Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,595)

Search Parameters:
Keywords = multi-rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2359 KiB  
Article
Research on Concrete Crack Damage Assessment Method Based on Pseudo-Label Semi-Supervised Learning
by Ming Xie, Zhangdong Wang and Li’e Yin
Buildings 2025, 15(15), 2726; https://doi.org/10.3390/buildings15152726 (registering DOI) - 1 Aug 2025
Abstract
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to [...] Read more.
To address the inefficiency of traditional concrete crack detection methods and the heavy reliance of supervised learning on extensive labeled data, in this study, an intelligent assessment method of concrete damage based on pseudo-label semi-supervised learning and fractal geometry theory is proposed to solve two core tasks: one is binary classification of pixel-level cracks, and the other is multi-category assessment of damage state based on crack morphology. Using three-channel RGB images as input, a dual-path collaborative training framework based on U-Net encoder–decoder architecture is constructed, and a binary segmentation mask of the same size is output to achieve the accurate segmentation of cracks at the pixel level. By constructing a dual-path collaborative training framework and employing a dynamic pseudo-label refinement mechanism, the model achieves an F1-score of 0.883 using only 50% labeled data—a mere 1.3% decrease compared to the fully supervised benchmark DeepCrack (F1 = 0.896)—while reducing manual annotation costs by over 60%. Furthermore, a quantitative correlation model between crack fractal characteristics and structural damage severity is established by combining a U-Net segmentation network with the differential box-counting algorithm. The experimental results demonstrate that under a cyclic loading of 147.6–221.4 kN, the fractal dimension monotonically increases from 1.073 (moderate damage) to 1.189 (failure), with 100% accuracy in damage state identification, closely aligning with the degradation trend of macroscopic mechanical properties. In complex crack scenarios, the model attains a recall rate (Re = 0.882), surpassing U-Net by 13.9%, with significantly enhanced edge reconstruction precision. Compared with the mainstream models, this method effectively alleviates the problem of data annotation dependence through a semi-supervised strategy while maintaining high accuracy. It provides an efficient structural health monitoring solution for engineering practice, which is of great value to promote the application of intelligent detection technology in infrastructure operation and maintenance. Full article
Show Figures

Figure 1

15 pages, 3678 KiB  
Article
Virtual Signal Processing-Based Integrated Multi-User Detection
by Dabao Wang and Zhao Li
Sensors 2025, 25(15), 4761; https://doi.org/10.3390/s25154761 (registering DOI) - 1 Aug 2025
Abstract
The demand for high data rates and large system capacity has posed significant challenges for medium access control (MAC) methods. Successive interference cancellation (SIC) is a classical multi-user detection (MUD) method; however, it suffers from an error propagation problem. To address this deficiency, [...] Read more.
The demand for high data rates and large system capacity has posed significant challenges for medium access control (MAC) methods. Successive interference cancellation (SIC) is a classical multi-user detection (MUD) method; however, it suffers from an error propagation problem. To address this deficiency, we propose a method called Virtual Signal Processing-Based Integrated Multi-User Detection (VSP-IMUD). In VSP-IMUD, the received mixed multi-user signals are treated as an equivalent signal. The channel ambiguity corresponding to each user’s signal is then examined. For channels with non-zero ambiguity values, the signal components are detected using zero-forcing (ZF) reception. Next, the detected ambiguous signal components are reconstructed and subtracted from the received mixed signal using SIC. Once all the ambiguous signals are detected, the remaining signal components with zero ambiguity values are equated to a virtual integrated signal, to which a matched filter (MF) is applied. Finally, by selecting the signal with the highest channel gain and adopting its data as the reference symbol, the remaining signals’ dataset can be determined. Our theoretical analysis and simulation results demonstrate that VSP-IMUD effectively reduces the frequency of SIC applications and mitigates its error propagation effects, thereby improving the system’s bit-error rate (BER) performance. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

31 pages, 2421 KiB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 (registering DOI) - 1 Aug 2025
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

