Xanthomonas spp. Infecting Araceae and Araliaceae: Taxonomy, Phylogeny, and Potential Virulence Mechanisms
Simple Summary
Abstract
1. Introduction to Xanthomonas
2. Taxonomy, Host Range, and Phylogeny of Xanthomonas
2.1. Xanthomonads Associated with the Araceae
2.2. Xanthomonads Associated with the Araliaceae
3. Virulence Mechanisms
3.1. Exopolysaccharides (EPS) and Lipopolysaccharides (LPS)
3.2. Type II Secretion System (T2SS)
3.3. Type III Secretion System (T3SS)
3.4. Type IV Secretion System (T4SS)
3.5. Type VI Secretion System (T6SS)
3.6. Cell-Wall-Degrading Enzymes (CWDEs)
3.7. Flagellum
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dowson, W.J. On the systematic position and generic names of the Gram-negative bacterial plant pathogens. Zentralblatt Für Bakteriol. Parasitenkd. Infekt. Und Hyg. 1939, 100, 177–193. [Google Scholar]
- Garrity, G.M.; Brenner, D.J.; Krieg, N.R.; Staley, J.R. Bergey’s Manual of Systematic Bacteriology; Volume 2: The Proteobacteria (Part B); Springer: New York, NY, USA, 2005. [Google Scholar]
- Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bansal, K.; Patil, P.P.; Patil, P.B. Phylogenomics insights into order and families of Lysobacterales. Access Microbiol. 2019, 1, e000015. [Google Scholar] [CrossRef]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
- Heiden, N.; Broders, K.A.; Hutin, M.; Castro, M.O.; Roman-Reyna, V.; Toth, H.; Jacobs, J.M. Bacterial Leaf Streak Diseases of plants: Symptom convergence in monocot plants by distant pathogenic Xanthomonas Species. Phytopathology 2023, 113, 2048–2055. [Google Scholar] [CrossRef]
- Bradbury, J.F. Bergey’s Manual of Systematic Bacteriology; Krieg, N.R., Holt, J.G., Eds.; Williams & Wilkins Co.: Philadelphia, PA, USA, 1984; Volume 1. [Google Scholar]
- Leyns, F.; De Cleene, M.; Swings, J.G.; De Ley, J. The host range of the genus Xanthomonas. Bot. Rev. 1984, 50, 308–356. [Google Scholar] [CrossRef]
- Vauterin, L.; Rademaker, J.; Swings, J. Synopsis on the taxonomy of the genus Xanthomonas. Phytopathology 2000, 90, 677–682. [Google Scholar] [CrossRef]
- Ryan, R.P.; Vorhölter, F.-J.; Potnis, N.; Jones, J.B.; Van Sluys, M.-A.; Bogdanove, A.J.; Dow, J.M. Pathogenomics of Xanthomonas: Understanding bacterium–plant interactions. Nat. Rev. Microbiol. 2011, 9, 344–355. [Google Scholar] [CrossRef]
- Mafakheri, H.; Taghavi, S.M.; Zarei, S.; Portier, P.; Dimkić, I.; Koebnik, R.; Kuzmanovic, N.; Osdaghi, E. Xanthomonas bonasiae sp. nov. and Xanthomonas youngii sp. nov., isolated from crown gall tissues. Int. J. Syst. Evol. Microbiol. 2022, 72, 005418. [Google Scholar] [CrossRef]
- Palacio-Bielsa, A.; Roselló, M.; Cambra, M.A.; López, M.M. First report on almond in Europe of bacterial spot disease of stone fruits caused by Xanthomonas arboricola pv. pruni. Plant Dis. 2010, 94, 786. [Google Scholar] [CrossRef]
- Barak, J.D.; Vancheva, T.; Lefeuvre, P.; Jones, J.B.; Timilsina, S.; Minsavage, G.V.; Koebnik, R. Whole-genome sequences of Xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Front. Plant Sci. 2016, 7, 1805. [Google Scholar] [CrossRef] [PubMed]
- Constantin, E.C.; Cleenwerck, I.; Maes, M.; Baeyen, S.; Van Malderghem, C.; De Vos, P.; Cottyn, B. Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathol. 2016, 65, 792–806. [Google Scholar] [CrossRef]
- Dhakal, U.; Dobhal, S.; Alvarez, A.M. Phylogenetic analyses of xanthomonads causing bacterial leaf spot of tomato and pepper: Xanthomonas euvesicatoria revealed homologous populations despite distant geographical distribution. Microorganisms 2019, 7, 462. [Google Scholar] [CrossRef]
- Daughtrey, M.L.; Wick, R.L.; Peterson, J.L. Compendium of Flowering Potted Plant Diseases; APS Press: St. Paul, MN, USA, 1995; Volume 24. [Google Scholar]
- Mustafa, M.; Yesim, A.; Fulya, B.-G. Bacterial spot and blight diseases of ornamental plants caused by different Xanthomonas species in Turkey. Plant Prot. Sci. 2018, 54, 240–247. [Google Scholar] [CrossRef]
- Dia, N.C.; Morinière, L.; Cottyn, B.; Bernal, E.; Jacobs, J.M.; Koebnik, R.; Pothier, J.F. Xanthomonas hortorum—Beyond gardens: Current taxonomy, genomics, and virulence repertoires. Mol. Plant Pathol. 2022, 23, 597–621. [Google Scholar] [CrossRef]
- Chase, A.R. Xanthomonas campestris pv. hederae causes a leaf spot of five species of Araliaceae. Plant Pathol. 1984, 33, 439–440. [Google Scholar] [CrossRef]
- Nishijima, W.T. Anthurium blight: An overview. Pages 6-8. In Proceedings of the 1st Anthurium Blight Conference; Hawaii Institute of Tropical Agricultural Human Resources (HITAHR), University of Hawaii: Honolulu, HI, USA, 1988. [Google Scholar]
- Sathyanarayana, N.; Reddy, O.R.; Latha, S.; Rajak, R.L. Interception of Xanthomonas campestris pv. dieffenbachiae on Anthurium Plants from the Netherlands. Plant Dis. 1998, 82, 262. [Google Scholar] [CrossRef]
- Norman, D.J.; Chase, A.R.; Stall, R.E.; Jones, J.B. Heterogeneity of Xanthomonas campestris pv. hederae strains from araliaceous hosts. Phytopathology 1999, 89, 646–652. [Google Scholar] [CrossRef]
- EPPO. 2009. PM 7/23 (2): Xanthomonas axonopodis pv. dieffenbachiae. Bull. OEPP 39:393-402. Available online: https://gd.eppo.int/download/doc/276_datasheet_XANTDF.pdf (accessed on 22 June 2025).
