, A.; Pinotti, L. Nutritional evaluation of former food products (ex-food) intended for pig nutrition. Food Addi. Contam. Part A 2017, 34, 1436–1445. [Google Scholar]
- Stein, H.H.; Adeola, O.; Kim, S.W.; Miller, P.S.; Adedokun, S.A. Digestibility of energy and concentrations of metabolizable energy and net energy varies among sources of bakery meal when fed to growing pigs. J. Anim. Sci. 2023, 101, skad297. [Google Scholar]
- Corassa, A. Biscuit meal composition in pig feeding. Comun. Sci. 2014, 5, 106–109. [Google Scholar]
- NRC (National Research Council). Nutrient Requirements of Swine, 11th ed.; The National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Adeola, O. Digestion and balance techniques in pigs. In Swine Nutrition; CRC Press: Boca Raton, FL, USA, 2000; pp. 923–936. [Google Scholar]
- Hu, N.; Shen, Z.; Pan, L.; Qin, G.; Zhao, Y.; Bao, N. Effects of protein content and the inclusion of protein sources with different amino acid release dynamics on the nitrogen utilization of weaned piglets. Anim. Biosci. 2021, 35, 260. [Google Scholar] [CrossRef]
- FERNANDEZ, S.R.; AOYAGI, S.; HAN, Y.; PARSONS, C.M.; BAKER, D.H. Limiting order of amino acids in corn and soybean meal for growth of the chick. Poult. Sci. 1994, 73, 1887–1896. [Google Scholar] [CrossRef]
- Bolarinwa, O.; Adeola, O. Energy value of wheat, barley, and wheat dried distillers grains with solubles for broiler chickens determined using the regression method. Poult. Sci. 2012, 91, 1928–1935. [Google Scholar] [CrossRef]
- Jinno, C.; He, Y.; Morash, D.; McNamara, E.; Zicari, S.; King, A.; Stein, H.H.; Liu, Y. Enzymatic digestion turns food waste into feed for growing pigs. Anim. Feed. Sci. Technol. 2018, 242, 48–58. [Google Scholar] [CrossRef]
- Zhang, F.; Adeola, O. Energy values of canola meal, cottonseed meal, bakery meal, and peanut flour meal for broiler chickens determined using the regression method. Poult. Sci. 2017, 96, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jha, R.; Stein, H.H.; North Central Coordinating Committee on Swine Nutrition. Nutritional composition, gross energy concentration, and in vitro digestibility of dry matter in 46 sources of bakery meals. J. Anim. Sci. 2018, 96, 4685–4692. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Hannas, M.; Rostagno, H.; Albino, L.; Balbino, E.; Baffa, D.; Bernardino, V. Determination of the ileal digestibility of proteins and amino acids from biscuit bran and wheat gluten in swine. J. Appl. Life. Sci. Int. 2017, 12, 6. [Google Scholar] [CrossRef]
- Manu, F.; Okai, D.; Boateng, M.; Frimpong, Y. Nutrient composition, pest and microbial status and effects of discarded biscuits on the growth performance, carcass characteristics and economic profiles of growing-finishing pigs. Afr. J. Food. Agric. Nutr. Dev. 2015, 15, 10241–10254. [Google Scholar] [CrossRef]
- Omoikhoje, S.O.; Oduduru, O.; Eguaoje, S.A. Effect of substituting maize with biscuit waste meal on the growth performance, carcass traits, relative organ weight and cost benefit of broiler chickens. Anim. Res. Int. 2017, 14, 2751–2758. [Google Scholar]