23 pages, 3467 KiB  
Article
Resampling Multi-Resolution Signals Using the Bag of Functions Framework: Addressing Variable Sampling Rates in Time Series Data
by David Orlando Salazar Torres, Diyar Altinses and Andreas Schwung
Sensors 2025, 25(15), 4759; https://doi.org/10.3390/s25154759 (registering DOI) - 1 Aug 2025
Abstract
In time series analysis, the ability to effectively handle data with varying sampling rates is crucial for accurate modeling and analysis. This paper presents the MR-BoF (Multi-Resolution Bag of Functions) framework, which leverages sampling-rate-independent techniques to decompose time series data while accommodating signals [...] Read more.
In time series analysis, the ability to effectively handle data with varying sampling rates is crucial for accurate modeling and analysis. This paper presents the MR-BoF (Multi-Resolution Bag of Functions) framework, which leverages sampling-rate-independent techniques to decompose time series data while accommodating signals with differing resolutions. Unlike traditional methods that require uniform sampling frequencies, the BoF framework employs a flexible encoding approach, allowing for the integration of multi-resolution time series. Through a series of experiments, we demonstrate that the BoF framework ensures the precise reconstruction of the original data while enhancing resampling capabilities by utilizing decomposed components. The results show that this method offers significant advantages in scenarios involving irregular sampling rates and heterogeneous acquisition systems, making it a valuable tool for applications in fields such as finance, healthcare, industrial monitoring, IoT networks, and sensor networks. Full article
(This article belongs to the Section Intelligent Sensors)
29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 (registering DOI) - 1 Aug 2025
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

24 pages, 14731 KiB  
Article
Hybrid Laser Cleaning of Carbon Deposits on N52B30 Engine Piston Crowns: Multi-Objective Optimization via Response Surface Methodology
by Yishun Su, Liang Wang, Zhehe Yao, Qunli Zhang, Zhijun Chen, Jiawei Duan, Tingqing Ye and Jianhua Yao
Materials 2025, 18(15), 3626; https://doi.org/10.3390/ma18153626 (registering DOI) - 1 Aug 2025
Abstract
Carbon deposits on the crown of engine pistons can markedly reduce combustion efficiency and shorten service life. Conventional cleaning techniques often fail to simultaneously ensure a high carbon removal efficiency and maintain optimal surface integrity. To enable efficient and precise carbon removal, this [...] Read more.
Carbon deposits on the crown of engine pistons can markedly reduce combustion efficiency and shorten service life. Conventional cleaning techniques often fail to simultaneously ensure a high carbon removal efficiency and maintain optimal surface integrity. To enable efficient and precise carbon removal, this study proposes the application of hybrid laser cleaning—combining continuous-wave (CW) and pulsed lasers—to piston carbon deposit removal, and employs response surface methodology (RSM) for multi-objective process optimization. Using the N52B30 engine piston as the experimental substrate, this study systematically investigates the combined effects of key process parameters—including CW laser power, pulsed laser power, cleaning speed, and pulse repetition frequency—on surface roughness (Sa) and carbon residue rate (RC). Plackett–Burman design was employed to identify significant factors, the method of the steepest ascent was utilized to approximate the optimal region, and a quadratic regression model was constructed using Box–Behnken response surface methodology. The results reveal that the Y-direction cleaning speed and pulsed laser power exert the most pronounced influence on surface roughness (F-values of 112.58 and 34.85, respectively), whereas CW laser power has the strongest effect on the carbon residue rate (F-value of 57.74). The optimized process parameters are as follows: CW laser power set at 625.8 W, pulsed laser power at 250.08 W, Y-direction cleaning speed of 15.00 mm/s, and pulse repetition frequency of 31.54 kHz. Under these conditions, the surface roughness (Sa) is reduced to 0.947 μm, and the carbon residue rate (RC) is lowered to 3.67%, thereby satisfying the service performance requirements for engine pistons. This study offers technical insights into the precise control of the hybrid laser cleaning process and its practical application in engine maintenance and the remanufacturing of end-of-life components. Full article
Show Figures

