Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = monocots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3686 KiB  
Article
Genome-Wide Analyses of the XTH Gene Family in Brachypodium distachyon and Functional Analyses of the Role of BdXTH27 in Root Elongation
by Hongyan Shen, Qiuping Tan, Wenzhe Zhao, Mengdan Zhang, Cunhao Qin, Zhaobing Liu, Xinsheng Wang, Sendi An, Hailong An and Hongyu Wu
Int. J. Mol. Sci. 2025, 26(15), 7457; https://doi.org/10.3390/ijms26157457 (registering DOI) - 1 Aug 2025
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. A total of 29 BdXTH genes were identified from the [...] Read more.
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. A total of 29 BdXTH genes were identified from the whole genome, and these were further divided into three subgroups (Group I/II, Group III, and the Ancestral Group) through evolutionary analysis. Gene structure and protein motif analyses indicate that closely clustered BdXTH genes are relatively conserved within each group. A highly conserved amino acid domain (DEIDFEFLG) responsible for catalytic activity was identified in all BdXTH proteins. We detected three pairs of segmentally duplicated BdXTH genes and five groups of tandemly duplicated BdXTH genes, which played vital roles in the expansion of the BdXTH gene family. Cis-elements related to hormones, growth, and abiotic stress responses were identified in the promoters of each BdXTH gene, and when roots were treated with two abiotic stresses (salinity and drought) and four plant hormones (IAA, auxin; GA3, gibberellin; ABA, abscisic acid; and BR, brassinolide), the expression levels of many BdXTH genes changed significantly. Transcriptional analyses of the BdXTH genes in 38 tissue samples from the publicly available RNA-seq data indicated that most BdXTH genes have distinct expression patterns in different tissues and at different growth stages. Overexpressing the BdXTH27 gene in Brachypodium led to reduced root length in transgenic plants, which exhibited higher cellulose levels but lower hemicellulose levels compared to wild-type plants. Our results provide valuable information for further elucidation of the biological functions of BdXTH genes in the model grass B. distachyon. Full article
(This article belongs to the Section Molecular Plant Sciences)
16 pages, 1974 KiB  
Review
MicroRNA528 and Its Regulatory Roles in Monocotyledonous Plants
by Hailin Fu, Liwei Zhang, Yulin Hu, Ziyi Liu, Zhenyu Wang, Fafu Shen and Wei Wang
Int. J. Mol. Sci. 2025, 26(15), 7334; https://doi.org/10.3390/ijms26157334 - 29 Jul 2025
Viewed by 94
Abstract
MicroRNA528 (miR528) is a microRNA found only in monocotyledonous (monocot) plants. It has been widely reported that miR528 is involved in the regulation of plant growth and development, such as flowering, architecture, and seed and embryogenic development, in addition to playing a crucial [...] Read more.
MicroRNA528 (miR528) is a microRNA found only in monocotyledonous (monocot) plants. It has been widely reported that miR528 is involved in the regulation of plant growth and development, such as flowering, architecture, and seed and embryogenic development, in addition to playing a crucial role in response to various biotic and abiotic stresses, such as plant pathogens, salt stress, heat/cold stress, water stress, arsenic stress, oxidative stress, heavy-metal stress, and nutrient stress. Given that it is specific to monocot plants, to which the major staple food crops such as rice and wheat belong, a review of studies investigating its diverse functional roles and underlying mechanisms is presented. This review focuses on the processes in which miR528 and its targets are involved and examines their regulatory relationships with significant participation in plant development and stress responses. It is anticipated that more biological functions and evolutionary effects of miRNA targets will be elucidated with the increase in knowledge of miRNA evolution and examination of target mRNAs. Full article
(This article belongs to the Special Issue Latest Reviews in Molecular Plant Science 2025)
Show Figures