- Lopez, D.A.; Lagos, L.V.; Stein, H.H. Digestible and metabolizable energy in soybean meal sourced from different countries and fed to pigs. Anim. Feed. Sci. Technol. 2020, 268, 114600. [Google Scholar] [CrossRef]
- Ibagon, J.A.; Lee, S.A.; Stein, H.H. Metabolizable energy and apparent total tract digestibility of energy and nutrients differ among samples of sunflower meal and sunflower expellers fed to growing pigs. J. Anim. Sci. 2023, 101, skad117. [Google Scholar] [CrossRef]
- Stein, H.H.; Adeola, O.; Baidoo, S.K.; Lindemann, M.D.; Adedokun, S.A. Standardized ileal digestibility of amino acids differs among sources of bakery meal when fed to growing pigs. J. Anim. Sci. 2023, 101, skad208. [Google Scholar] [CrossRef] [PubMed]
- Luciano, A.; Tretola, M.; Mazzoleni, S.; Rovere, N.; Fumagalli, F.; Ferrari, L.; Comi, M.; Ottoboni, M.; Pinotti, L. Sweet vs. salty former food products in post-weaning piglets: Effects on growth, apparent total tract digestibility and blood metabolites. Animals 2021, 11, 3315. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Tretola, M.; Luciano, A.; Lin, P.; Pinotti, L.; Bee, G. Sugary and salty former food products in pig diets affect energy and nutrient digestibility, feeding behaviour but not the growth performance and carcass composition. Animal 2023, 17, 101019. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, S.; Xie, F.; Li, D.; Huang, C. Effects of inclusion level and adaptation period on nutrient digestibility and digestible energy of wheat bran in growing-finishing pigs. Asian-Australas. J. Anim. Sci. 2017, 31, 116. [Google Scholar] [CrossRef]
- Humer, E.; Zebeli, Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Anim. Feed. Sci. Technol. 2017, 226, 133–151. [Google Scholar] [CrossRef]
- Tretola, M.; Ferrari, L.; Luciano, A.; Mazzoleni, S.; Rovere, N.; Fumagalli, F.; Ottoboni, M.; Pinotti, L. Sugary vs salty food industry leftovers in postweaning piglets: Effects on gut microbiota and intestinal volatile fatty acid production. Animal 2022, 16, 100584. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Parenteau, I.A.; Zhu, C.; Ward, N.E.; Cowieson, A.J. Digestibility of amino acids, energy, and minerals in roasted full-fat soybean and expelled-extruded soybean meal fed to growing pigs without or with multienzyme supplement containing fiber-degrading enzymes, protease, and phytase. J. Anim. Sci. 2020, 98, skaa174. [Google Scholar] [CrossRef]
- Song, J.; Aljuobori, A.; Patterson, R.; Nyachoti, C. Effects of an enzyme mixture supplementation on energy and nutrient digestibility in soybean expellers fed to growing pigs. Anim. Feed. Sci. Technol. 2024, 311, 115958. [Google Scholar] [CrossRef]
- Oladele, P.; Li, E.; Lu, H.; Cozannet, P.; Nakatsu, C.; Johnson, T.; Adeola, O.; Ajuwon, K.M. Effect of a carbohydrase admixture in growing pigs fed wheat-based diets in thermoneutral and heat stress conditions. J. Anim. Sci. 2021, 99, skab254. [Google Scholar] [CrossRef]