Figure 1

20 pages, 1318 KiB  
Review
A Genetically-Informed Network Model of Myelodysplastic Syndrome: From Splicing Aberrations to Therapeutic Vulnerabilities
by Sanghyeon Yu, Junghyun Kim and Man S. Kim
Genes 2025, 16(8), 928; https://doi.org/10.3390/genes16080928 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and [...] Read more.
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and examine translation into precision therapeutic approaches. Methods: We reviewed breakthrough discoveries from the past three years, analyzing single-cell multi-omics technologies, epitranscriptomics, stem cell architecture analysis, and precision medicine approaches. We examined cell-type-specific splicing aberrations, distinct stem cell architectures, epitranscriptomic modifications, and microenvironmental alterations in MDS pathogenesis. Results: Four interconnected mechanisms drive MDS: genetic alterations (splicing factor mutations), aberrant stem cell architecture (CMP-pattern vs. GMP-pattern), epitranscriptomic dysregulation involving pseudouridine-modified tRNA-derived fragments, and microenvironmental changes. Splicing aberrations show cell-type specificity, with SF3B1 mutations preferentially affecting erythroid lineages. Stem cell architectures predict therapeutic responses, with CMP-pattern MDS achieving superior venetoclax response rates (>70%) versus GMP-pattern MDS (<30%). Epitranscriptomic alterations provide independent prognostic information, while microenvironmental changes mediate treatment resistance. Conclusions: These advances represent a paradigm shift toward personalized MDS medicine, moving from single-biomarker to comprehensive molecular profiling guiding multi-target strategies. While challenges remain in standardizing molecular profiling and developing clinical decision algorithms, this systems-level understanding provides a foundation for precision oncology implementation and overcoming current therapeutic limitations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
24 pages, 29785 KiB  
Article
Multi-Scale Feature Extraction with 3D Complex-Valued Network for PolSAR Image Classification
by Nana Jiang, Wenbo Zhao, Jiao Guo, Qiang Zhao and Jubo Zhu
Remote Sens. 2025, 17(15), 2663; https://doi.org/10.3390/rs17152663 (registering DOI) - 1 Aug 2025
Abstract
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based [...] Read more.
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based on a 3D complex-valued network to improve classification accuracy by fully leveraging multi-scale features, including phase information. We first designed a complex-valued three-dimensional network framework combining complex-valued 3D convolution (CV-3DConv) with complex-valued squeeze-and-excitation (CV-SE) modules. This framework is capable of simultaneously capturing spatial and polarimetric features, including both amplitude and phase information, from PolSAR images. Furthermore, to address robustness degradation from limited labeled samples, we introduced a multi-scale learning strategy that jointly models global and local features. Specifically, global features extract overall semantic information, while local features help the network capture region-specific semantics. This strategy enhances information utilization by integrating multi-scale receptive fields, complementing feature advantages. Extensive experiments on four benchmark datasets demonstrated that the proposed method outperforms various comparison methods, maintaining high classification accuracy across different sampling rates, thus validating its effectiveness and robustness. Full article
Show Figures

Figure 1

21 pages, 5609 KiB  
Article
Carbonation and Corrosion Durability Assessment of Reinforced Concrete Beam in Heavy-Haul Railways by Multi-Physics Coupling-Based Analytical Method
by Wu-Tong Yan, Lei Yuan, Yong-Hua Su, Long-Biao Yan and Zi-Wei Song
Materials 2025, 18(15), 3622; https://doi.org/10.3390/ma18153622 (registering DOI) - 1 Aug 2025
Abstract
The operation of heavy-haul railway trains with large loads results in significant cracking issues in reinforced concrete beams. Atmospheric carbon dioxide, oxygen, and moisture from the atmosphere penetrate into the beam interior through these cracks, accelerating the carbonation of the concrete and the [...] Read more.
The operation of heavy-haul railway trains with large loads results in significant cracking issues in reinforced concrete beams. Atmospheric carbon dioxide, oxygen, and moisture from the atmosphere penetrate into the beam interior through these cracks, accelerating the carbonation of the concrete and the corrosion of the steel bars. The rust-induced expansion of steel bars further exacerbates the cracking of the beam. The interaction between environmental factors and beam cracks leads to a rapid decline in the durability of the beam. To address this issue, a multi-physics field coupling durability assessment method was proposed, considering concrete beam cracking, concrete carbonation, and steel bar corrosion. The interaction among these three factors is achieved through sequential coupling, using crack width, carbonation passivation time, and steel bar corrosion rate as interaction parameters. Using this method, the deterioration morphology and stiffness degradation laws of 8 m reinforced concrete beams under different load conditions, including those of heavy and light trains in heavy-haul railways, are compared and assessed. The analysis reveals that within a 100-year service cycle, the maximum relative stiffness reduction for beams on the heavy train line is 20.0%, whereas for the light train line, it is only 7.4%. The degree of structural stiffness degradation is closely related to operational load levels, and beam cracking plays a critical role in this difference. Full article
Show Figures