Figure 1

21 pages, 3525 KiB  
Article
Sequence Variation and In Silico Protein Characterization of γ-TMT Gene in Mutant Rodent Tuber (Typhonium flagelliforme Lodd.)
by Nesti Fronika Sianipar, Zidni Muflikhati, Reflinur, Muhammad Dylan Lawrie, Dave Mangindaan, Khoirunnisa Assidqi, Chukwunwike Uchenna Enyi and Dwiyantari Widyaningrum
Int. J. Mol. Sci. 2025, 26(15), 7148; https://doi.org/10.3390/ijms26157148 - 24 Jul 2025
Viewed by 140
Abstract
γ-tocopherol is an important antioxidant compound associated with anticancer activity in several plants. This study aimed to analyze the γ-TMT (γ-tocopherol methyltransferase) gene sequence and predict its protein structure in mutant rodent tuber (Typhonium flagelliforme Lodd.) plants. Degenerate primers were [...] Read more.
γ-tocopherol is an important antioxidant compound associated with anticancer activity in several plants. This study aimed to analyze the γ-TMT (γ-tocopherol methyltransferase) gene sequence and predict its protein structure in mutant rodent tuber (Typhonium flagelliforme Lodd.) plants. Degenerate primers were designed from homologous sequences in monocot species and used to amplify the γ-TMT gene. Amplification of the γ-TMT gene was observedin the mutant and the wild-type plants. The amplified region partially covers the γ-TMT gene, which has undergone mutations due to a combination of somaclonal variation and gamma irradiation. Sequence analysis revealed notable variations between mutant and wild-type lines, including base substitutions and deletions. Predicted protein structures based on the coding DNA sequence (CDS) revealed notable differences in helix and loop orientation, particularly in the C-terminal domain and central regions of the protein. These structural differences suggest potential links to increased tocopherol biosynthesis or biological activity; however, further experimental validation is required to confirm these functional implications. This study provides foundational insights into the link between the expression of the γ-TMT gene and tocopherol biosynthesis and supports the development of specific molecular markers in T. flagelliforme. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 21045 KiB  
Article
Genome-Wide Characterization of the ABI3 Gene Family in Cotton
by Guoyong Fu, Yanlong Yang, Tahir Mahmood, Xinxin Liu, Zongming Xie, Zengqiang Zhao, Yongmei Dong, Yousheng Tian, Jehanzeb Farooq, Iram Sharif and Youzhong Li
Genes 2025, 16(8), 854; https://doi.org/10.3390/genes16080854 - 23 Jul 2025
Viewed by 205
Abstract
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted [...] Read more.
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted a comprehensive genome-wide investigation of the ABI3 gene family across 26 plant species, with a focus on 8 Gossypium species. Analyses included phylogenetics, chromosomal localization, synteny assessment, gene duplication patterns, protein domain characterization, promoter cis-regulatory element identification, and tissue-specific/spatiotemporal expression profiling under different organizations of Gossypium hirsutum. Results: Phylogenetic and chromosomal analyses revealed conserved ABI3 evolutionary patterns between monocots and dicots, alongside lineage-specific expansion events within Gossypium spp. Syntenic relationships and duplication analysis in G. hirsutum (upland cotton) indicated retention of ancestral synteny blocks and functional diversification driven predominantly by segmental duplication. Structural characterization confirmed the presence of conserved B3 domains in all G. hirsutum ABI3 homologs. Promoter analysis identified key stress-responsive cis-elements, including ABA-responsive (ABRE), drought-responsive (MYB), and low-temperature-responsive (LTRE) motifs, suggesting a role in abiotic stress regulation. Expression profiling demonstrated significant tissue-specific transcriptional activity across roots, stems, leaves, and fiber developmental stages. Conclusions: This study addresses a significant knowledge gap by elucidating the evolution, structure, and stress-responsive expression profiles of the ABI3 gene family in cotton. It establishes a foundational framework for future functional validation and targeted genetic engineering strategies aimed at developing stress-resilient cotton cultivars with enhanced fiber quality. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