- Nelson, S. Bacterial Leaf Blight of Panax (Polyscias guilfoylei). Plant Disease, PD-75; College of Tropical Agriculture and Human Resources, University of Hawai‘i at Mānoa: Honolulu, HI, USA, 2011; Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-75.pdf (accessed on 22 June 2025).
- Wakker, J.H. Vorlaüfige Mittheilungen über Hyacinthenkrankeiten. Bot. Zentralblatt 1883, 14, 1F–6F. [Google Scholar] [CrossRef]
- Vauterin, L.; Hoste, B.; Kersters, K.; Swings, J. Reclassification of Xanthomonas. Int. J. Syst. Bacteriol. 1995, 45, 472–489. [Google Scholar] [CrossRef]
- Winslow, C.E.; Broadhurst, J.; Buchanan, R.E.; Krumwiede, C.; Rogers, L.A.; Smith, G.H. The families and genera of the bacteria: Final report of the Committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J. Bacteriol. 1920, 5, 191–229. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, W.H.; Starr, M.P. The generic and specific characters of phytopathogenic species of Pseudomonas and Xanthomonas. Phytopathology 1948, 38, 494–502. [Google Scholar]
- Burkholder, W.H. Genus II. Xanthomonas Dowson 1939. In Bergey’s Manual of Determinative Bacteriology, 7th ed.; Breed, R.S., Murray, E.G.D., Smith, N.R., Eds.; Williams & Wilkins: Philadelphia, PA, USA, 1957; pp. 152–183. [Google Scholar]
- Starr, M.P. The genus Xanthomonas. In The Prokaryotes; Starr, M.P., Stolp, H., Trüper, H.G., Balows, A., Schlegel, H.G., Eds.; Springer Verlag: Heidelberg, Germany, 1981. [Google Scholar]
- Bergey, D.H.; Buchanan, R.E.; Gibbons, N.E. Bergey’s Manual of Determinative Bacteriology, 8th ed.; Williams & Wilkins Co.: Philadelphia, PA, USA, 1974. [Google Scholar]
- Willems, A.; Gillis, M.; Kersters, K.; Van Den Broecke, L.; De Ley, J. Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov. Int. J. Syst. Bacteriol. 1987, 37, 422–430. [Google Scholar] [CrossRef]
- Dye, D.; Lelliott, R. Genus II. Xanthomonas Dowson 1939; The Williams and Wilkins Co.: Philadelphia, PA, USA, 1974. [Google Scholar]
- Rademaker, J.L.; Hoste, B.; Louws, F.J.; Kersters, K.; Swings, J.; Vauterin, L.; Vauterin, P.; de Bruijn, F.J. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int. J. Syst. Evol. Microbiol. 2000, 50, 665–677. [Google Scholar] [CrossRef]
- Rademaker, J.L.W.; Louws, F.J.; Schultz, M.H.; Rossbach, U.; Vauterin, L.; Swings, J.; de Bruijn, F.J. A comprehensive species to strain taxonomic framework for Xanthomonas. Phytopathology 2005, 95, 1098–1111. [Google Scholar] [CrossRef]
- Young, J.M.; Park, D.C.; Shearman, H.M.; Fargier, E. A multilocus sequence analysis of the genus Xanthomonas. Syst. Appl. Microbiol. 2008, 31, 366–377. [Google Scholar] [CrossRef]
- Hauben, L.; Vauterin, L.; Swings, J.; Moore, E.R. Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int. J. Syst. Bacteriol. 1997, 47, 328–335. [Google Scholar] [CrossRef]
- Schaad, N.W.; Jones, J.B.; Chun, W. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed.; American Phytopathological Society: St Paul, MI, USA, 2001. [Google Scholar]
- Young, J.M.; Bull, C.T.; De Boer, S.H.; Firrao, G.; Gardan, L.; Saddler, G.E.; Stead, D.E.; Takikawa, Y. Classification, nomenclature, and plant pathogenic bacteria—A clarification. Phytopathology 2001, 91, 617–620. [Google Scholar] [CrossRef]
- Wayne, L.G.; Moore, W.E.C.; Stackebrandt, E.; Kandler, O.; Colwell, R.R.; Krichevsky, M.I.; Truper, H.G.; Murray, R.G.E.; Grimont, P.A.D.; Brenner, D.J.; et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Evol. Microbiol. 1987, 37, 463–464. [Google Scholar] [CrossRef]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57 Pt 1, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, G. Une maladie bactérienne du lierre (Hedera helix L.). CR Acad. Sci. 1920, 171, 121–122. [Google Scholar]
- Burkholder, W.H.; Guterman, C.E.F. Synergism in a bacterial disease of Hedera helix. Int. J. Syst. Evol. Microbiol. 1932, 59 Pt 2, 306–318. [Google Scholar]
- McCulloch, L.; Pirone, P.P. Bacterial leaf spot of dieffenbachia. Phytopathology 1939, 29, 956–962. [Google Scholar]
- Dowson, W.J. On the generic names Pseudomonas, Xanthomonas and Bacterium for certain bacterial plant pathogens. Trans. Br. Mycol. Soc. 1943, 26, 4–14. [Google Scholar] [CrossRef]
- Wehlburg, C. Bacterial leaf blight of Syngonium. Florida Department of Agriculture & Consumer Services, Division of Plant Industry. Plant Pathol. Circ. 1970, 91. Available online: https://www.fdacs.gov/content/download/11098/file/pp91.pdf (accessed on 22 June 2025).
