Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = multi-functionalized nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 4568 KiB  
Review
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications
by Andrés Núñez-Salinas, Cristian Parra-Garretón, Daniel Acuña, Sofía Peñaloza, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Pharmaceutics 2025, 17(7), 912; https://doi.org/10.3390/pharmaceutics17070912 (registering DOI) - 14 Jul 2025
Viewed by 88
Abstract
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental [...] Read more.
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental design principles, radiolabeling techniques, and biomedical applications of nanoradiopharmaceuticals, with a particular focus on their expanding role in precision oncology. It explores key areas, including single- and multi-modal imaging modalities (SPECT, PET), radionuclide therapies involving beta, alpha, and Auger emitters, and integrated theranostic systems. A diverse array of nanocarriers is examined, including liposomes, micelles, albumin nanoparticles, PLGA, dendrimers, and gold, iron oxide, and silica-based platforms, with an assessment of both preclinical and clinical research outcomes. Theranostic nanoplatforms, which integrate diagnostic and therapeutic functions within a single system, enable real-time monitoring and personalized dose optimization. Although some of these systems have progressed to clinical trials, several obstacles remain, including formulation stability, scalable manufacturing, regulatory compliance, and long-term safety considerations. In summary, nanoradiopharmaceuticals represent a promising frontier in personalized medicine, particularly in oncology. By combining diagnostic and therapeutic capabilities within a single nanosystem, they facilitate more individualized and adaptive treatment approaches. Continued innovation in formulation, radiochemistry, and regulatory harmonization will be crucial to their successful routine clinical use. Full article
(This article belongs to the Special Issue Nanosystems for Advanced Diagnostics and Therapy)
Show Figures

Figure 1

11 pages, 1841 KiB  
Article
Construction of Silane-Modified Diatomite-Magnetic Nanocomposite Superhydrophobic Coatings Using Multi-Scale Composite Principle
by Dan Li, Mei Wu, Rongjun Xia, Jiwen Hu and Fangzhi Huang
Coatings 2025, 15(7), 786; https://doi.org/10.3390/coatings15070786 - 3 Jul 2025
Viewed by 335
Abstract
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were [...] Read more.
To address the challenges of cotton cellulose materials being susceptible to environmental humidity and pollutant erosion, a strategy for constructing superhydrophobic functional coatings with biomimetic micro–nano composite structures was proposed. Through surface silanization modification, diatomite (DEM) and Fe3O4 nanoparticles were functionalized with octyltriethoxysilane (OTS) to prepare superhydrophobic diatomite flakes (ODEM) and OFe3O4 nanoparticles. Following the multi-scale composite principle, ODEM and OFe3O4 nanoparticles were blended and crosslinked via the hydroxyl-initiated ring-opening polymerization of epoxy resin (EP), resulting in an EP/ODEM@OFe3O4 composite coating with hierarchical roughness. Microstructural characterization revealed that the micrometer-scale porous structure of ODEM and the nanoscale protrusions of OFe3O4 form a hierarchical micro–nano topography. The special topography combined with the low surface energy property leads to a contact angle of 158°. Additionally, the narrow bandgap semiconductor characteristic of OFe3O4 induces the localized surface plasmon resonance effect. This enables the coating to attain 80% light absorption across the 350–2500 nm spectrum, and rapidly heat to 45.8 °C within 60 s under 0.5 sun, thereby demonstrating excellent deicing performance. This work provides a theoretical foundation for developing environmentally tolerant superhydrophobic photothermal coatings, which exhibit significant application potential in the field of anti-icing and anti-fouling. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