19 pages, 2347 KiB  
Article
Genome-Wide Identification and Salinity Response Analysis of the Germin-like Protein (GLP) Gene Family in Puccinellia tenuiflora
by Yueyue Li, Zhe Zhao, Bo Li, Hongxia Zheng, Zhen Wu, Ying Li, Meihong Sun and Shaojun Dai
Plants 2025, 14(15), 2259; https://doi.org/10.3390/plants14152259 - 22 Jul 2025
Viewed by 190
Abstract
The germin-like protein (GLP) family plays vital roles for plant growth, stress adaptation, and defense; however, its evolutionary dynamics and functional diversity in halophytes remain poorly characterized. Here, we present the genome-wide analysis of the GLP family in the halophytic forage alkaligrass ( [...] Read more.
The germin-like protein (GLP) family plays vital roles for plant growth, stress adaptation, and defense; however, its evolutionary dynamics and functional diversity in halophytes remain poorly characterized. Here, we present the genome-wide analysis of the GLP family in the halophytic forage alkaligrass (Puccinellia tenuiflora), which identified 54 PutGLPs with a significant expansion compared to other plant species. Phylogenetic analysis revealed monocot-specific clustering, with 41.5% of PutGLPs densely localized to chromosome 7, suggesting tandem duplication as a key driver of family expansion. Collinearity analysis confirmed evolutionary conservation with monocot GLPs. Integrated gene structure and motif analysis revealed conserved cupin domains (BoxB and BoxC). Promoter cis-acting elements analysis revealed stress-responsive architectures dominated by ABRE, STRE, and G-box motifs. Tissue-/organ-specific expression profiling identified root- and flower-enriched PutGLPs, implying specialized roles in stress adaptation. Dynamic expression patterns under salt-dominated stresses revealed distinct regulatory pathways governing ionic and alkaline stress responses. Functional characterization of PutGLP37 demonstrated its cell wall localization, dual superoxide dismutase (SOD) and oxalate oxidase (OXO) enzymatic activities, and salt stress tolerance in Escherichia coli, yeast (Saccharomyces cerevisiae INVSc1), and transgenic Arabidopsis. This study provides critical insights into the evolutionary innovation and stress adaptive roles of GLPs in halophytes. Full article
Show Figures

Figure 1

16 pages, 1945 KiB  
Article
Assembly and Comparative Analysis of Complete Mitochondrial Genome Sequence of Endangered Medicinal Plant Trichopus zeylanicus
by Biju Vadakkemukadiyil Chellappan, P. R. Shidhi, Anu Sasi, Rashid Ismael Hag Ibrahim and Hamad Abu Zahra
Curr. Issues Mol. Biol. 2025, 47(7), 553; https://doi.org/10.3390/cimb47070553 - 16 Jul 2025
Viewed by 284
Abstract
Plant mitochondrial genomes exhibit extensive size variability and structural complexity. Here, we report the complete mitochondrial genome of Trichopus zeylanicus, an endemic medicinal plant from the Western Ghats. The mitochondrial genome was assembled using a combination of Illumina short-read and PacBio long-read [...] Read more.
Plant mitochondrial genomes exhibit extensive size variability and structural complexity. Here, we report the complete mitochondrial genome of Trichopus zeylanicus, an endemic medicinal plant from the Western Ghats. The mitochondrial genome was assembled using a combination of Illumina short-read and PacBio long-read sequencing technologies, followed by extensive annotation and comparative analysis. The circular mitogenome spans 709,127 bp with a GC content of 46%, encoding 32 protein-coding genes, 17 tRNAs, and three rRNAs. Comparative analysis with other monocot mitochondrial genomes revealed conserved gene clusters but also significant lineage-specific rearrangements. Despite genome size similarities, T. zeylanicus displayed marked divergence in gene order, suggesting that genome size does not necessarily correlate with structural conservation. The genome contains 6.7% chloroplast-derived sequences and 324 predicted RNA-editing sites, predominantly in the first and second codon positions. Phylogenetic analysis based on mitochondrial genes placed T. zeylanicus as a distinct lineage within Dioscoreales, supporting its evolutionary uniqueness. This work provides the first mitogenomic resource for Dioscoreales and advances our understanding of mitochondrial diversity and evolution in monocots. Full article
(This article belongs to the Special Issue Technological Advances Around Next-Generation Sequencing Application)
Show Figures