Figure 1

11 pages, 682 KiB  
Article
Long-Term Outcomes of First-Line Anti-TNF Therapy for Chronic Inflammatory Pouch Conditions: A Multi-Centre Multi-National Study
by Itai Ghersin, Maya Fischman, Giacomo Calini, Eduard Koifman, Valerio Celentano, Jonathan P. Segal, Orestis Argyriou, Simon D. McLaughlin, Heather Johnson, Matteo Rottoli, Kapil Sahnan, Janindra Warusavitarne and Ailsa L. Hart
Biomedicines 2025, 13(8), 1870; https://doi.org/10.3390/biomedicines13081870 - 1 Aug 2025
Abstract
Background/Objectives: Anti-tumour necrosis factor (anti-TNF) medications were historically commonly prescribed as the first-line biologic treatment for chronic inflammatory pouch conditions. However, their use in these conditions is mainly based on retrospective studies of relatively small numbers of patients with short follow up periods. [...] Read more.
Background/Objectives: Anti-tumour necrosis factor (anti-TNF) medications were historically commonly prescribed as the first-line biologic treatment for chronic inflammatory pouch conditions. However, their use in these conditions is mainly based on retrospective studies of relatively small numbers of patients with short follow up periods. We aimed to describe the long-term outcomes of first-line anti-TNF therapy in a large, multi-centre, multi-national patient cohort with chronic inflammatory pouch conditions. Methods: This was an observational, retrospective, multi-centre, multi-national study. We included patients with chronic inflammatory pouch conditions initially treated with anti-TNF drugs infliximab (IFX) or adalimumab (ADA), who had a follow up of at least 1 year. The primary outcome was anti-TNF treatment persistence, defined as continuation of anti-TNF throughout the study period. The secondary outcome was pouch failure, defined by the need for a defunctioning ileostomy or pouch excision. Results: We recruited 98 patients with chronic inflammatory pouch conditions initially treated with anti-TNF medications—63 (64.3%) treated with IFX and 35 (35.7%) treated with ADA. Average follow up length was 94.2 months (±54.5). At the end of the study period only 22/98 (22.4%) patients were still on anti-TNF treatment. In those in whom the first-line anti-TNF was discontinued, the median time to discontinuation was 12.2 months (range 5.1–26.9 months). The most common cause for anti-TNF discontinuation was lack of efficacy despite adequate serum drug levels and absence of anti-drug antibody formation (30 patients, 30.6%). Loss of response due to anti-drug antibody formation was the cause for discontinuation in 18 patients (18.4%), while 12 patients (12.2%) stopped treatment because of adverse events or safety concerns. Out of the 76 patients discontinuing anti-TNF treatment, 34 (34.7% of the cohort) developed pouch failure, and 42 (42.8% of the cohort) are currently treated with a different medical therapy. Conclusions: First-line anti-TNF therapy for chronic pouch inflammatory conditions is associated with low long-term persistence rates. This is due to a combination of lack of efficacy and adverse events. A significant percentage of patients initially treated with anti-TNF therapy develop pouch failure. Full article
Show Figures

Figure 1

11 pages, 936 KiB  
Article
Endoscopic Ultrasound-Guided Drainage for Post-Pancreatitis and Post-Surgical Peripancreatic Collections: A Retrospective Evaluation of Outcomes and Predictors of Success
by Nadica Shumka and Petko Ivanov Karagyozov
Gastroenterol. Insights 2025, 16(3), 27; https://doi.org/10.3390/gastroent16030027 (registering DOI) - 1 Aug 2025
Abstract
Background: Peripancreatic collections (PPCs) are a frequent and severe complication of acute and chronic pancreatitis, as well as pancreatic surgery, often requiring interventions to treat and prevent infection, gastric obstruction, and other complications. Endoscopic ultrasound (EUS)-guided drainage has emerged as a minimally invasive [...] Read more.
Background: Peripancreatic collections (PPCs) are a frequent and severe complication of acute and chronic pancreatitis, as well as pancreatic surgery, often requiring interventions to treat and prevent infection, gastric obstruction, and other complications. Endoscopic ultrasound (EUS)-guided drainage has emerged as a minimally invasive alternative to surgical and percutaneous approaches, offering reduced morbidity and shorter recovery times. However, the effectiveness of EUS-guided drainage in post-surgical PPCs remains underexplored. Methods: This retrospective, single-center study evaluated the technical and clinical outcomes of EUS-guided drainage in patients with PPCs between October 2021 and December 2024. Patients were categorized as having post-pancreatitis or post-surgical PPCs. Technical success, clinical success, complications, recurrence rates, and the need for reintervention were assessed. Results: A total of 50 patients underwent EUS-guided drainage, including 42 (84%) with post-pancreatitis PPCs and 8 (16%) with post-surgical PPCs. The overall technical success rate was 100%, with clinical success achieved in 96% of cases. Lumen-apposing metal stents (LAMSs) were used in 84% of patients, including 7.1% as a dual-gate salvage strategy after the failure of double-pigtail drainage. The complication rate was 24%, with infection being the most common (16%). The recurrence rate was 25%, with no significant difference between post-pancreatitis and post-surgical cases. Patients with walled-off necrosis had a significantly higher reintervention rate (35%) than those with pseudocysts (18%; p = 0.042). Conclusions: EUS-guided drainage is a highly effective and safe intervention for PPCs, including complex post-surgical cases. The 100% technical success rate reinforces its reliability, even in anatomically altered post-surgical collections. While recurrence rates remain a consideration, EUS-guided drainage offers a minimally invasive alternative to surgery, with comparable outcomes in both post-pancreatitis and post-surgical patients. Future multi-center studies should focus on optimizing treatment strategies and reducing recurrence in high-risk populations. Full article
(This article belongs to the Section Pancreas)
Show Figures