22 pages, 4363 KiB  
Article
Enhancing Cutting Oil Efficiency with Nanoparticle Additives: A Gaussian Process Regression Approach to Viscosity and Cost Optimization
by Beytullah Erdoğan, İrfan Kılıç, Abdulsamed Güneş, Orhan Yaman and Ayşegül Çakır Şencan
Nanomaterials 2025, 15(13), 1008; https://doi.org/10.3390/nano15131008 - 30 Jun 2025
Viewed by 276
Abstract
Nanoparticle additives are used to increase the cooling efficiency of cutting fluids in machining. In this study, changing dynamic viscosity values depending on the addition of nanoparticles to cutting oils was investigated. Mono nanofluids were prepared by adding hBN (hexagonal boron nitride), ZnO, [...] Read more.
Nanoparticle additives are used to increase the cooling efficiency of cutting fluids in machining. In this study, changing dynamic viscosity values depending on the addition of nanoparticles to cutting oils was investigated. Mono nanofluids were prepared by adding hBN (hexagonal boron nitride), ZnO, MWCNT (multi-walled carbon nanotube), TiO2, and Al2O3 as nanoparticles, hybrid nanofluids were prepared by using two types of nanoparticles (ZnO + MWCNT, hBN + MWCNT etc.), and ternary nanofluids were prepared by using three types of nanoparticles. GPR (Gaussian process regression) was used to estimate unmeasured dynamic viscosity values using the dynamic viscosity values measured for different temperatures. Dynamic viscosity results are a precise determination (R2 = 1). An augmented dataset was obtained by adding the dynamic viscosity values estimated with high accuracy. A fitness function based on dynamic viscosity and nanoparticle unit costs was proposed for the cost analysis. With the help of the proposed fitness function, it was observed that the best performing nanoparticles were the ZnO and ZnO hybrid mixtures according to different dynamic viscosity and cost effects. The study showed that the most suitable nanofluid selection focused on performance and cost could be made without performing experiments under various operating conditions by increasing the limited experimental measurements with strong GPR estimates and using the proposed fitness function. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

14 pages, 8677 KiB  
Article
Star Polymers as a Reducing Agent of Silver Salt and a Carrier for Silver Nanoparticles
by Katarzyna Szcześniak, Grzegorz Przesławski, Jakub Kotecki, Weronika Andrzejewska, Katarzyna Fiedorowicz, Marta Woźniak-Budych, Maciej Jarzębski, Piotr Gajewski and Agnieszka Marcinkowska
Materials 2025, 18(13), 3009; https://doi.org/10.3390/ma18133009 - 25 Jun 2025
Viewed by 313
Abstract
Star polymers—macromolecules featuring multiple arms radiating from a central core—offer unique potential for biomedical applications due to their tunable architecture, multifunctionality and ability to incorporate stimuli-responsive and biocompatible components. In this study, functional star polymers with oligo (ethylene glycol) methyl ether methacrylate (OEOMA) [...] Read more.
Star polymers—macromolecules featuring multiple arms radiating from a central core—offer unique potential for biomedical applications due to their tunable architecture, multifunctionality and ability to incorporate stimuli-responsive and biocompatible components. In this study, functional star polymers with oligo (ethylene glycol) methyl ether methacrylate (OEOMA) arms and 2-(dimethylamino)ethyl methacrylate (DMAEMA) core units were synthesized via atom transfer radical polymerization (ATRP) using the “arm-first” strategy. The star polymers were used as nanoreactors for the in situ reduction of silver nitrate to form silver nanoparticles (AgNPs) without additional reducing agents. UV–Vis spectroscopy confirmed the formation of spherical AgNPs with absorption maxima around 430 nm, and transmission electron microscopy revealed uniform particle morphology. These hybrid nanomaterials (STR-AgNPs) were incorporated into polymethyl methacrylate (PMMA)-based bone cement to impart antibacterial properties. Mechanical testing showed that the compressive strength remained within acceptable limits, while antibacterial assays against E. coli demonstrated a significant inhibition of bacterial growth. These findings suggest that STR-AgNPs serve as promising candidates for infection-resistant bone implants, providing localized antibacterial effects while maintaining mechanical integrity and biocompatibility. Full article
Show Figures