- Jindal, J.K.; Patel, P.N.; Singh, R. Bacterial leaf spot disease on Amorphophallus campanulatus. Indian Phytopathol. 1972, 25, 374–377. [Google Scholar]
- Joubert, J.J.; Truter, S.J. A variety of Xanthomonas campestris pathogenic to Zantedeschia aethiopica. Neth. J. Plant Pathol. 1972, 78, 212–217. [Google Scholar] [CrossRef]
- Berniac, M. Une maladie bacterienne de Xanthosoma sagittifolium (L.) Schott. Ann. De Phytopathol. 1974, 6, 197–202. [Google Scholar]
- Young, J.M.; Dye, D.W.; Bradbury, J.F.; Panagopoulos, C.G.; Robbs, C.F. A proposed nomenclature and classification for plant pathogenic bacteria. N. Z. J. Agric. Res. 1978, 21, 153–177. [Google Scholar] [CrossRef]
- Dickey, R.S.; Zumoff, C.H. Bacterial leaf blight of Syngonium caused by a pathovar of Xanthomonas campestris. Phytopathology 1987, 77, 1257–1262. [Google Scholar] [CrossRef]
- Ah-You, N.; Gagnevin, L.; Grimont, P.A.D.; Brisse, S.; Nesme, X.; Chiroleu, F.; Ngoc, L.; Jouen, E.; Lefeuvre, P.; Vernière, C.; et al. Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiaceae and their relatedness to species of Xanthomonas. Int. J. Syst. Evol. Microbiol. 2009, 59 Pt 2, 306–318. [Google Scholar] [CrossRef] [PubMed]
- Saux, M.F.-L.; Bonneau, S.; Essakhi, S.; Manceau, C.; Jacques, M.-A. Aggressive emerging pathovars of Xanthomonas arboricola represent widespread epidemic clones distinct from poorly pathogenic strains, as revealed by multilocus sequence typing. Appl. Environ. Microbiol. 2015, 81, 4651–4668. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.-C.; Dobhal, S.; Alvarez, A.; Arif, M. Pathological and molecular biology of Xanthomonas strains causing bacterial leaf blight of Panax (Polyscias guilfoylei) in Hawaii [Oral Presentation]. In Proceedings of the APS Annual Meeting, Virtual, 2–6 August 2021. [Google Scholar]
- Chuang, S.-C.; Dobhal, S.; Pal, K.; Amore, T.D.; Alvarez, A.M.; Arif, M. Xanthomonas strains isolated from hosts in the Araceae reveal diverse phylogenetic relationships and origins. Phytopathology 2024, 114, 1963–1974. [Google Scholar] [CrossRef]
- van der Wolf, J.M.; Krijger, M.C.; Mendes, O.; Brankovics, B.; Bonants, P.J.M.; Didden, L.; Meekes, E. Molecular characterization of Xanthomonas species isolated from Araceae and the development of a triplex TaqMan assay for detection of Xanthomonas phaseoli pv. dieffenbachiae. Eur. J. Plant Pathol. 2022, 163, 167–179. [Google Scholar] [CrossRef]
- Wang, L.H.; Chan, J.J.; Wang, Y.H.; Fang, Z.Q.; Lee, S.; Chu, C.C. Bacterial leaf blight of Polyscias guilfoylei caused by a novel pathovar of Xanthomonas euvesicatoria. Plant Dis. 2023, 107, 298–305. [Google Scholar] [CrossRef]
- Chuang, S.-C.; Dobhal, S.; Alvarez, A.M.; Arif, M. Three new species, Xanthomonas hawaiiensis sp. nov., Stenotrophomonas aracearum sp. nov., and Stenotrophomonas oahuensis sp. nov., isolated from Araceae family. Front. Microbiol. 2024, 15, 1356025. [Google Scholar] [CrossRef]
- Lipp, R.L.; Alvarez, A.M.; Benedict, A.A.; Berestecky, J. Use of monoclonal antibodies and pathogenicity tests to characterize strains of Xanthomonas campestris pv. dieffenbachiae from aroids. Phytopathology 1992, 82, 677–682. [Google Scholar] [CrossRef]
- Pohronezny, K.; Dankers, W.; Schaffer, B.; Valenzuela, H.; Moss, M.A. Marginal necrosis and intercostal leaf spots of cocoyam infected by Xanthomonas campestris pv. dieffenbachiae. Plant Dis. 1990, 74, 573–577. [Google Scholar] [CrossRef]
- Constantin, E.C.; Haegeman, A.; Van Vaerenbergh, J.; Baeyen, S.; Van Malderghem, C.; Maes, M.; Cottyn, B. Pathogenicity and virulence gene content of Xanthomonas strains infecting Araceae, formerly known as Xanthomonas axonopodis pv. dieffenbachiae. Plant Pathol. 2017, 66, 1539–1554. [Google Scholar] [CrossRef]
- Studholme, D.J.; Wasukira, A.; Paszkiewicz, K.; Aritua, V.; Thwaites, R.; Smith, J.; Grant, M. Draft genome sequences of Xanthomonas sacchari and two banana-associated xanthomonads reveal insights into the Xanthomonas Group 1 clade. Genes 2011, 2, 1050–1065. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Lin, H.; Wu, L.; Ren, D.; Ye, W.; Dong, G.; Zhu, L.; Guo, L. Genome sequence of Xanthomonas sacchari R1, a biocontrol bacterium isolated from the rice seed. J. Biotechnol. 2015, 206, 77–78. [Google Scholar] [CrossRef]
- White, R.P.; McCulloch, L. A bacterial disease of Hedera helix. J. Agric. Res. 1934, 48, 807–815. [Google Scholar]
- Suzuki, A.; Kusumoto, S.; Horie, H.; Takikawa, Y. Bacterial leaf spot of ivy caused by Xanthomonas campestris pv. hederae. J. Gen. Plant Pathol. 2002, 68, 398–400. [Google Scholar] [CrossRef]
- Dye, D. Bacterial spot of ivy caused by Xanthomonas hederae (Arnaud, 1920) Dowson 1939, in New Zealand. N. Z. J. Sci. 1967, 10, 481–485. [Google Scholar]
- Lee, S.; Lee, J.; Han, K.; Seo, S.T.; Kim, Y.; Heu, S.; Ra, D.S. Bacterial leaf spot of English ivy caused by Xanthomonas hortorum pv. hederae. Radiat. Prot. Dosim. 2007, 13, 61–65. [Google Scholar]
- Trantas, E.A.; Sarris, P.F.; Mpalantinaki, E.; Papadimitriou, M.; Ververidis, F.; Goumas, D.E. First report of Xanthomonas hortorum pv. hederae causing bacterial leaf spot on ivy in Greece. Plant Dis. 2016, 100, 2158. [Google Scholar] [CrossRef]
- Lu, C.H.; Chiu, Y.H.; Tzeng, J.Y.; Lin, C.Y.; Lin, Y.R.; Deng, W.L.; Chu, C.C. First report of Xanthomonas hortorum pv. hederae causing bacterial leaf spot of Hedera helix in Taiwan. Plant Dis. 2019, 103, 1765. [Google Scholar] [CrossRef]
- Pirc, M.; Dreo, T.; Šuštaršič, M.; Erjavec, J.; Ravnikar, M. First report of Xanthomonas hortorum pv. hederae causing bacterial leaf spot of Hedera hibernica in Slovenia. Plant Dis. 2012, 96, 141. [Google Scholar] [CrossRef]
- Zhang, X.F.; Fu, L.N.; Yang, J.; Li, X.; Ji, G.H. First report of bacterial leaf spot of Hedera nepalensis var. Sinensis caused by Xanthomonas campestris pv. hederae in China. Plant Dis. 2016, 100, 1007. [Google Scholar] [CrossRef]
- Lowry, P.P.; Plunkett, G.M.; Frodin, D.G. Revision of Plerandra (Araliaceae). I. A synopsis of the genus with an expanded circumscription and a new infrageneric classification. Brittonia 2013, 65, 42–61. [Google Scholar] [CrossRef]
- POWO. Plants of the World Online. Royal Botanic Gardens, Kew. 2023. Available online: https://en.wikipedia.org/wiki/Plants_of_the_World_Online (accessed on 22 June 2025).
