Star Polymers as a Reducing Agent of Silver Salt and a Carrier for Silver Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Star Polymer Synthesis
2.2.2. Silver Nanoparticles Synthesis
2.2.3. Synthesis and Mechanical Testing of Bone Cements
2.3. Methods
2.3.1. Gel Permeation Chromatography (GPC)
2.3.2. UV–Vis Spectroscopy
2.3.3. Transmission Electron Microscopy (TEM)
2.3.4. Antibacterial Studies
3. Results
3.1. Synthesis and Characterization of Star Polymers
3.2. Studies of Silver Salt Reduction on Synthesized Star Polymers
3.3. Transmission Electron Microscopy Analysis of the Morphology and Size Distribution of AgNPs
3.4. Characterization of Bone Cements Modified with STR-AgNPs
3.5. Evaluation of Antibacterial Activity of Prepared Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, W.; Wang, W.; Li, J. Star polymers: Advances in biomedical applications. Prog. Polym. Sci. 2015, 46, 55–85. [Google Scholar] [CrossRef]
- Snijkers, F.; Cho, H.Y.; Nese, A.; Matyjaszewski, K.; Pyckhout-Hintzen, W.; Vlassopoulos, D. Effects of Core Microstructure on Structure and Dynamics of Star Polymer Melts: From Polymeric to Colloidal Response. Macromolecules 2014, 47, 5347–5356. [Google Scholar] [CrossRef]
- Lapienis, G. Star-shaped polymers having PEO arms. Prog. Polym. Sci. 2009, 34, 852–892. [Google Scholar] [CrossRef]
- Koda, Y.; Terashima, T.; Sawamoto, M. Fluorous microgel star polymers: Selective recognition and separation of polyfluorinated surfactants and compounds in water. J. Am. Chem. Soc. 2014, 136, 15742–15748. [Google Scholar] [CrossRef]
- Higashihara, T.; Hayashi, M.; Hirao, A. Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization. Prog. Polym. Sci. 2011, 36, 323–375. [Google Scholar] [CrossRef]
- Khanna, K.; Varshney, S.; Kakkar, A. Miktoarm star polymers: Advances in synthesis, self-assembly, and applications. Polym. Chem. 2010, 1, 1171. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H. Polymers with complex architecture by living anionic polymerization. Chem. Rev. 2001, 101, 3747–3792. [Google Scholar] [CrossRef]
- Blencowe, A.; Tan, J.F.; Goh, T.K.; Qiao, G.G. Core cross-linked star polymers via controlled radical polymerisation. Polymer 2009, 50, 5–32. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Tsarevsky, N.V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem. 2009, 1, 276–288. [Google Scholar] [CrossRef]
- Gao, H.; Matyjaszewski, K. Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: From stars to gels. Prog. Polym. Sci. 2009, 34, 317–350. [Google Scholar] [CrossRef]
- Gao, H.; Min, K.; Matyjaszewski, K. Synthesis of 3-Arm Star Block Copolymers by Combination of “Core-First” and “Coupling-Onto” Methods Using ATRP and Click Reactions. Macro Chem. Phys. 2007, 208, 1370–1378. [Google Scholar] [CrossRef]
- Gao, H.; Matyjaszewski, K. High-yield synthesis of uniform star polymers—Is controlled radical polymerization always needed? Chemistry 2009, 15, 6107–6111. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Landry, E.; Ye, Z.; Joly, H.; Wang, W.-J.; Li, B.-G. “Arm-First” Synthesis of Core-Cross-Linked Multiarm Star Polyethylenes by Coupling Palladium-Catalyzed Ethylene “Living” Polymerization with Atom-Transfer Radical Polymerization. Macromolecules 2011, 44, 4125–4139. [Google Scholar] [CrossRef]