Graphical abstract

22 pages, 8987 KiB  
Article
Microfluidic Synthesis of Magnetic Silica Aerogels for Efficient Pesticide Removal from Water
by Dana-Ionela Tudorache (Trifa), Adelina-Gabriela Niculescu, Alexandra-Cătălina Bîrcă, Denisa Alexandra Florea, Marius Rădulescu, Bogdan-Ștefan Vasile, Roxana Trușcă, Dan-Eduard Mihaiescu, Tony Hadibarata and Alexandru-Mihai Grumezescu
Gels 2025, 11(6), 463; https://doi.org/10.3390/gels11060463 - 17 Jun 2025
Cited by 1 | Viewed by 608
Abstract
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly [...] Read more.
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly correlated to their morpho-structural features, special consideration must be allocated to the fabrication method. An emerging technique for producing nanostructured materials with tailored morphology and dimensions is represented by continuous-flow microfluidics. In this context, this work explores the synergic combination of aerogel-based materials with microfluidic synthesis platforms to generate advanced nanocomposite adsorbents for water decontamination. Specifically, this study presents the novel synthesis of a magnetic silica-based aerogel using a custom-designed 3D microfluidic platform, offering enhanced control over nanoparticle incorporation and gelation compared to conventional sol–gel techniques. The resulting gel was further dried via supercritical CO2 extraction to preserve its unique nanostructure. The multi-faceted physicochemical investigations (XRD, DLS, FT-IR, RAMAN, SEM, and TEM) confirmed the material’s uniform morphology, high porosity, and surface functionalization. The HR-MS FT-ICR analysis has also demonstrated the advanced material’s adsorption capacity for various pesticides, suggesting its adequacy for further environmental applications. An exceptional 93.7% extraction efficiency was registered for triazophos, underscoring the potential of microfluidic synthesis approaches in engineering advanced, eco-friendly adsorbent materials for water decontamination of relevant organic pollutants. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

23 pages, 2058 KiB  
Review
Alginate Sphere-Based Soft Actuators
by Umme Salma Khanam, Hyeon Teak Jeong, Rahim Mutlu and Shazed Aziz
Gels 2025, 11(6), 432; https://doi.org/10.3390/gels11060432 - 5 Jun 2025
Viewed by 793
Abstract
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability [...] Read more.
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability to respond to thermal, magnetic, electrical, optical and chemical stimuli has enabled applications in targeted delivery, artificial muscles, microrobotics and environmental interfaces. This review examines recent advances in alginate sphere-based actuators, focusing on fabrication methods such as droplet microfluidics, coaxial flow and functional surface patterning, and strategies for introducing multi-stimuli responsiveness using smart polymers, nanoparticles and biologically active components. Actuation behaviours are understood and correlated with physical mechanisms including swelling kinetics, photothermal effects and the field-induced torque, supported by analytical and multiphysics models. Their demonstrated functionalities include shape transformation, locomotion and mechano-optical feedback. The review concludes with an outlook on the existing limitations, such as the material stability, cyclic durability and integration complexity, and proposes future directions toward the development of autonomous, multifunctional soft systems. Full article
(This article belongs to the Special Issue Polysaccharide Gels for Biomedical and Environmental Applications)
Show Figures

Figure 1

65 pages, 9353 KiB  
Review
Advancing Nanogenerators: The Role of 3D-Printed Nanocomposites in Energy Harvesting
by Riyamol Kallikkoden Razack and Kishor Kumar Sadasivuni
Polymers 2025, 17(10), 1367; https://doi.org/10.3390/polym17101367 - 16 May 2025
Viewed by 941
Abstract
Nanogenerators have garnered significant scholarly interest as a groundbreaking approach to energy harvesting, encompassing applications in self-sustaining electronics, biomedical devices, and environmental monitoring. The rise of additive manufacturing has fundamentally transformed the production processes of nanocomposites, allowing for the detailed design and refinement [...] Read more.
Nanogenerators have garnered significant scholarly interest as a groundbreaking approach to energy harvesting, encompassing applications in self-sustaining electronics, biomedical devices, and environmental monitoring. The rise of additive manufacturing has fundamentally transformed the production processes of nanocomposites, allowing for the detailed design and refinement of materials aimed at optimizing energy generation. This review presents a comprehensive analysis of 3D-printed nanocomposites in the context of nanogenerator applications. By employing layer-by-layer deposition, multi-material integration, and custom microstructural architectures, 3D-printed nanocomposites exhibit improved mechanical properties, superior energy conversion efficiency, and increased structural complexity when compared to their conventionally manufactured counterparts. Polymers, particularly those with inherent dielectric, piezoelectric, or triboelectric characteristics, serve as critical functional matrices in these composites, offering mechanical flexibility, processability, and compatibility with diverse nanoparticles. In particular, the careful regulation of the nanoparticle distribution in 3D printing significantly enhances piezoelectric and triboelectric functionalities, resulting in a higher energy output and greater consistency. Recent investigations into three-dimensional-printed nanogenerators reveal extraordinary outputs, encompassing peak voltages of as much as 120 V for BaTiO3-PVDF composites, energy densities surpassing 3.5 mJ/cm2, and effective d33 values attaining 35 pC/N, thereby emphasizing the transformative influence of additive manufacturing on the performance of energy harvesting. Furthermore, the scalability and cost-effectiveness inherent in additive manufacturing provide substantial benefits by reducing material waste and streamlining multi-phase processing. Nonetheless, despite these advantages, challenges such as environmental resilience, long-term durability, and the fine-tuning of printing parameters remain critical hurdles for widespread adoption. This assessment highlights the transformative potential of 3D printing in advancing nanogenerator technology and offers valuable insights into future research directions for developing high-efficiency, sustainable, and scalable energy-harvesting systems. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Figure 1