- Ayoade, D.; Kiarie, E.; Woyengo, T.; Slominski, B.; Nyachoti, C. Effect of a carbohydrase mixture on ileal amino acid digestibility in extruded full-fat soybeans fed to finishing pigs. J. Anim. Sci. 2012, 90, 3842–3847. [Google Scholar] [PubMed]
- Emiola, I.; Opapeju, F.; Slominski, B.; Nyachoti, C. Growth performance and nutrient digestibility in pigs fed wheat distillers dried grains with solubles-based diets supplemented with a multicarbohydrase enzyme. J. Anim. Sci. 2009, 87, 2315–2322. [Google Scholar] [PubMed]
- Rosenfelder, P.; Eklund, M.; Mosenthin, R. Nutritive value of wheat and wheat by-products in pig nutrition: A review. Anim. Feed. Sci. Technol. 2013, 185, 107–125. [Google Scholar]
Items, % | Corn | PBM | SBM | BM |
---|---|---|---|---|
DM | 84.3 | 87.5 | 88.1 | 88.9 |
GE, kcal/kg | 3879 | 4001 | 4231 | 4829 |
CP | 7.97 | 12.10 | 12.30 | 8.01 |
Ash | 1.14 | 3.59 | 2.31 | 4.06 |
EE | 3.34 | 4.02 | 6.62 | 10.62 |
NDF | 9.30 | 16.24 | 12.24 | 5.50 |
ADF | 3.10 | 5.93 | 7.62 | 2.20 |
Indispensable AA | ||||
Arg | 0.35 | 0.70 | 0.58 | 0.31 |
His | 0.22 | 0.34 | 0.28 | 0.14 |
Ile | 0.25 | 0.58 | 0.48 | 0.23 |
Leu | 0.99 | 1.07 | 0.89 | 0.47 |
Lys | 0.21 | 0.58 | 0.48 | 0.18 |
Met | 0.16 | 0.22 | 0.18 | 0.11 |
Phe | 0.35 | 0.68 | 0.57 | 0.32 |
Thr | 0.27 | 0.50 | 0.42 | 0.19 |
Trp | 0.06 | 0.14 | 0.12 | 0.06 |
Val | 0.35 | 0.71 | 0.59 | 0.27 |
Dispensable AA | ||||
Ala | 0.53 | 0.71 | 0.59 | 0.44 |
Asp | 0.58 | 0.97 | 0.81 | 0.63 |
Cys | 0.16 | 0.29 | 0.24 | 0.15 |
Glu | 1.26 | 2.21 | 1.84 | 2.36 |
Gly | 2.91 | 0.61 | 0.51 | 0.26 |
Pro | 0.65 | 0.86 | 0.72 | 0.68 |
Ser | 0.37 | 0.54 | 0.45 | 0.29 |
Tyr | 0.24 | 0.53 | 0.44 | 0.31 |
Total AA | 9.91 | 12.23 | 10.19 | 7.40 |
Items, % | CON | PBMD | SBMD | BMD | Corn | PBMD | SBMD | BMD |
---|---|---|---|---|---|---|---|---|
− | + | |||||||
Corn | 97.00 | 47.00 | 47.00 | 47.00 | 97.00 | 47.00 | 47.00 | 47.00 |
By-product | - | 50.00 | 50.00 | 50.00 | - | 50.00 | 50.00 | 50.00 |
Di-calcium phosphate | 1.50 | 1.50 | 1.50 | 1.50 | 1.48 | 1.48 | 1.48 | 1.48 |
Limestone | 0.80 | 0.80 | 0.80 | 0.80 | 0.75 | 0.75 | 0.75 | 0.75 |
Salt | 0.40 | 0.40 | 0.40 | 0.40 | 0.37 | 0.37 | 0.37 | 0.37 |
Vitamin-mineral premix 2 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Multi-enzyme | - | - | - | - | 0.1 | 0.1 | 0.1 | 0.1 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Analyzed value | ||||||||
DM, % | 84.99 | 83.89 | 82.48 | 84.01 | 84.99 | 83.88 | 82.50 | 84.03 |
GE, kcal/kg | 3818 | 3879 | 3951 | 4052 | 3818 | 3879 | 3951 | 4052 |
CP | 7.68 | 9.73 | 9.82 | 7.91 | 7.68 | 9.74 | 9.80 | 7.92 |
EE | 4.03 | 4.24 | 3.47 | 5.32 | 4.05 | 4.26 | 3.42 | 5.34 |
NDF | 8.93 | 12.40 | 11.42 | 6.32 | 8.93 | 12.48 | 11.40 | 6.33 |
ADF | 2.98 | 4.39 | 4.82 | 1.89 | 2.99 | 4.36 | 4.84 | 1.85 |
Diet | Enzyme | Intake | Fecal Excretion | Urine Excretion | Digestibility | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Feed Intake, g/d | GE Intake, kcal/d | Dry Feces Output, g/d | GE in Feces, kcal/kg | Fecal GE Output, kcal/d | Urine Output, g/d | GE in Urine, kcal/kg | Urine GE Output, kcal/d | ATTD of DM, % | ATTD of GE, % | ||