- Tolba, I.H. Bacterial leaf spot of araliaceous plants caused by Xanthomonas campestris pv. hederae in Egypt. J. Plant Prot. Pathol. 2017, 8, 287–295. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Vojnov, A.A.; Zorreguieta, A.; Dow, J.M.; Daniels, M.J.; Dankert, M.A. Evidence for a role for the gumB and gumCgene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology 1998, 144, 1487–1493. [Google Scholar] [CrossRef]
- Nürnberger, T.; Brunner, F.; Kemmerling, B.; Piater, L. Innate immunity in plants and animals: Striking similarities and obvious differences. Immunol. Rev. 2004, 198, 249–266. [Google Scholar] [CrossRef]
- Guglielmini, J.; Néron, B.; Abby, S.S.; Garcillán-Barcia, M.P.; la Cruz, F.d.; Rocha, E.P.C. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res. 2014, 42, 5715–5727. [Google Scholar] [CrossRef]
- Moreira, L.M.; Almeida, J.N.F.; Potnis, N.; Digiampietri, L.A.; Adi, S.S.; Bortolossi, J.C.; da Silva, A.C.; da Silva, A.M.; de Moraes, F.E.; de Oliveira, J.C.; et al. Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii. BMC Genom. 2010, 11, 238. [Google Scholar] [CrossRef]
- Alvarez-Martinez, C.E.; Sgro, G.G.; Araujo, G.G.; Paiva, M.R.N.; Matsuyama, B.Y.; Guzzo, C.R.; Andrade, M.O.; Farah, C.S. Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput. Struct. Biotechnol. J. 2021, 19, 279–302. [Google Scholar] [CrossRef]
- Vu, B.; Chen, M.; Crawford, R.J.; Ivanova, E.P. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009, 14, 2535–2554. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.; Katzen, F.; Pühler, A.; Ielpi, L. Xanthan gum biosynthesis and application: A biochemical/genetic perspective. Appl. Microbiol. Biotechnol. 1998, 50, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Katzen, F.; Ferreiro, D.U.; Oddo, C.G.; Ielmini, M.V.; Becker, A.; Puhler, A.; Ielpi, L. Xanthomonas campestris pv. campestris gum mutants: Effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 1998, 180, 1607–1617. [Google Scholar] [CrossRef] [PubMed]
- Pieretti, I.; Pesic, A.; Petras, D.; Royer, M.; Süssmuth, R.D.; Cociancich, S. What makes Xanthomonas albilineans unique amongst xanthomonads? Front. Plant Sci. 2015, 6, 289. [Google Scholar] [CrossRef]
- Bansal, K.; Kumar, S.; Patil, P.B. Phylogenomic insights into diversity and evolution of nonpathogenic Xanthomonas strains associated with Citrus. mSphere 2020, 5, 10-1128. [Google Scholar] [CrossRef]
- Morinière, L.; Mirabel, L.; Gueguen, E.; Bertolla, F. A comprehensive overview of the genes and functions required for lettuce infection by the hemibiotrophic phytopathogen Xanthomonas hortorum pv. vitians. mSystems 2022, 7, e0129021. [Google Scholar] [CrossRef]
- Li, M.; Bao, Y.; Li, Y.; Akbar, S.; Wu, G.; Du, J.; Wen, R.; Chen, B.; Zhang, M. Comparative genome analysis unravels pathogenicity of Xanthomonas albilineans causing sugarcane leaf scald disease. BMC Genom. 2022, 23, 1–671. [Google Scholar] [CrossRef]
- Vandroemme, J.; Cottyn, B.; Baeyen, S.; De Vos, P.; Maes, M. Draft genome sequence of Xanthomonas fragariae reveals reductive evolution and distinct virulence-related gene content. BMC Genom. 2013, 14, 829. [Google Scholar] [CrossRef]
- Chou, F.-L.; Chou, H.-C.; Lin, Y.-S.; Yang, B.-Y.; Lin, N.-T.; Weng, S.-F.; Tseng, Y.-H. The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem. Biophys. Res. Commun. 1997, 233, 265–269. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, J.-G.; Lee, B.-M.; Cho, J.-Y. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv. oryzae. Biotechnol. Lett. 2009, 31, 265–270. [Google Scholar] [CrossRef]
- Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef]
- Vorhölter, F.J.; Niehaus, K.; Pühler, A. Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: A cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol. Genet. Genom. 2001, 266, 79–95. [Google Scholar] [CrossRef]
- Patil, P.B.; Sonti, R.V. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice. BMC Microbiol. 2004, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Fath, M.J.; Kolter, R. ABC transporters: Bacterial exporters. Microbiol. Rev. 1993, 57, 995–1017. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.B.; Bogdanove, A.J.; Sonti, R.V. The role of horizontal transfer in the evolution of a highly variable lipopolysaccharide biosynthesis locus in xanthomonads that infect rice, citrus and crucifers. BMC Evol. Biol. 2007, 7, 243. [Google Scholar] [CrossRef]
- Smith, T.J.; Sondermann, H.; O’Toole, G.A. Type 1 does the two-step: Type 1 secretion substrates with a functional periplasmic intermediate. J. Bacteriol. 2018, 200, jb.00168-18. [Google Scholar] [CrossRef]
- Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 2001, 40, 271–283. [Google Scholar] [CrossRef]
- Lindgren, P.B.; Peet, R.C.; Panopoulos, N.J. Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol. 1986, 168, 512–522. [Google Scholar] [CrossRef]
- Alfano, J.R.; Collmer, A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: Trafficking harpins, Avr proteins, and death. J. Bacteriol. 1997, 179, 5655–5662. [Google Scholar] [CrossRef]
- Hueck, C.J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 1998, 62, 379–433. [Google Scholar] [CrossRef]