26 pages, 4245 KiB  
Review
Research Advances for Protein-Based Pickering Emulsions as Drug Delivery Systems
by Long Deng, Junqiu Liao, Weiqi Liu, Xiaoxiao Liang, Rujin Zhou and Yanbin Jiang
Pharmaceutics 2025, 17(5), 587; https://doi.org/10.3390/pharmaceutics17050587 - 30 Apr 2025
Viewed by 625
Abstract
Nanotechnologically engineered protein-based carriers have attracted considerable attention in the pharmaceutical field due to the advantages of superior biocompatibility, tunability and good emulsifying properties. Recently, protein-based Pickering emulsions (PPEs) systems with multi-level structures have been introduced as innovative colloidal delivery systems for advanced [...] Read more.
Nanotechnologically engineered protein-based carriers have attracted considerable attention in the pharmaceutical field due to the advantages of superior biocompatibility, tunability and good emulsifying properties. Recently, protein-based Pickering emulsions (PPEs) systems with multi-level structures have been introduced as innovative colloidal delivery systems for advanced drug encapsulation, protection, delivery and controlled release. Natural source protein nanoparticles are promising candidates to provide a wide range of functional performances and interfacial properties in the preparation and stabilization of Pickering emulsions. Herein, this review summarizes the development of PPEs in drug delivery systems, focusing on the research progress concerning the aspects of protein particle preparation methods, formation mechanisms and rational design principles, emphasizing the relationship between protein particle structure and functional properties. To further understand the interfacial behavior in protein nanoparticle stabilized emulsion, the mesoscopic dissipative particle dynamics (DPD) simulations were discussed, which bridges the gaps between macroscopic time and length scales, as well as molecular-scale simulations on particles and oil/water interface systems. The structure-effect relationship between the tunable physicochemical properties of protein-based interface design, which leads to the effective loading, stimuli-responsiveness for the controlled release and multiple delivery, was then summarized. Finally, the opportunities and challenges for the future development of PPEs for drug delivery are discussed. This review aims to provide a reference for the further application of PPEs as advanced drug delivery systems. Full article
(This article belongs to the Special Issue Recent Advances in Peptide and Protein-Based Drug Delivery Systems)
Show Figures