CON | − | 1029.83 | 3931.90 | 112.78 | 4574.61 | 515.49 | 1827.50 | 46.10 | 83.00 | 90.39 | 86.89 |
PBMD | − | 1083.17 | 4201.60 | 127.22 | 4493.99 | 570.94 | 2170.00 | 41.08 | 87.77 | 90.67 | 86.39 |
SBMD | − | 1088.00 | 4298.69 | 128.33 | 4580.95 | 588.08 | 2258.75 | 40.27 | 92.09 | 90.86 | 86.22 |
BMD | − | 1106.00 | 4481.51 | 136.11 | 4586.84 | 624.39 | 1740.42 | 42.01 | 73.11 | 89.62 | 85.95 |
CON | + | 1092.50 | 4171.17 | 117.78 | 4537.45 | 534.97 | 1721.25 | 46.91 | 78.28 | 91.06 | 87.05 |
PBMD | + | 1101.33 | 4272.07 | 126.11 | 4637.09 | 585.41 | 1969.17 | 39.37 | 78.06 | 89.41 | 86.30 |
SBMD | + | 1103.22 | 4358.81 | 133.33 | 4577.32 | 610.11 | 1907.92 | 40.81 | 79.93 | 89.63 | 85.96 |
BMD | + | 1113.00 | 4509.88 | 135.00 | 4679.02 | 631.99 | 1783.33 | 41.66 | 72.67 | 90.43 | 85.98 |
SEM | 37.592 | 147.95 | 3.303 | 57.320 | 17.174 | 157.938 | 3.337 | 8.674 | 0.656 | 0.478 | |
Main factor | |||||||||||
Diet | |||||||||||
CON | 1061.17 | 4051.53 b | 115.28 c | 4556.03 | 525.23 c | 1774.38 | 46.51 | 80.64 | 90.73 | 86.97 | |
PBMD | 1092.25 | 4236.84 ab | 126.67 b | 4565.54 | 578.17 b | 2069.58 | 40.23 | 82.91 | 90.04 | 86.35 | |
SBMD | 1095.61 | 4328.75 ab | 130.83 ab | 4632.93 | 599.10 ab | 2083.33 | 40.54 | 86.01 | 90.25 | 86.09 | |
BMD | 1109.50 | 4495.69 a | 135.56 a | 4579.13 | 628.19 a | 1761.88 | 41.84 | 72.89 | 90.03 | 85.96 | |
SEM | 26.581 | 104.616 | 2.336 | 40.531 | 12.144 | 111.679 | 2.359 | 6.134 | 0.464 | 0.338 | |
Enzyme | |||||||||||
− | 1076.75 | 4228.43 | 126.11 | 4559.10 | 574.72 | 1999.17 | 42.36 | 83.99 | 90.39 | 86.36 | |
+ | 1102.51 | 4327.98 | 128.06 | 4607.72 | 590.62 | 1845.42 | 42.19 | 77.23 | 90.13 | 86.32 | |
SEM | 18.796 | 73.975 | 1.652 | 28.660 | 8.587 | 78.969 | 1.668 | 4.337 | 0.328 | 0.239 | |
p-value | |||||||||||
Diet | 0.6261 | 0.0359 | <0.0001 | 0.5470 | <0.0001 | 0.0696 | 0.2248 | 0.4835 | 0.6860 | 0.1733 | |
Enzyme | 0.3383 | 0.3470 | 0.4101 | 0.2373 | 0.1980 | 0.1763 | 0.9411 | 0.2769 | 0.5888 | 0.9109 | |
Diet × Enzyme | 0.8805 | 0.8920 | 0.6377 | 0.3765 | 0.9764 | 0.6525 | 0.9813 | 0.9084 | 0.2208 | 0.9766 |
Diet | Energy Content in Experimental Diets, kcal/kg | Ingredient | Energy Content in Feed Ingredients, kcal/kg | ||||
---|---|---|---|---|---|---|---|
DE | ME | As-Fed Basis | DM Basis | ||||
DE | ME | DE | ME | ||||
CON | 3320.43 c | 3243.75 c | Corn | 3440.97 d | 3361.52 c | 4081.81 b | 3987.57 b |
PBMD | 3349.41 c | 3273.55 bc | PBM | 3550.38 c | 3469.96 b | 4057.57 b | 3965.67 b |
SBMD | 3401.37 b | 3321.77 b | SBM | 3605.46 b | 3521.08 b | 4092.46 ab | 3996.69 b |
BMD | 3483.28 a | 3417.20 a | BM | 3692.28 a | 3622.23 a | 4153.29 a | 4074.50 a |
SEM | 13.254 | 15.731 | SEM | 13.955 | 16.589 | 16.069 | 19.023 |
p-value | <0.0001 | <0.0001 | p-value | <0.0001 | <0.0001 | 0.0012 | 0.0014 |
Diet | Enzyme | N Intake, g/d | N Excretion in Feces, g/d | N Excretion in Urine, g/d | ATTD of N, % | N Retention, g/d | N Retention, % | Biological Value 2 |