Figure 1

20 pages, 4765 KiB  
Article
Ultrasonic EDM for External Cylindrical Surface Machining with Graphite Electrodes: Horn Design and Hybrid NSGA-II–AHP Optimization of MRR and Ra
by Van-Thanh Dinh, Thu-Quy Le, Duc-Binh Vu, Ngoc-Pi Vu and Tat-Loi Mai
Machines 2025, 13(8), 675; https://doi.org/10.3390/machines13080675 (registering DOI) - 1 Aug 2025
Abstract
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and [...] Read more.
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and fabricated using 90CrSi material to operate effectively at a resonant frequency of 20 kHz, ensuring stable vibration transmission throughout the machining process. A Box–Behnken experimental design was employed to explore the effects of five process parameters—vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), discharge current (Ip), and servo voltage (SV)—on two key performance indicators: material removal rate (MRR) and surface roughness (Ra). The optimization process was conducted in two stages: single-objective analysis to maximize MRR while ensuring Ra < 4 µm, followed by a hybrid multi-objective approach combining NSGA-II and the Analytic Hierarchy Process (AHP). The optimal solution achieved a high MRR of 9.28 g/h while maintaining Ra below the critical surface finish threshold, thus meeting the practical requirements for punch surface quality. The findings confirm the effectiveness of the proposed horn design and hybrid optimization strategy, offering a new direction for enhancing productivity and surface integrity in cylindrical EDM applications using graphite electrodes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

26 pages, 2081 KiB  
Article
Tariff-Sensitive Global Supply Chains: Semi-Markov Decision Approach with Reinforcement Learning
by Duygu Yilmaz Eroglu
Systems 2025, 13(8), 645; https://doi.org/10.3390/systems13080645 (registering DOI) - 1 Aug 2025
Abstract
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), [...] Read more.
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), integrating both currency variability and tariff levels. Using a Q-learning-based method (SMART), we explore three scenarios: (1) wide currency gaps under a uniform tariff, (2) narrowed currency gaps encouraging more local sourcing, and (3) distinct tariff structures that highlight how varying duties can reshape global fulfillment decisions. Beyond these baselines we analyze uncertainty-extended variants and targeted sensitivities (quantity discounts, tariff escalation, and the joint influence of inventory holding costs and tariff costs). Simulation results, accompanied by policy heatmaps and performance metrics, illustrate how small or large shifts in exchange rates and tariffs can alter sourcing strategies, transportation modes, and inventory management. A Deep Q-Network (DQN) is also applied to validate the Q-learning policy, demonstrating alignment with a more advanced neural model for moderate-scale problems. These findings underscore the adaptability of reinforcement learning in guiding practitioners and policymakers, especially under rapidly changing trade environments where exchange rate volatility and incremental tariff changes demand robust, data-driven decision-making. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