Figure 1

25 pages, 691 KiB  
Review
A Review of the Neuroprotective Properties of Exosomes Derived from Stem Cells and Exosome-Coated Nanoparticles for Treating Neurodegenerative Diseases and Stroke
by Yu-Ping Yang, Christopher J. B. Nicol and Ming-Chang Chiang
Int. J. Mol. Sci. 2025, 26(8), 3915; https://doi.org/10.3390/ijms26083915 - 21 Apr 2025
Cited by 2 | Viewed by 1494
Abstract
Neurological diseases, including neurodegenerative disorders and stroke, represent significant medical challenges due to their complexity and the limitations of current treatment approaches. This review explores the potential of stem cell (SC)-derived exosomes (Exos) as a transformative therapeutic strategy for these diseases. Exos, especially [...] Read more.
Neurological diseases, including neurodegenerative disorders and stroke, represent significant medical challenges due to their complexity and the limitations of current treatment approaches. This review explores the potential of stem cell (SC)-derived exosomes (Exos) as a transformative therapeutic strategy for these diseases. Exos, especially those derived from SCs, exhibit natural targeting ability, biocompatibility, and the capacity to cross the blood–brain barrier (BBB), making them ideal vehicles for drug delivery. This review provides an in-depth discussion of the properties and advantages of SC-Exos. It highlights their potential synergistic benefits in therapeutic approaches to treat neurological diseases. This article discusses the mechanisms of action of SC-Exos, highlighting their ability to target specific cells, modulate disease pathways, and provide controlled release of therapeutic agents. Applications in specific neurological disorders have been investigated, demonstrating the potential to improve outcomes in conditions such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and stroke. Moreover, Exos-coated nanoparticles (NPs) combine the natural properties of Exos with the multifunctionality of NPs. This integration takes advantage of exosome membrane biocompatibility and targeting capabilities while preserving NPs’ beneficial features, such as drug loading and controlled release. As a result, Exos-coated NPs may enhance the precision, efficacy, and safety of therapeutic interventions. In conclusion, SC-Exos represent a promising and innovative approach to treating neurological diseases. Full article
(This article belongs to the Special Issue Neuroinflammation Toxicity and Neuroprotection 2.0)
Show Figures

Figure 1

39 pages, 1995 KiB  
Review
Precisely Targeted Nanoparticles for CRISPR-Cas9 Delivery in Clinical Applications
by Xinmei Liu, Mengyu Gao and Ji Bao
Nanomaterials 2025, 15(7), 540; https://doi.org/10.3390/nano15070540 - 2 Apr 2025
Cited by 1 | Viewed by 2216
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9), an emerging gene-editing technology, has recently gained rapidly increasing attention. However, the lack of efficient delivery vectors to deliver CRISPR-Cas9 to specific cells or tissues has hindered the translation of this biotechnology into clinical [...] Read more.
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9), an emerging gene-editing technology, has recently gained rapidly increasing attention. However, the lack of efficient delivery vectors to deliver CRISPR-Cas9 to specific cells or tissues has hindered the translation of this biotechnology into clinical applications. Chemically synthesized nanoparticles (NPs), as attractive non-viral delivery platforms for CRISPR-Cas9, have been extensively investigated because of their unique characteristics, such as controllable size, high stability, multi-functionality, bio-responsive behavior, biocompatibility, and versatility in chemistry. In this review, the key considerations for the precise design of chemically synthesized-based nanoparticles include efficient encapsulation, cellular uptake, the targeting of specific tissues and cells, endosomal escape, and controlled release. We discuss cutting-edge strategies to integrate chemical modifications into non-viral nanoparticles that guide the CRISPR-Cas9 genome-editing machinery to specific edits. We also highlighted the rationale of intelligent nanoparticle design. In particular, we have summarized promising functional groups and molecules that can effectively optimize carrier function. In addition, this review focuses on advances in the widespread application of NPs delivery in the biomedical fields to promote the development of safe, specific, and efficient NPs for delivering CRISPR-Cas9 systems, providing references for accelerating their clinical translational applications. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Copper Hexacyanoferrates Obtained via Flavocytochrome b2 Assistance: Characterization and Application
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Halyna Klepach, Roman Serkiz, Faina Nakonechny, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(3), 157; https://doi.org/10.3390/bios15030157 - 2 Mar 2025
Cited by 1 | Viewed by 879
Abstract
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in [...] Read more.
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the “green” synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome b2 (Fcb2). Organic–inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fcb2. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H2O2 detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fcb2, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology. Full article
Show Figures