- Gao, H.; Ohno, S.; Matyjaszewski, K. Low polydispersity star polymers via cross-linking macromonomers by ATRP. J. Am. Chem. Soc. 2006, 128, 15111–15113. [Google Scholar] [CrossRef]
- Harris, J.M. (Ed.) Poly(Ethylene Glycol) Chemistry; Springer: Boston, MA, USA, 1992; ISBN 978-1-4899-0705-9. [Google Scholar]
- Merrill, E.W. Poly(Ethylene Oxide) and Blood Contact. In Poly(Ethylene Glycol) Chemistry; Harris, J.M., Ed.; Springer: Boston, MA, USA, 1992; pp. 199–220. ISBN 978-1-4899-0705-9. [Google Scholar]
- Wiltshire, J.T.; Qiao, G.G. Synthesis of Core Cross-Linked Star Polymers with Adjustable Coronal Properties. Macromolecules 2008, 41, 623–631. [Google Scholar] [CrossRef]
- Cao, W.; Zhu, L. Synthesis and Unimolecular Micelles of Amphiphilic Dendrimer-like Star Polymer with Various Functional Surface Groups. Macromolecules 2011, 44, 1500–1512. [Google Scholar] [CrossRef]
- Takamizu, K.; Nomura, K. Synthesis of oligo(thiophene)-coated star-shaped ROMP polymers: Unique emission properties by the precise integration of functionality. J. Am. Chem. Soc. 2012, 134, 7892–7895. [Google Scholar] [CrossRef]
- Bencherif, S.A.; Gao, H.; Srinivasan, A.; Siegwart, D.J.; Hollinger, J.O.; Washburn, N.R.; Matyjaszewski, K. Cell-adhesive star polymers prepared by ATRP. Biomacromolecules 2009, 10, 1795–1803. [Google Scholar] [CrossRef]
- Cho, H.Y.; Gao, H.; Srinivasan, A.; Hong, J.; Bencherif, S.A.; Siegwart, D.J.; Paik, H.-J.; Hollinger, J.O.; Matyjaszewski, K. Rapid cellular internalization of multifunctional star polymers prepared by atom transfer radical polymerization. Biomacromolecules 2010, 11, 2199–2203. [Google Scholar] [CrossRef]
- Heuts, J.; Salber, J.; Goldyn, A.M.; Janser, R.; Möller, M.; Klee, D. Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components. J. Biomed. Mater. Res. A 2010, 92, 1538–1551. [Google Scholar] [CrossRef]
- Weng, Y.; Guo, X.; Gregory, R.; Xie, D. A novel antibacterial dental glass-ionomer cement. Eur. J. Oral. Sci. 2010, 118, 531–534. [Google Scholar] [CrossRef]
- Weng, Y.; Guo, X.; Zhao, J.; Gregory, R.L.; Xie, D. A PQAS-containing glass-ionomer cement for improved antibacterial function. J. Biomed. Sci. Eng. 2010, 3, 956–963. [Google Scholar] [CrossRef]
- Weng, Y.; Howard, L.; Chong, V.J.; Sun, J.; Gregory, R.L.; Xie, D. A novel furanone-modified antibacterial dental glass ionomer cement. Acta Biomater. 2012, 8, 3153–3160. [Google Scholar] [CrossRef] [PubMed]
- Vigliotta, G.; Mella, M.; Rega, D.; Izzo, L. Modulating antimicrobial activity by synthesis: Dendritic copolymers based on nonquaternized 2-(dimethylamino)ethyl methacrylate by Cu-mediated ATRP. Biomacromolecules 2012, 13, 833–841. [Google Scholar] [CrossRef]
- Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Huang, K.; Li, Y.; Qin, Y.; Xiong, D.; Ling, J.; Yi, G.; Tang, Z.; Lin, J.; Huang, Y.; et al. Facile In Situ Preparation and In Vitro Antibacterial Activity of PDMAEMA-Based Silver-Bearing Copolymer Micelles. Nanoscale Res. Lett. 2019, 14, 256. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, Y.; Zhang, W.; Lang, M. In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application. Appl. Surf. Sci. 2012, 258, 2655–2660. [Google Scholar] [CrossRef]