15 pages, 1279 KiB  
Article
Real-World Toxicity and Effectiveness Study of Abemaciclib in Greek Patients with Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer: A Multi-Institutional Study
by Elena Fountzilas, Eleni Aravantinou-Fatorou, Katerina Dadouli, Panagiota Economopoulou, Dimitrios Tryfonopoulos, Anastasia Vernadou, Eleftherios Vorrias, Anastasios Vagionas, Adamantia Nikolaidi, Sofia Karageorgopoulou, Anna Koumarianou, Ioannis Boukovinas, Davide Mauri, Stefania Kokkali, Athina Christopoulou, Nikolaos Tsoukalas, Avraam Assi, Nikolaos Spathas, Paris Kosmidis, Angelos Koutras, George Fountzilas and Amanda Psyrriadd Show full author list remove Hide full author list
Cancers 2025, 17(15), 2543; https://doi.org/10.3390/cancers17152543 - 31 Jul 2025
Abstract
Background/Objectives: This study aimed to assess real-world toxicity and efficacy data of patients with early and advanced breast cancer (BC) who received treatment with abemaciclib. Methods: This was a prospective/retrospective multi-institutional collection of clinicopathological, toxicity, and outcome data from patients with early or [...] Read more.
Background/Objectives: This study aimed to assess real-world toxicity and efficacy data of patients with early and advanced breast cancer (BC) who received treatment with abemaciclib. Methods: This was a prospective/retrospective multi-institutional collection of clinicopathological, toxicity, and outcome data from patients with early or metastatic hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative BC who received treatment with abemaciclib in combination with endocrine therapy in departments of oncology in Greece. Treatment combinations of abemaciclib with any endocrine therapy were accepted. The primary end point was toxicity rate in all patients of the study. Results: From June/2021 to May/2024, 245 women received abemaciclib/endocrine combination therapy; the median age was 57 years. Of these, 169 (69%) received abemaciclib as adjuvant therapy for early-stage disease, while 76 (31%) were treated for advanced BC. At the time of the data cutoff, 133 (84.7%) patients remained in the 2-year treatment period. The most common adverse event (AE) was diarrhea (51%), primarily Grade ≤ 2. Dose modifications due to AEs were required in 19.2% of cases, while treatment discontinuation occurred in 5.1%. There was no difference in dose modification/discontinuation rates between older patients (>65 years) and the remaining patients. For early-stage BC patients, the 2-year DFS and OS rates were 90.8% and 100%, respectively. In patients with advanced cancer (70, 30.8%), 1-year PFS and OS rates were 78% and 96.3%, respectively. Conclusions: This study confirms the safety and effectiveness of abemaciclib in alignment with registrational trials offering valuable insights into toxicity management and clinical outcomes in routine practice without identifying new safety concerns. Clinical Trial Registration: ClinicalTrials.gov NCT04985058. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

21 pages, 4352 KiB  
Article
Research on Startup Characteristics of Parallel Axial-Flow Pump Systems
by Chao Yang, Chao Li, Lingling Deng and You Fu
Water 2025, 17(15), 2285; https://doi.org/10.3390/w17152285 - 31 Jul 2025
Abstract
This study takes four parallel axial-flow pumps (three in operation + one on standby) as the research object. Using a 1D–3D coupling method, it explores the flow characteristics of axial-flow pumps under different startup strategies during multi-pump parallel operation. Through comparative analysis, the [...] Read more.
This study takes four parallel axial-flow pumps (three in operation + one on standby) as the research object. Using a 1D–3D coupling method, it explores the flow characteristics of axial-flow pumps under different startup strategies during multi-pump parallel operation. Through comparative analysis, the following conclusions are drawn: when all three pumps start simultaneously, the internal pressure exceeds the rated head by 23.43%, and the reverse flow reaches 10.57% of the rated flow. When starting the pumps sequentially with 5 s intervals, the pressure can be reduced to 11.41% above the rated head, but the reverse flow increases to 13.87%. Further extending the startup interval to 15 s results in only minimal improvements compared to 5 s intervals: the maximum internal pressure and maximum reverse flow decrease by just 0.97% and 0.05%, respectively. When valve coordination is added to the 5 s sequential startup strategy (pre-opening the valve to 60% before pump startup), the pressure exceeds the rated head by 10.49%, and the reverse flow exceeds the rated flow by 6.04%. In this scenario, the high-pressure areas and high-turbulence zones on the blade back surfaces are significantly reduced, achieving optimal flow stability. Therefore, the parallel system startup should adopt a coordinated strategy combining moderate time intervals with 60% valve pre-opening. This approach can both avoid excessive pressure impact and effectively control reverse flow phenomena, providing an important basis for optimizing the startup of multi-pump parallel systems. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

Back to TopTop