Graphical abstract

24 pages, 4352 KiB  
Article
Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis
by Yingying Qin, Ruifu Wang, Shuwan Chen, Qian Gao, Yiru Zhao, Shuo Chang, Mao Li, Fangfang Ma and Xuemei Ren
Plants 2025, 14(14), 2151; https://doi.org/10.3390/plants14142151 - 11 Jul 2025
Viewed by 313
Abstract
The SCARECROW (SCR) transcription factor governs cell-type patterning in plant roots and Kranz anatomy of leaves, serving as a master regulator of root and shoot morphogenesis. Foxtail millet (Setaria italica), characterized by a compact genome, self-pollination, and a short growth cycle, [...] Read more.
The SCARECROW (SCR) transcription factor governs cell-type patterning in plant roots and Kranz anatomy of leaves, serving as a master regulator of root and shoot morphogenesis. Foxtail millet (Setaria italica), characterized by a compact genome, self-pollination, and a short growth cycle, has emerged as a C4 model plant. Here, we revealed two SCR paralogs in foxtail millet—SiSCR1 and SiSCR2—which exhibit high sequence conservation with ZmSCR1/1h (Zea mays), OsSCR1/2 (Oryza sativa), and AtSCR (Arabidopsis thaliana), particularly within the C-terminal GRAS domain. Both SiSCR genes exhibited nearly identical secondary structures and physicochemical profiles, with promoter analyses revealing five conserved cis-regulatory elements. Robust phylogenetic reconstruction resolved SCR orthologs into monocot- and dicot-specific clades, with SiSCR genes forming a sister branch to SvSCR from its progenitor species Setaria viridis. Spatiotemporal expression profiling demonstrated ubiquitous SiSCR gene transcription across developmental stages, with notable enrichment in germinated seeds, plants at the one-tip-two-leaf stage, leaf 1 (two days after heading), and roots during the seedling stage. Co-expression network analysis revealed that there is a correlation between SiSCR genes and other functional genes. Abscisic acid (ABA) treatment led to a significant downregulation of the expression level of SiSCR genes in Yugu1 roots, and the expression of the SiSCR genes in the roots of An04 is more sensitive to PEG6000 treatment. Drought treatment significantly upregulated SiSCR2 expression in leaves, demonstrating its pivotal role in plant adaptation to abiotic stress. Analysis of heterologous expression under the control of the 35S promoter revealed that SiSCR genes were expressed in root cortical/endodermal initial cells, endodermal cells, cortical cells, and leaf stomatal complexes. Strikingly, ectopic expression of SiSCR genes in Arabidopsis led to hypersensitivity to ABA, and ABA treatment resulted in a significant reduction in the length of the meristematic zone. These data delineate the functional divergence and evolutionary conservation of SiSCR genes, providing critical insights into their roles in root/shoot development and abiotic stress signaling in foxtail millet. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