Figure 1

28 pages, 1342 KiB  
Review
Advances in Materials Science for Precision Melanoma Therapy: Nanotechnology-Enhanced Drug Delivery Systems
by Sivakumar S. Moni, Jobran M. Moshi, Sabine Matou-Nasri, Shmoukh Alotaibi, Yousef M. Hawsawi, Mohamed Eltaib Elmobark, Ahlam Mohammed S. Hakami, Mohammed A. Jeraiby, Ahmed A. Sulayli and Hassan N. Moafa
Pharmaceutics 2025, 17(3), 296; https://doi.org/10.3390/pharmaceutics17030296 - 24 Feb 2025
Cited by 4 | Viewed by 1532
Abstract
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, [...] Read more.
Melanoma, a highly aggressive form of skin cancer, poses a major therapeutic challenge due to its metastatic potential, resistance to conventional therapies, and the complexity of the tumor microenvironment (TME). Materials science and nanotechnology advances have led to using nanocarriers such as liposomes, dendrimers, polymeric nanoparticles, and metallic nanoparticles as transformative solutions for precision melanoma therapy. This review summarizes findings from Web of Science, PubMed, EMBASE, Scopus, and Google Scholar and highlights the role of nanotechnology in overcoming melanoma treatment barriers. Nanoparticles facilitate passive and active targeting through mechanisms such as the enhanced permeability and retention (EPR) effect and functionalization with tumor-specific ligands, thereby improving the accuracy of drug delivery and reducing systemic toxicity. Stimuli-responsive systems and multi-stage targeting further improve therapeutic precision and overcome challenges such as poor tumor penetration and drug resistance. Emerging therapeutic platforms combine diagnostic imaging with therapeutic delivery, paving the way for personalized medicine. However, there are still issues with scalability, biocompatibility, and regulatory compliance. This comprehensive review highlights the potential of integrating nanotechnology with advances in genetics and proteomics, scalable, and patient-specific therapies. These interdisciplinary innovations promise to redefine the treatment of melanoma and provide safer, more effective, and more accessible treatments. Continued research is essential to bridge the gap between evidence-based scientific advances and clinical applications. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

16 pages, 6568 KiB  
Article
Rapid Mental Stress Evaluation Based on Non-Invasive, Wearable Cortisol Detection with the Self-Assembly of Nanomagnetic Beads
by Junjie Li, Qian Chen, Weixia Li, Shuang Li, Cherie S. Tan, Shuai Ma, Shike Hou, Bin Fan and Zetao Chen
Biosensors 2025, 15(3), 140; https://doi.org/10.3390/bios15030140 - 23 Feb 2025
Viewed by 1238
Abstract
The rapid and timely evaluation of the mental health of emergency rescuers can effectively improve the quality of emergency rescues. However, biosensors for mental health evaluation are now facing challenges, such as the rapid and portable detection of multiple mental biomarkers. In this [...] Read more.
The rapid and timely evaluation of the mental health of emergency rescuers can effectively improve the quality of emergency rescues. However, biosensors for mental health evaluation are now facing challenges, such as the rapid and portable detection of multiple mental biomarkers. In this study, a non-invasive, flexible, wearable electrochemical biosensor was constructed based on the self-assembly of nanomagnetic beads for the rapid detection of cortisol in interstitial fluid (ISF) to assess the mental stress of emergency rescuers. Based on a one-step reduction, gold nanoparticles (AuNPs) were functionally modified on a screen-printed electrode to improve the detection of electrochemical properties. Afterwards, nanocomposites of MXene and multi-wall carbon nanotubes were coated onto the AuNPs layer through a physical deposition to enhance the electron transfer rate. The carboxylated nanomagnetic beads immobilized with a cortisol antibody were treated as sensing elements for the specific recognition of the mental stress marker, cortisol. With the rapid attraction of magnets to nanomagnetic beads, the sensing element can be rapidly replaced on the electrode uniformly, which can lead to extreme improvements in detection efficiency. The detected linear response to cortisol was 0–32 ng/mL. With the integrated reverse iontophoresis technique on a flexible printed circuit board, the ISF can be extracted non-invasively for wearable cortisol detection. The stimulating current was set to be under 1 mA for the extraction, which was within the safe and acceptable range for human bodies. Therefore, based on the positive correlation between cortisol concentration and mental stress, the mental stress of emergency rescuers can be evaluated, which will provide feedback on the psychological statuses of rescuers and effectively improve rescuer safety and rescue efficiency. Full article
Show Figures