- Steinmetz, J.D.; Culbreth, G.T.; Vos, T.; Haile, L.M.; Rafferty, Q.; Lo, J.; Fukutaki, K.G.; Cruz, J.A.; Smith, A.E.; Vollset, S.E.; et al. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study. Lancet Rheumatol. 2021, 5, e508–e522. [Google Scholar] [CrossRef]
- Salari, N.; Ghasemi, H.; Mohammadi, L.; Behzadi, M.H.; Rabieenia, E.; Shohaimi, S.; Mohammadi, M. The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 2021, 17, 609. [Google Scholar] [CrossRef]
- Sanders, K.M.; Nicholson, G.C.; Ugoni, A.M.; Seeman, E.; Pasco, J.A.; Kotowicz, M.A. Fracture rates lower in rural than urban communities: The Geelong Osteoporosis Study. J. Epidemiol. Community Health 2002, 56, 466–470. [Google Scholar] [CrossRef]
- Cooper, C.; Cole, Z.A.; Holroyd, C.R.; Earl, S.C.; Harvey, N.C.; Dennison, E.M.; Melton, L.J.; Cummings, S.R.; Kanis, J.A. Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos. Int. 2011, 22, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Przesławski, G.; Szcześniak, K.; Grześkowiak, B.; Mazzaglia, A.; Jarzębski, M.; Niewczas, A.; Kuczyński, P.; Zarębska-Mróz, A.; Marcinkowska, A. Modification of methacrylate bone cement with eugenol—A new material with antibacterial properties. Rev. Adv. Mater. Sci. 2024, 63, 20230171. [Google Scholar] [CrossRef]
- Prokopovich, P.; Köbrick, M.; Brousseau, E.; Perni, S. Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Wekwejt, M.; Michno, A.; Truchan, K.; Pałubicka, A.; Świeczko-Żurek, B.; Osyczka, A.M.; Zieliński, A. Antibacterial Activity and Cytocompatibility of Bone Cement Enriched with Antibiotic, Nanosilver, and Nanocopper for Bone Regeneration. Nanomaterials 2019, 9, 1114. [Google Scholar] [CrossRef]
- Wekwejt, M.; Chen, S.; Kaczmarek-Szczepańska, B.; Nadolska, M.; Łukowicz, K.; Pałubicka, A.; Michno, A.; Osyczka, A.M.; Michálek, M.; Zieliński, A. Nanosilver-loaded PMMA bone cement doped with different bioactive glasses—Evaluation of cytocompatibility, antibacterial activity, and mechanical properties. Biomater. Sci. 2021, 9, 3112–3126. [Google Scholar] [CrossRef]
- Robu, A.; Antoniac, A.; Ciocoiu, R.; Grosu, E.; Rau, J.V.; Fosca, M.; Krasnyuk, I.I.; Pircalabioru, G.G.; Manescu Paltanea, V.; Antoniac, I.; et al. Effect of the Antimicrobial Agents Peppermint Essential Oil and Silver Nanoparticles on Bone Cement Properties. Biomimetics 2022, 7, 137. [Google Scholar] [CrossRef]
- Cho, H.Y.; Averick, S.E.; Paredes, E.; Wegner, K.; Averick, A.; Jurga, S.; Das, S.R.; Matyjaszewski, K. Star polymers with a cationic core prepared by ATRP for cellular nucleic acids delivery. Biomacromolecules 2013, 14, 1262–1267. [Google Scholar] [CrossRef]
- Sumerlin, B.S.; Neugebauer, D.; Matyjaszewski, K. Initiation Efficiency in the Synthesis of Molecular Brushes by Grafting from via Atom Transfer Radical Polymerization. Macromolecules 2005, 38, 702–708. [Google Scholar] [CrossRef]
- Huq, M.A.; Akter, S. Bacterial Mediated Rapid and Facile Synthesis of Silver Nanoparticles and Their Antimicrobial Efficacy against Pathogenic Microorganisms. Materials 2021, 14, 2615. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Soliwoda, K.; Kadziola, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Szmaja, W.; Grobelny, J. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013, 2013, 313081. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.N.; Kwon, S.; Cho, D. Formation and stability study of silver nano-particles in aqueous and organic medium. Korean J. Chem. Eng. 2017, 34, 2072–2078. [Google Scholar] [CrossRef]