12 pages, 2388 KiB  
Article
Secondary Metabolites of Bacillus zhangzhouensis from Zygophyllum oxianum and Their Antifungal and Plant Growth-Regulating Properties
by Zokir O. Toshmatov, Fazliddin A. Melikuziev, Ilkham S. Aytenov, Ma’ruf Z. Isokulov, Gulnaz Kahar, Tohir A. Bozorov and Daoyuan Zhang
Plants 2025, 14(13), 2058; https://doi.org/10.3390/plants14132058 - 4 Jul 2025
Viewed by 444
Abstract
Plant species harbor diverse rhizospheric bacteria within their resilient root zones, serving as a valuable reservoir of bioactive microorganisms with strong potential for natural antifungal and plant growth-promoting applications. This study aimed to investigate the antagonistic potential of Bacillus zhangzhouensis, isolated from [...] Read more.
Plant species harbor diverse rhizospheric bacteria within their resilient root zones, serving as a valuable reservoir of bioactive microorganisms with strong potential for natural antifungal and plant growth-promoting applications. This study aimed to investigate the antagonistic potential of Bacillus zhangzhouensis, isolated from Zygophyllum oxianum in the Aral Sea region, Uzbekistan, against the fungal pathogen Cytospora mali. Due to its strong antifungal activity, B. zhangzhouensis was selected for bioactive compound profiling. Methanolic extracts were fractionated via silica and Sephadex gel chromatography, followed by antifungal screening using the agar diffusion method. A highly active fraction (dichloromethane/methanol, 9:1) underwent further purification, yielding twelve antifungal sub-fractions. Mass spectrometry analysis across positive and negative ion modes identified 2475 metabolites, with polar solvents—particularly methanol—enhancing compound recovery. Refinement using Bacillus-specific references identified six known antibiotics. Four pure compounds were isolated and structurally characterized using NMR: oleanolic acid, ursolic acid, cyclo-(Pro-Ser), and uracil. Their growth regulatory activity was assessed on Amaranthus retroflexus, Nicotiana benthamiana, triticale, and Triticum aestivum at concentrations of 5, 20, 100, and 500 mg L−1. All compounds negatively affected root growth in a concentration-dependent manner, especially in monocots. Interestingly, some treatments enhanced stem growth, particularly in N. benthamiana. These findings indicate that B. zhangzhouensis produces diverse bioactive compounds with dual antifungal and plant growth-modulatory effects, highlighting its potential as a biocontrol agent and a source of natural bioactive compounds. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

25 pages, 34253 KiB  
Article
Genome-Wide Identification of GRAS Gene Family in Daylily (Hemerocallis citrina Baroni) and Its Expression Profiles in Development, Hormone and Biotic Stress Response
by Weijia Li, Hongying Sun, Zhiwen Chen, Yue Zhang and Jianguo Zhao
Biology 2025, 14(7), 770; https://doi.org/10.3390/biology14070770 - 26 Jun 2025
Viewed by 313
Abstract
The family of GRAS transcription factors plays an essential role in the regulation of plant development, the transmission of hormonal signals, and the adaptation to environmental stresses seen in numerous species. However, a comprehensive analysis of the GRAS family of Hemerocallis citrina (daylily) [...] Read more.
The family of GRAS transcription factors plays an essential role in the regulation of plant development, the transmission of hormonal signals, and the adaptation to environmental stresses seen in numerous species. However, a comprehensive analysis of the GRAS family of Hemerocallis citrina (daylily) is lacking, despite its potential to help understand the stress content and developmental processes of the monospecies. This study identified 78 GRAS genes (HcGRAS) in H. citrina, which were classified into 15 subfamilies based on chromosomal location, gene structure, conserved motifs, and expression patterns. An analysis of promoter regions indicated a significant presence of elements related to hormones and stress, showcasing these genes’ role in adapting to environmental pressures. The GO and KEGG analyses indicated that HcGRAS genes were engaged in pathways associated with developmental processes and responses to environmental stress. Notably, HcGRAS38 was identified as a key interacting protein for SHR, SCR, and DELLA subfamily members, which suggested its central role in coordinating stress response and developmental signaling. Comparative genomic mapping with seven representative monocot and dicot species underscored evolutionary conservation and divergence in functions of the GRAS family. The expression profiling of 22 HcGRAS genes across different daylily tissues provided insights into their tissue-specific roles. This research may promote the further exploration of the functional characteristics of HcGRAS genes. Full article
Show Figures