Figure 1

15 pages, 1673 KiB  
Article
Prenatal SARS-CoV-2 Infection Alters Human Milk-Derived Extracellular Vesicles
by Somchai Chutipongtanate, Supasek Kongsomros, Hatice Cetinkaya, Xiang Zhang, Damaris Kuhnell, Desirée Benefield, Wendy D. Haffey, Michael A. Wyder, Gaurav Kwatra, Shannon C. Conrey, Allison R. Burrell, Scott M. Langevin, Leyla Esfandiari, David S. Newburg, Kenneth D. Greis, Mary A. Staat and Ardythe L. Morrow
Cells 2025, 14(4), 284; https://doi.org/10.3390/cells14040284 - 15 Feb 2025
Cited by 1 | Viewed by 1195
Abstract
Human milk-derived extracellular vesicles (HMEVs) are key components in breast milk, promoting infant health and development. Maternal conditions could affect HMEV cargo; however, the impact of SARS-CoV-2 infection on HMEVs remains unknown. This study investigated the influence of SARS-CoV-2 infection during pregnancy on [...] Read more.
Human milk-derived extracellular vesicles (HMEVs) are key components in breast milk, promoting infant health and development. Maternal conditions could affect HMEV cargo; however, the impact of SARS-CoV-2 infection on HMEVs remains unknown. This study investigated the influence of SARS-CoV-2 infection during pregnancy on postpartum HMEV molecules. The median duration from SARS-CoV-2 test positivity to milk collection was 3 months. After defatting and casein micelle disaggregation, HMEVs were isolated from milk samples of nine mothers with prenatal SARS-CoV-2 and six controls by sequential centrifugation, ultrafiltration, and qEV-size exclusion chromatography. The presence of HMEV was confirmed via transmission electron microscopy. Nanoparticle tracking analysis demonstrated particle diameters of <200 nm and yields of >1 × 1011 particles per mL of milk. Western immunoblots detected ALIX, CD9, and HSP70, supporting the presence of HMEVs in the isolates. Cargo from thousands of HMEVs were analyzed using a multi-omics approach, including proteomics and microRNA sequencing, and predicted that mothers with prenatal SARS-CoV-2 infection produced HMEVs with enhanced functionalities involving metabolic reprogramming, mucosal tissue development, and immunomodulation. Our findings suggest that SARS-CoV-2 infection during pregnancy boosts mucosal site-specific functions of HMEVs, potentially protecting infants against viral infections. Further prospective studies should be pursued to reevaluate the short- and long-term benefits of breastfeeding in the post-COVID era. Full article
Show Figures

Figure 1

16 pages, 1516 KiB  
Review
Luteolin in Inflammatory Bowel Disease and Colorectal Cancer: A Disease Continuum Perspective
by Fang Liu, Cui Guo, Xue Liu, Zhili Gu, Wenxuan Zou, Xuegui Tang and Jianyuan Tang
Curr. Issues Mol. Biol. 2025, 47(2), 126; https://doi.org/10.3390/cimb47020126 - 14 Feb 2025
Viewed by 2274
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that may progress to colorectal cancer (CRC), presenting significant challenges to global health. With shifts in lifestyle, the incidence of both conditions continues to rise, underscoring the urgent need for effective treatments. While [...] Read more.
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that may progress to colorectal cancer (CRC), presenting significant challenges to global health. With shifts in lifestyle, the incidence of both conditions continues to rise, underscoring the urgent need for effective treatments. While traditional therapies can be effective, their high recurrence rates and associated adverse reactions limit their broader application. Luteolin, a flavonoid derived from natural plants, has emerged as a promising focus in both IBD and CRC research due to its multi-target therapeutic potential. This article reviews the molecular mechanisms and signaling pathways through which luteolin regulates immune cell differentiation, mitigates inflammation and oxidative stress, modulates gut microbiota, and restores intestinal mucosal barrier function in IBD. In the context of CRC, luteolin demonstrates significant anti-tumor effects by inhibiting cancer cell proliferation, inducing apoptosis, and suppressing cell migration and invasion. Notably, luteolin has demonstrated significant improvements in IBD symptoms by influencing the differentiation of T cell subsets, decreasing the expression of inflammatory mediators, activating antioxidant pathways, and enhancing the structure of gut microbiota. Furthermore, advancements in formulation technology, such as the use of polymer micelles and responsive nanoparticles, have greatly improved the bioavailability and efficacy of luteolin. However, further investigation is needed to address the bioavailability and potential toxicity of luteolin, particularly in the critical transition from IBD to CRC. This article emphasizes the potential of luteolin in the treatment of IBD and CRC and anticipates its promising prospects for future clinical applications as a natural therapeutic agent. Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
Show Figures

Figure 1

Back to TopTop