- Ma, D.; Xie, X.; Zhang, L.-M. A novel route to in-situ incorporation of silver nanoparticles into supramolecular hydrogel networks. J. Polym. Sci. B Polym. Phys. 2009, 47, 740–749. [Google Scholar] [CrossRef]
- Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Formation of Silver Nanowires in Aqueous Solutions of a Double-Hydrophilic Block Copolymer. Chem. Mater. 2001, 13, 2753–2755. [Google Scholar] [CrossRef]
- Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Fernig, D.G. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 2014, 139, 4855–4861. [Google Scholar] [CrossRef]
- Alim-Al-Razy, M.; Asik Bayazid, G.M.; Rahman, R.U.; Bosu, R.; Shamma, S.S. Silver nanoparticle synthesis, UV-Vis spectroscopy to find particle size and measure resistance of colloidal solution. J. Phys. Conf. Ser. 2020, 1706, 12020. [Google Scholar] [CrossRef]
- Woźniak-Budych, M.J.; Przysiecka, Ł.; Langer, K.; Peplińska, B.; Jarek, M.; Wiesner, M.; Nowaczyk, G.; Jurga, S. Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity. J. Mater. Sci. Mater. Med. 2017, 28, 42. [Google Scholar] [CrossRef]
- Babayevska, N.; Przysiecka, Ł.; Iatsunskyi, I.; Nowaczyk, G.; Jarek, M.; Janiszewska, E.; Jurga, S. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci. Rep. 2022, 12, 8148. [Google Scholar] [CrossRef]
- Keshari, A.K.; Srivastava, R.; Singh, P.; Yadav, V.B.; Nath, G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda Integr. Med. 2020, 11, 37–44. [Google Scholar] [CrossRef]
- Chen, G.; Lu, J.; Lamb, C.; Yu, Y. A novel green synthesis approach for polymer nanocomposites decorated with silver nanoparticles and their antibacterial activity. Analyst 2014, 139, 5793–5799. [Google Scholar] [CrossRef]
Name | Conversion [%] a | Mn,app b | Mn,abs c | Đ b | No. of Arms d |
---|---|---|---|---|---|
STR_1 | 86 | 16,100 | 23,900 | 1.42 | 47 |
STR_2 | 90 | 15,200 | 28,400 | 1.57 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szcześniak, K.; Przesławski, G.; Kotecki, J.; Andrzejewska, W.; Fiedorowicz, K.; Woźniak-Budych, M.; Jarzębski, M.; Gajewski, P.; Marcinkowska, A. Star Polymers as a Reducing Agent of Silver Salt and a Carrier for Silver Nanoparticles. Materials 2025, 18, 3009. https://doi.org/10.3390/ma18133009
Szcześniak K, Przesławski G, Kotecki J, Andrzejewska W, Fiedorowicz K, Woźniak-Budych M, Jarzębski M, Gajewski P, Marcinkowska A. Star Polymers as a Reducing Agent of Silver Salt and a Carrier for Silver Nanoparticles. Materials. 2025; 18(13):3009. https://doi.org/10.3390/ma18133009
Chicago/Turabian StyleSzcześniak, Katarzyna, Grzegorz Przesławski, Jakub Kotecki, Weronika Andrzejewska, Katarzyna Fiedorowicz, Marta Woźniak-Budych, Maciej Jarzębski, Piotr Gajewski, and Agnieszka Marcinkowska. 2025. "Star Polymers as a Reducing Agent of Silver Salt and a Carrier for Silver Nanoparticles" Materials 18, no. 13: 3009. https://doi.org/10.3390/ma18133009
APA StyleSzcześniak, K., Przesławski, G., Kotecki, J., Andrzejewska, W., Fiedorowicz, K., Woźniak-Budych, M., Jarzębski, M., Gajewski, P., & Marcinkowska, A. (2025). Star Polymers as a Reducing Agent of Silver Salt and a Carrier for Silver Nanoparticles. Materials, 18(13), 3009. https://doi.org/10.3390/ma18133009