Figure 1

24 pages, 3498 KiB  
Review
Xanthomonas spp. Infecting Araceae and Araliaceae: Taxonomy, Phylogeny, and Potential Virulence Mechanisms
by Shu-Cheng Chuang, Shefali Dobhal, Lisa M. Keith, Anne M. Alvarez and Mohammad Arif
Biology 2025, 14(7), 766; https://doi.org/10.3390/biology14070766 - 25 Jun 2025
Cited by 1 | Viewed by 506
Abstract
The genus Xanthomonas (family Xanthomonadaceae) comprises 39 validly published species and is associated with a broad host range, infecting hundreds of monocot and dicot plants worldwide. While many Xanthomonas species are notorious for causing leaf spot and blight diseases in major agricultural crops, [...] Read more.
The genus Xanthomonas (family Xanthomonadaceae) comprises 39 validly published species and is associated with a broad host range, infecting hundreds of monocot and dicot plants worldwide. While many Xanthomonas species are notorious for causing leaf spot and blight diseases in major agricultural crops, less attention has been given to their impact on ornamental plants. In Hawaii and other key production regions, xanthomonads have posed persistent threats to popular ornamentals in the Araceae and Araliaceae families. This review synthesizes the evolving phylogenetic and taxonomic framework of Xanthomonas strains isolated from Araceae and Araliaceae, highlighting recent advances enabled by multilocus sequence analysis and whole genome sequencing. We discuss the reclassification of key pathovars, unresolved phylogenetic placements, and the challenges of pathovar delineation within these plant families. Additionally, we examine current knowledge of molecular determinants of pathogenicity, including gene clusters involved in exopolysaccharide and lipopolysaccharide biosynthesis, flagellar assembly, cell-wall-degrading enzymes, and secretion systems (types II, III, and VI). Comparative genomics and functional studies reveal that significant gaps remain in our understanding of the genetic basis of host adaptation and virulence in these xanthomonads. Addressing these knowledge gaps will be crucial for developing effective diagnostics and management strategies for bacterial diseases in ornamental crops. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
Show Figures

Figure 1

25 pages, 10409 KiB  
Article
Comprehensive Genome-Wide Characterization of L-Type Lectin Receptor-like Kinase (L-LecRLK) Genes in Wheat (Triticum aestivum L.) and Their Response to Abiotic Stress
by Wan Zhao, Fuyan Zhang, Jiahuan Wang, Shuai Fang, Zhongjie Cheng, Xuhui Ma, Jialin Fan, Zhaoshi Xu and Xiaojie Chen
Plants 2025, 14(12), 1884; https://doi.org/10.3390/plants14121884 - 19 Jun 2025
Viewed by 503
Abstract
L-type lectin receptor-like kinases (L-LecRLKs) play key roles in plant responses to environmental stresses and the regulation of growth and development. However, comprehensive studies of the L-LecRLK gene family in wheat (Triticum aestivum L.) are still limited. In this study, 248 L-LecRLK [...] Read more.
L-type lectin receptor-like kinases (L-LecRLKs) play key roles in plant responses to environmental stresses and the regulation of growth and development. However, comprehensive studies of the L-LecRLK gene family in wheat (Triticum aestivum L.) are still limited. In this study, 248 L-LecRLK candidate genes were identified in wheat, which is the largest number reported in any species to date. Phylogenetic analysis grouped these genes into four clades (I–IV), with Group IV exhibiting significant monocot-specific expansion. Gene duplication analysis revealed that both whole-genome/segmental and tandem duplications contributed to family expansion, while Ka/Ks ratio analysis suggested that the genes have undergone strong purifying selection. The TaL-LecRLK genes displayed diverse exon-intron structures and conserved motif compositions. Promoter analysis revealed a cis-element associated with hormone signaling and abiotic stress responses. Transcriptome profiling showed that TaL-LecRLKs exhibit tissue- and stage-specific expression patterns. RNA-Seq data revealed that, under drought and heat stress conditions, TaL-LecRLK35-3D and TaL-LecRLK67-6B exhibited synergistic expression patterns, whereas TaL-LecRLK67-6A demonstrated antagonistic expression. A qRT-PCR further demonstrated that six TaL-LecRLKs may function through ABA-independent regulatory mechanisms. These findings provide valuable gene candidates for stress-resistant wheat breeding and shed light on the evolution and functional diversity of L-LecRLKs in plants. Full article
Show Figures