- Llosa, M.; Gomis-Rüth, F.X.; Coll, M.; Cruz, F.D.L. Bacterial conjugation: A two-step mechanism for DNA transport. Mol. Microbiol. 2002, 45, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gottig, N.; Garavaglia, B.S.; Garofalo, C.G.; Orellano, E.G.; Ottado, J. A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 2009, 4, e4358. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.B.; Peterson, S.B.; Mougous, J.D. Type VI secretion system effectors: Poisons with a purpose. Nat. Rev. Microbiol. 2014, 12, 137–148. [Google Scholar] [CrossRef]
- Russell, A.B.; Wexler, A.G.; Harding, B.N.; Whitney, J.C.; Bohn, A.J.; Goo, Y.A.; Tran, B.Q.; Barry, N.A.; Zheng, H.; Peterson, S.B.; et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 2014, 16, 227–236. [Google Scholar] [CrossRef]
- Schwarz, S.; West, T.E.; Boyer, F.; Chiang, W.-C.; Carl, M.A.; Hood, R.D.; Rohmer, L.; Tolker-Nielsen, T.; Skerrett, S.J.; Mougous, J.D. Burkholderia Type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 2010, 6, e1001068. [Google Scholar] [CrossRef]
- Hachani, A.; Wood, T.E.; Filloux, A. Type VI secretion and anti-host effectors. Curr. Opin. Microbiol. 2016, 29, 81–93. [Google Scholar] [CrossRef]
- Timilsina, S.; Kara, S.; Jacques, M.A.; Potnis, N.; Minsavage, G.V.; Vallad, G.E.; Jones, J.B.; Fischer-Le Saux, M. Reclassification of Xanthomonas gardneri (ex Šutić 1957) Jones et al. 2006 as a later heterotypic synonym of Xanthomonas cynarae Trébaol et al. 2000 and description of X. cynarae pv. cynarae and X. cynarae pv. gardneri based on whole genome analyses. Int. J. Syst. Evol. Microbiol. 2019, 69, 343–349. [Google Scholar] [CrossRef]
- Lu, H.; Patil, P.; Van Sluys, M.-A.; White, F.F.; Ryan, R.P.; Dow, J.M.; Rabinowicz, P.; Salzberg, S.L.; Leach, J.E.; Sonti, R.; et al. Acquisition and evolution of plant pathogenesis–associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS ONE 2008, 3, e3828. [Google Scholar] [CrossRef]
- Darrasse, A.; Carrère, S.; Barbe, V.; Boureau, T.; Arrieta-Ortiz, M.L.; Bonneau, S.; Briand, M.; Brin, C.; Cociancich, S.; Durand, K.; et al. Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genom. 2013, 14, 1–30. [Google Scholar] [CrossRef]
- da Silva, A.C.R.; Ferro, J.A.; Reinach, F.C.; Farah, C.S.; Furlan, L.R.; Quaggio, R.B.; Monteiro-Vitorello, C.B.; Sluys, M.A.V.; Almeida, N.F.; Alves, L.M.C.; et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002, 417, 459–463. [Google Scholar] [CrossRef]
- Li, J.; Wang, N. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 2011, 12, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Hu, X.; Wang, N. The novel virulence-related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance. Mol. Plant Pathol. 2012, 13, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Steffens, T.; Vorhölter, F.-J.; Giampà, M.; Hublik, G.; Pühler, A.; Niehaus, K. The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100. BMC Microbiol. 2016, 16, 93. [Google Scholar] [CrossRef] [PubMed]
- Studholme, D.J.; Wicker, E.; Abrare, S.M.; Aspin, A.; Bogdanove, A.; Broders, K.; Bull, C.T. Transfer of Xanthomonas campestris pv. arecae and X. campestris pv. musacearum to X. vasicola (Vauterin) as X. vasicola pv. arecae comb. nov. and X. vasicola pv. musacearum comb. nov. and description of X. vasicola pv. vasculorum pv. nov. Phytopathology 2020, 110, 1153–1160. [Google Scholar] [CrossRef]
- Timilsina, S.; Potnis, N.; Newberry, E.A.; Liyanapathiranage, P.; Iruegas-Bocardo, F.; White, F.F.; Goss, E.M.; Jones, J.B. Xanthomonas diversity, virulence and plant–pathogen interactions. Nat. Rev. Microbiol. 2020, 18, 415–427. [Google Scholar] [CrossRef]
- Szczesny, R.; Jordan, M.; Schramm, C.; Schulz, S.; Cogez, V.; Bonas, U.; Büttner, D. Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria. New Phytol. 2010, 187, 983–1002. [Google Scholar] [CrossRef]
- Hu, N.T.; Hung, M.N.; Chiou, S.J.; Tang, F.; Chiang, D.C.; Huang, H.Y.; Wu, C.Y. Cloning and characterization of a gene required for the secretion of extracellular enzymes across the outer membrane by Xanthomonas campestris pv. campestris. J. Bacteriol. 1992, 174, 2679–2687. [Google Scholar] [CrossRef]
- Baptista, J.C.; Machado, M.A.; Homem, R.A.; Torres, P.S.; Vojnov, A.A.; do Amaral, A.M. Mutation in the xpsD gene of Xanthomonas axonopodis pv. citri affects cellulose degradation and virulence. Genet. Mol. Biol. 2010, 33, 146–153. [Google Scholar] [CrossRef]
- Ray, S.K.; Rajeshwari, R.; Sonti, R.V. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol. Plant-Microbe Interact. 2000, 13, 394–401. [Google Scholar] [CrossRef]
- Wang, J.C.; So, B.H.; Kim, J.H.; Park, Y.J.; Lee, B.M.; Kang, H.W. Genome-wide identification of pathogenicity genes in Xanthomonas oryzae pv. oryzae by transposon mutagenesis. Plant Pathol. 2008, 57, 1136–1145. [Google Scholar] [CrossRef]
- Solé, M.; Scheibner, F.; Hoffmeister, A.-K.; Hartmann, N.; Hause, G.; Rother, A.; Jordan, M.; Lautier, M.; Arlat, M.; Büttner, D. Xanthomonas campestris pv. vesicatoria secretes proteases and xylanases via the Xps type II secretion system and outer membrane vesicles. J. Bacteriol. 2015, 197, 2879–2893. [Google Scholar] [CrossRef] [PubMed]
- Bonas, U. hrp genes of phytopathogenic bacteria. Bact. Pathog. Plants Anim. 1994, 192, 79–96. [Google Scholar] [CrossRef]
- Bogdanove, A.J.; Beer, S.V.; Bonas, U.; Boucher, C.A.; Collmer, A.; Coplin, D.L.; Cornelis, G.R.; Huang, H.Z.; Hutcheson, S.W.; Panopoulos, N.J.; et al. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 1996, 20, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.T.; Vinatzer, B.A. Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. Curr. Opin. Microbiol. 2003, 6, 20–28. [Google Scholar] [CrossRef]
- White, F.F.; Potnis, N.; Jones, J.B.; Koebnik, R. Type III effectors of Xanthomonas. Mol. Plant Pathol. 2009, 10, 749–766. [Google Scholar] [CrossRef]
- Triplett, L.R.; Verdier, V.; Campillo, T.; Van Malderghem, C.; Cleenwerck, I.; Maes, M.; Leach, J.E. Characterization of a novel clade of Xanthomonas isolated from rice leaves in Mali and proposal of Xanthomonas maliensis sp. nov. Antonie Van Leeuwenhoek 2015, 107, 869–881. [Google Scholar] [CrossRef]
- Pieretti, I.; Royer, M.; Barbe, V.; Carrere, S.; Koebnik, R.; Cociancich, S.; Couloux, A.; Darrasse, A.; Gouzy, J.; Jacques, M.-A.; et al. The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genom. 2009, 10, 616. [Google Scholar] [CrossRef]
- Jacobs, J.M.; Pesce, C.; Lefeuvre, P.; Koebnik, R. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. Front. Plant Sci. 2015, 6, 431. [Google Scholar] [CrossRef]
- Merda, D.; Briand, M.; Bosis, E.; Rousseau, C.; Portier, P.; Barret, M.; Jacques, M.; Fischer-Le Saux, M. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol. Ecol. 2017, 26, 5939–5952. [Google Scholar] [CrossRef]
- Noël, L.; Thieme, F.; Nennstiel, D.; Bonas, U. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol. 2002, 184, 1340–1348. [Google Scholar] [CrossRef]
- Rossier, O.; Van den Ackerveken, G.; Bonas, U. HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol. Microbiol. 2000, 38, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Büttner, D.; Nennstiel, D.; Klüsener, B.; Bonas, U. Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 2002, 184, 2389–2398. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-G.; Park, B.K.; Yoo, C.-H.; Jeon, E.; Oh, J.; Hwang, I. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J. Bacteriol. 2003, 185, 3155–3166. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.; Wood, D.W.; Nester, E.W. A New Type IV Secretion System Promotes Conjugal Transfer in Agrobacterium tumefaciens. J. Bacteriol. 2002, 184, 4838–4845. [Google Scholar] [CrossRef]
- Alegria, M.C.; Souza, D.P.; Andrade, M.O.; Docena, C.; Khater, L.; Ramos, C.H.I.; Silva, A.C.R.; Farah, C.S. Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J. Bacteriol. 2005, 187, 2315–2325. [Google Scholar] [CrossRef]
- Waksman, G.; Orlova, E.V. Structural organisation of the type IV secretion systems. Curr. Opin. Microbiol. 2014, 17, 24–31. [Google Scholar] [CrossRef]
- Low, H.H.; Gubellini, F.; Rivera-Calzada, A.; Braun, N.; Connery, S.; Dujeancourt, A.; Lu, F.; Redzej, A.; Fronzes, R.; Orlova, E.V.; et al. Structure of a type IV secretion system. Nature 2014, 508, 550–553. [Google Scholar] [CrossRef]
- Souza, D.P.; Oka, G.U.; Alvarez-Martinez, C.E.; Bisson-Filho, A.W.; Dunger, G.; Hobeika, L.; Cavalcante, N.S.; Alegria, M.C.; Barbosa, L.R.S.; Salinas, R.K.; et al. Bacterial killing via a type IV secretion system. Nat. Commun. 2015, 6, 6453. [Google Scholar] [CrossRef]
- Rosenthal, E.; Potnis, N.; Bull, C.T. Comparative genomic analysis of the lettuce bacterial leaf spot pathogen, Xanthomonas hortorum pv. vitians, to investigate race specificity. Front. Microbiol. 2022, 13, 840311. [Google Scholar] [CrossRef]
- Sgro, G.G.; Oka, G.U.; Souza, D.P.; Cenens, W.; Bayer-Santos, E.; Matsuyama, B.Y.; Bueno, N.F.; dos Santos, T.R.; Alvarez-Martinez, C.E.; Salinas, R.K.; et al. Bacteria-Killing Type IV Secretion Systems. Front. Microbiol. 2019, 10, 1078. [Google Scholar] [CrossRef]
- Souza, D.P.; Andrade, M.O.; Alvarez-Martinez, C.E.; Arantes, G.M.; Farah, C.S.; Salinas, R.K. A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog. 2011, 7, e1002031. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-Q.; Zhang, L.; Jiang, B.-L.; Zhang, Z.-C.; Xu, R.-Q.; Tang, D.-J.; Qin, J.; Jiang, W.; Zhang, X.; Liao, J.; et al. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol. 2007, 8, R218. [Google Scholar] [CrossRef] [PubMed]
- Brunet, Y.R.; Zoued, A.; Boyer, F.; Douzi, B.; Cascales, E. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLoS Genet. 2015, 11, e1005545. [Google Scholar] [CrossRef]
- Wang, J.; Brodmann, M.; Basler, M. Assembly and subcellular localization of bacterial type VI secretion systems. Annu. Rev. Microbiol. 2019, 73, 621–638. [Google Scholar] [CrossRef]
- Potnis, N.; Krasileva, K.; Chow, V.; Almeida, N.F.; Patil, P.B.; Ryan, R.P.; Sharlach, M.; Behlau, F.; Dow, J.M.; Momol, M.; et al. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genom. 2011, 12, 1–23. [Google Scholar] [CrossRef]
- Montenegro, A.; Alvarez, B.A.; Arrieta-Ortiz, M.L.; Rodriguez-R, L.M.; Botero, D.; Tabima, J.F.; Castiblanco, L.; Trujillo, C.; Restrepo, S.; Bernal, A. The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in vitro motility. BMC Microbiol. 2021, 21, 14. [Google Scholar] [CrossRef]
- Bayer-Santos, E.; Ceseti, L.d.M.; Farah, C.S.; Alvarez-Martinez, C.E. Distribution, function and regulation of type 6 secretion systems of Xanthomonadales. Front. Microbiol. 2019, 10, 1635. [Google Scholar] [CrossRef]
- Hood, R.D.; Singh, P.; Hsu, F.; Güvener, T.; Carl, M.A.; Trinidad, R.R.S.; Silverman, J.M.; Ohlson, B.B.; Hicks, K.G.; Plemel, R.L.; et al. A Type VI Secretion System of Pseudomonas aeruginosa Targets a Toxin to Bacteria. Cell Host Microbe 2010, 7, 25–37. [Google Scholar] [CrossRef]
- Bayer-Santos, E.; Lima, L.d.P.; Ceseti, L.d.M.; Ratagami, C.Y.; de Santana, E.S.; da Silva, A.M.; Farah, C.S.; Alvarez-Martinez, C.E. Xanthomonas citri T6SS mediates resistance to Dictyostelium predation and is regulated by an ECF σ factor and cognate Ser/Thr kinase. Environ. Microbiol. 2018, 20, 1562–1575. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, N.; Mannaa, M.; Kim, H.; Park, J.; Jung, H.; Han, G.; Lee, H.-H.; Seo, Y.-S. Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice. Plant Pathol. J. 2020, 36, 289–296. [Google Scholar] [CrossRef]
- Zhu, P.-C.; Li, Y.-M.; Yang, X.; Zou, H.-F.; Zhu, X.-L.; Niu, X.-N.; Xu, L.-H.; Jiang, W.; Huang, S.; Tang, J.-L.; et al. Type VI secretion system is not required for virulence on rice but for inter-bacterial competition in Xanthomonas oryzae pv. oryzicola. Res. Microbiol. 2019, 171, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Liyanapathiranage, P.; Jones, J.B.; Potnis, N. Mutation of a single core gene, tssM, of type VI secretion system of Xanthomonas perforans influences virulence, epiphytic survival, and transmission during pathogenesis on tomato. Phytopathology 2022, 112, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Ceseti, L.M.; de Santana, E.S.; Ratagami, C.Y.; Barreiros, Y.; Lima, L.D.P.; Dunger, G.; Farah, C.S.; Alvarez-Martinez, C.E. The Xanthomonas citri pv. citri Type VI Secretion System is induced during epiphytic colonization of citrus. Curr. Microbiol. 2019, 76, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Vieira, P.S.; Bonfim, I.M.; Araujo, E.A.; Melo, R.R.; Lima, A.R.; Fessel, M.R.; Murakami, M.T. Xyloglucan processing machinery in Xanthomonas pathogens and its role in the transcriptional activation of virulence factors. Nat. Commun. 2021, 12, 4049. [Google Scholar] [CrossRef]
- Rajeshwari, R.; Jha, G.; Sonti, R.V. Role of an in planta-expressed xylanase of Xanthomonas oryzae pv. oryzae in promoting virulence on rice. Mol. Plant-Microbe Interact. 2005, 18, 830–837. [Google Scholar] [CrossRef]
- Jha, G.; Rajeshwari, R.; Sonti, R.V. Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. Mol. Plant-Microbe Interact. 2007, 20, 31–40. [Google Scholar] [CrossRef]
- Sidhu, V.K.; Vorhölter, F.-J.; Niehaus, K.; Watt, S.A. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris. BMC Microbiol. 2008, 8, 87. [Google Scholar] [CrossRef]
- Tayi, L.; Maku, R.; Patel, H.K.; Sonti, R.V. Action of multiple cell wall–degrading enzymes is required for elicitation of innate immune responses during Xanthomonas oryzae pv. oryzae infection in rice. Mol. Plant-Microbe Interact. 2016, 29, 599–608. [Google Scholar] [CrossRef]
- Zou, H.-S.; Song, X.; Zou, L.-F.; Yuan, L.; Li, Y.-R.; Guo, W.; Che, Y.-Z.; Zhao, W.-X.; Duan, Y.-P.; Chen, G.-Y. EcpA, an extracellular protease, is a specific virulence factor required by Xanthomonas oryzae pv. oryzicola but not by X. oryzae pv. oryzae in rice. Microbiology 2012, 158, 2372–2383. [Google Scholar] [CrossRef]
- Ray, S.K.; Rajeshwari, R.; Sharma, Y.; Sonti, R.V. A high-molecular-weight outer membrane protein of Xanthomonas oryzae pv. exhibits similarity to non-fimbrial adhesins of animal pathogenic bacteria and is required for optimum virulence. Mol. Microbiol. 2002, 46, 637–647. [Google Scholar] [CrossRef]
- Moens, S.; Vanderleyden, J. Functions of bacterial flagella. Crit. Rev. Microbiol. 1996, 22, 67–100. [Google Scholar] [CrossRef] [PubMed]
- Kirov, S.M. Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis. FEMS Microbiol. Lett. 2003, 224, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Haiko, J.; Westerlund-Wikström, B. The role of the bacterial flagellum in adhesion and virulence. Biology 2013, 2, 1242–1267. [Google Scholar] [CrossRef] [PubMed]
- Kubori, T.; Shimamoto, N.; Yamaguchi, S.; Namba, K.; Aizawa, S.-I. Morphological pathway of flagellar assembly in Salmonella typhimurium. J. Mol. Biol. 1992, 226, 433–446. [Google Scholar] [CrossRef]
- Morimoto, Y.V.; Minamino, T. Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 2014, 4, 217–234. [Google Scholar] [CrossRef]
- Yang, T.C.; Leu, Y.W.; Chang-Chien, H.C.; Hu, R.M. Flagellar biogenesis of Xanthomonas campestris requires the alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM. J. Bacteriol. 2009, 191, 2266–2275. [Google Scholar] [CrossRef]
- Lu, C.D. Characterization of the fleN gene in Xanthomonas campestris pv. Campestris. Master’s Thesis, Asia University, Taichung City, Taiwan, 2005. Available online: https://hdl.handle.net/11296/bjnz8f (accessed on 22 June 2025).
- Shen, Y.; Chern, M.-S.; Goes Silva, F.; Ronald, P. Isolation of a Xanthomonas oryzae pv. oryzae flagellar operon region and molecular characterization of flhF. Mol. Plant-Microbe Interact. 2001, 14, 204–213. [Google Scholar] [CrossRef]
- Chang-Chien, H.C. Characterization of the fliA, flgM, flhF genes in Xanthomonas campestris pv. campestris. Master’s Thesis, Asia University, Taichung City, Taiwan, 2007. Available online: https://hdl.handle.net/11296/n58trv (accessed on 22 June 2025).
- Gicharu, G.K.; Sun, D.-L.; Hu, X.; Fan, X.-J.; Zhuo, T.; Wu, C.-W.; Zou, H.-S. The sigma 54 genes rpoN1 and rpoN2 of Xanthomonas citri subsp. citri play different roles in virulence, nutrient utilization and cell motility. J. Integr. Agric. 2016, 15, 2032–2039. [Google Scholar] [CrossRef]
- Li, K.; Wu, G.; Liao, Y.; Zeng, Q.; Wang, H.; Liu, F. RpoN1 and RpoN2 play different regulatory roles in virulence traits, flagellar biosynthesis, and basal metabolism in Xanthomonas campestris. Mol. Plant Pathol. 2020, 21, 907–922. [Google Scholar] [CrossRef]
Pathogenicity-Related Gene Clusters | X. phaseoli pv. dieffenbachiae (Anthurium) | X. phaseoli pv. syngonii (Syngonium) | X. euvesicatoria (Philodendron) | X. citri pv. aracearum (Dieffenbachia) | X. hortorum pv. hederae (Hedera) |
---|---|---|---|---|---|
Exopolysaccharide | Yes (all 12 gum genes) | Yes (all 12 gum genes) | Yes (all 12 gum genes) | Yes (all 12 gum genes) | NA |
Lipopolysaccharides | Yes (with wzm and wzt between metB and etfA) | Yes (with wzm and wzt between metB and etfA) | Yes (with only wzt between metB and etfA) | Yes (with wzm and wzt between metB and etfA) | Yes (with wzm and wzt between metB and etfA) |
Type II secrete system Xcs | Yes (all 12 xcs genes) | Yes (all 12 xcs genes) | Yes (all 12 xcs genes) | Yes (all 12 xcs genes) | Yes (all 12 xcs genes) |
Type II secrete system Xps | Yes (all 11 xps genes) | Yes (all 11 xps genes) | Yes (all 11 xps genes) | Yes (all 11 xps genes) | Yes (all 11 xps genes) |
Type III secrete system | Yes (23 hrp, hrc, and hpa genes) | Yes (23 hrp, hrc, and hpa genes) | Yes (23 hrp, hrc, and hpa genes) | Yes (23 hrp, hrc, and hpa genes) | Yes (20 hrp, hrc, and hpa genes) |
Type II secrete effector | 20 | 22 | 27 | 24 | NA |
Type IV secrete system | Yes (11 genes, no virB5) | Yes (2 genes, virB10 and virB11) | Yes (11 vir genes, no virB5) | Yes (2 genes, virB6 and truncated virD4) | Yes (7 genes, virB3-4, virB7-11, and virD4) |
Type VI secrete system T6SS-I/T6SS-3 | Yes | Yes | Yes | No | No |
Type VI secrete systemT6SS-II/T6SS-4 | No | No | No | No | Yes |
Type VI secrete systemT6SS-III/T6SS-3 | Yes | Yes | Yes | Yes | No |
Cell-wall-degrading enzyme | 40 | 27 | 33 | 38 | NA |
Flagellar biosynthesis | Yes (all 4 clusters) | Yes (all 4 clusters) | Yes (all 4 clusters) | Yes (all 4 clusters) | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, S.-C.; Dobhal, S.; Keith, L.M.; Alvarez, A.M.; Arif, M. Xanthomonas spp. Infecting Araceae and Araliaceae: Taxonomy, Phylogeny, and Potential Virulence Mechanisms. Biology 2025, 14, 766. https://doi.org/10.3390/biology14070766
Chuang S-C, Dobhal S, Keith LM, Alvarez AM, Arif M. Xanthomonas spp. Infecting Araceae and Araliaceae: Taxonomy, Phylogeny, and Potential Virulence Mechanisms. Biology. 2025; 14(7):766. https://doi.org/10.3390/biology14070766
Chicago/Turabian StyleChuang, Shu-Cheng, Shefali Dobhal, Lisa M. Keith, Anne M. Alvarez, and Mohammad Arif. 2025. "Xanthomonas spp. Infecting Araceae and Araliaceae: Taxonomy, Phylogeny, and Potential Virulence Mechanisms" Biology 14, no. 7: 766. https://doi.org/10.3390/biology14070766
APA StyleChuang, S.-C., Dobhal, S., Keith, L. M., Alvarez, A. M., & Arif, M. (2025). Xanthomonas spp. Infecting Araceae and Araliaceae: Taxonomy, Phylogeny, and Potential Virulence Mechanisms. Biology, 14(7), 766. https://doi.org/10.3390/biology14070766