---|---|---|---|---|---|---|---|---|
CON | − | 12.65 | 2.50 | 1.56 | 80.30 | 8.60 | 67.85 | 84.46 |
PBMD | − | 16.86 | 3.04 | 1.86 | 81.96 | 11.86 | 70.53 | 86.07 |
SBMD | − | 17.09 | 3.36 | 1.90 | 80.31 | 11.84 | 69.08 | 86.01 |
BMD | − | 14.00 | 2.93 | 1.45 | 78.82 | 9.61 | 68.29 | 86.54 |
CON | + | 13.42 | 2.59 | 1.49 | 80.60 | 9.34 | 69.54 | 86.12 |
PBMD | + | 16.86 | 2.81 | 1.65 | 83.53 | 12.69 | 73.94 | 88.57 |
SBMD | + | 17.33 | 2.91 | 1.61 | 83.23 | 12.82 | 73.91 | 88.79 |
BMD | + | 14.09 | 2.83 | 1.53 | 79.91 | 9.73 | 69.07 | 86.36 |
SEM | 0.529 | 0.217 | 0.193 | 1.433 | 0.527 | 1.987 | 1.532 | |
Main Factor | ||||||||
Diet | ||||||||
CON | 13.04 b | 2.54 | 1.53 | 80.45 | 8.97 b | 68.70 | 85.29 | |
PBMD | 17.00 a | 2.92 | 1.80 | 82.74 | 12.28 a | 72.24 | 87.32 | |
SBMD | 17.21 a | 3.13 | 1.75 | 81.77 | 12.33 a | 68.68 | 87.40 | |
BMD | 14.04 b | 2.88 | 1.49 | 79.37 | 9.67 b | 71.49 | 86.45 | |
SEM | 0.374 | 0.153 | 0.136 | 1.013 | 0.373 | 1.405 | 1.083 | |
Enzyme | ||||||||
− | 15.15 | 2.96 | 1.72 | 80.35 | 10.48 | 68.94 | 85.77 | |
+ | 15.50 | 2.78 | 1.57 | 81.82 | 11.15 | 71.62 | 87.46 | |
SEM | 0.264 | 0.108 | 0.096 | 0.717 | 0.263 | 0.993 | 0.766 | |
p-value | ||||||||
Diet | <0.0001 | 0.1724 | 0.2714 | 0.1115 | <0.0001 | 0.1721 | 0.4903 | |
Enzyme | 0.3613 | 0.2685 | 0.2740 | 0.1547 | 0.0804 | 0.0639 | 0.1261 | |
Diet × Enzyme | 0.9252 | 0.6441 | 0.7161 | 0.8283 | 0.8568 | 0.7466 | 0.7691 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, J.; Hong, J.; Park, H.; Sa, S.; Park, S.; Kim, Y.; Lee, S.; Choi, Y.; Jeong, Y. Apparent Total Tract Digestibility of Energy, Concentrations of Digestible Energy and Metabolizable Energy, and Nitrogen Balance in Growing Pigs Fed Bakery Meal and Biscuit Meal with Multi-Enzyme. Animals 2025, 15, 1002. https://doi.org/10.3390/ani15071002
Lee J, Kim J, Hong J, Park H, Sa S, Park S, Kim Y, Lee S, Choi Y, Jeong Y. Apparent Total Tract Digestibility of Energy, Concentrations of Digestible Energy and Metabolizable Energy, and Nitrogen Balance in Growing Pigs Fed Bakery Meal and Biscuit Meal with Multi-Enzyme. Animals. 2025; 15(7):1002. https://doi.org/10.3390/ani15071002
Chicago/Turabian StyleLee, Jihwan, Joeun Kim, Junseon Hong, Hyunju Park, Soojin Sa, Sungwoo Park, Yongmin Kim, Sungdae Lee, Yohan Choi, and Yongdae Jeong. 2025. "Apparent Total Tract Digestibility of Energy, Concentrations of Digestible Energy and Metabolizable Energy, and Nitrogen Balance in Growing Pigs Fed Bakery Meal and Biscuit Meal with Multi-Enzyme" Animals 15, no. 7: 1002. https://doi.org/10.3390/ani15071002
APA StyleLee, J., Kim, J., Hong, J., Park, H., Sa, S., Park, S., Kim, Y., Lee, S., Choi, Y., & Jeong, Y. (2025). Apparent Total Tract Digestibility of Energy, Concentrations of Digestible Energy and Metabolizable Energy, and Nitrogen Balance in Growing Pigs Fed Bakery Meal and Biscuit Meal with Multi-Enzyme. Animals, 15(7), 1002. https://doi.org/10.3390/ani15071002