Figure 1

17 pages, 8256 KiB  
Article
The Physical and Mechanical Properties of Arundo donax (L.) Reeds Affect Their Acoustic Quality
by Jerzy Karczewski, Izabela Potocka, Mario C. De Tullio and Joanna Szymanowska-Pułka
Materials 2025, 18(12), 2759; https://doi.org/10.3390/ma18122759 - 12 Jun 2025
Viewed by 310
Abstract
Arundo donax (L.) is a perennial monocot (Poaceae) native to Asia, which has spread throughout the Mediterranean region. Its hollow stem has been used for millennia to produce reeds, thin strips whose vibration is modulated by musical instruments such as oboes [...] Read more.
Arundo donax (L.) is a perennial monocot (Poaceae) native to Asia, which has spread throughout the Mediterranean region. Its hollow stem has been used for millennia to produce reeds, thin strips whose vibration is modulated by musical instruments such as oboes and saxophones. Significant differences in sound quality occur among reeds of different provenances, despite the extreme genetic homogeneity of A. donax, mainly due to its clonal mode of reproduction. Reed samples from three different provenances and different sound qualities were analyzed. Samples of dissected internodes of selected brands were examined to determine material density and mechanical properties along the stem radius. These characteristics vary between the brands and change with the sample thickness (along the radius of the stem) according to a power function. Next, Ashby graphs were used to compare the properties of Arundo reed samples with those of other natural materials. Using Ashby graphs potentially provides indications for producing musical reeds of the desired sound quality. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

10 pages, 2006 KiB  
Article
RiceReceptor: The Cell-Surface and Intracellular Immune Receptors of the Oryza Genus
by Baihui Jin, Jian Dong, Xiaolong Hu, Na Li, Xiaohua Li, Dawei Long and Xiaoni Wu
Genes 2025, 16(5), 597; https://doi.org/10.3390/genes16050597 - 18 May 2025
Viewed by 563
Abstract
Introduction: Rice, a cornerstone of global food security, faces escalating demands for enhanced yield and disease resistance. We collected 300 high-quality genomes, representing both cultivated (Oryza sativa indica, O. sativa japonica, and O. sativa aus) and wild species ( [...] Read more.
Introduction: Rice, a cornerstone of global food security, faces escalating demands for enhanced yield and disease resistance. We collected 300 high-quality genomes, representing both cultivated (Oryza sativa indica, O. sativa japonica, and O. sativa aus) and wild species (O. rufipogon, O. glaberrima, and O. barthii). Methods: Leveraging HMMER, NLR-Annotator, and OrthoFinder, we systematically identified 148,077 leucine-rich repeat (LRR) and 143,459 nucleotide-binding leucine-rich repeat (NLR) genes, with LRR receptor-like kinases (LRR-RLKs) dominating immune receptor proportions, followed by coiled-coil domain containing (CNL)-type NLRs and LRR receptor-like proteins (LRR-RLPs). Results: Benchmarking Universal Single-Copy Orthologs (BUSCO) assessments confirmed robust genome quality (average score: 94.78). Strikingly, 454 TIR-NB-LRR (TNL) genes—typically rare in monocots—were detected, challenging prior assumptions. Phylogenetic analysis with Arabidopsis TNLs highlighted five O. glaberrima genes clustering with dicot TNLs; these genes featured truncated PLN03210 motifs fused to nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC) and LRR domains. Conclusions: By bridging structural genomics, evolutionary dynamics, and domestication-driven adaptation, this work provides a foundation for targeted breeding strategies and advances functional studies of plant immunity in rice. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

19 pages, 12488 KiB  
Article
Morphological and Anatomical Characterization of Stems in Lilium Taxa
by Peng Zhou, Kuangkuang Liao, Xiunian Feng, Rui Liang, Nianjun Teng and Fang Du
Horticulturae 2025, 11(5), 546; https://doi.org/10.3390/horticulturae11050546 - 18 May 2025
Viewed by 562
Abstract
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, [...] Read more.
Lilium holds significant horticultural and ecological importance. Understanding the morpho-anatomical diversity of the stems can provide insights into taxonomy and breeding strategies. This study comprehensively examined the stem morpho-anatomy of 71 Lilium taxa to elucidate taxonomic and structural differences. For the first time, four distinct jigsaw-puzzle-shaped shapes of epidermal cells (Ep) in monocot stems, novel I-shaped and Co-xylem (O-, X-, W-, Q-shaped) vascular bundles (Vb) in Lilium stems, and quantitative characteristics (Vb density, xylem/phloem area ratio, etc.) were systematically discovered and analyzed. Asiatic (A) and Longiflorum × A (LA) hybrids displayed epidermal appendages, while Oritenal × Trumpet (OT) hybrids featured thicker sclerenchymatous rings (Sr). Collateral Vb in hybrids visually displayed bicollateral with degraded bundle sheaths (Bs), contrasting with intact circular Bs in wild species. Ward.D clustering categorized Lilium taxa into group A (Oritenal and OT hybrids) and B (A, LA, Trumpet, Longiflorum × Oriental hybrids and wild species), with Mantel’s test identified height, Ep shape, Ep length/width ratio, cortex/Sr thickness ratio and Bs integrity as key discriminators. Bending stems exhibited a higher Vb area. These findings establish a comprehensive pheno-anatomical framework for Lilium, which can guide future breeding programs and ecological studies. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

20 pages, 7645 KiB  
Article
Genome-Wide Identification and Phylogenetic Characterization of the FTIP Gene Family in Maize (Zea mays)
by Guihua Lv, Fangjian Li, Jianjian Chen, Zhenxing Wu, Tingzhen Wang, Haiping Ding, Zhiming Zhang and Fazhan Qiu
Genes 2025, 16(5), 539; https://doi.org/10.3390/genes16050539 - 30 Apr 2025
Viewed by 546
Abstract
The maize FT-interacting protein (FTIP) gene family represents a group of multiple C2 domain and transmembrane proteins (MCTPs), characterized by their unique structural motifs and membrane-spanning regions., plays crucial roles in intercellular communication and stress responses. Here, we systematically characterized 27 [...] Read more.
The maize FT-interacting protein (FTIP) gene family represents a group of multiple C2 domain and transmembrane proteins (MCTPs), characterized by their unique structural motifs and membrane-spanning regions., plays crucial roles in intercellular communication and stress responses. Here, we systematically characterized 27 ZmFTIP genes unevenly distributed across 10 maize chromosomes. Phylogenetic analysis with rice, soybean, and Arabidopsis homologs revealed five evolutionary clades with monocot-specific conservation patterns. Promoter cis-element profiling identified hormone-responsive (ABA, JA, auxin) and stress-related motifs, corroborated by differential expression under abiotic stresses and phytohormone treatments. Notably, ZmFTIP18 and ZmFTIP25 showed sustained upregulation under cadmium exposure, while ZmFTIP13 exhibited downregulation. Synteny analysis demonstrated strong conservation with monocot FTIPs, suggesting ancient evolutionary origins. This comprehensive study provides foundational insights into ZmFTIP functional diversification and potential biotechnological applications. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop