Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis
Abstract
1. Introduction
2. Results
2.1. Sequence and Characterization Analysis of the SiSCR Genes in Foxtail Millet
2.2. Gene Structure and Conserved Motif Characterization of SiSCR Genes in Foxtail Millet
2.3. Cis-Regulatory Elements in SiSCR Gene Promoters
2.4. Phylogenetic Analysis of SCR Proteins in 16 Plant Species
2.5. Expression Pattern Analysis of SiSCR Genes in Foxtail Millet
2.6. Co-Expression Network Profiling of the SiSCR Genes in Foxtail Millet
2.7. Analysis of Expression Patterns of pSuper:SiSCR1/2-GFP in Arabidopsis thaliana
2.8. Root Growth Characterization in pSuper:SiSCR1/2-GFP Transgenic Arabidopsis thaliana
3. Discussion
4. Materials and Methods
4.1. Sequence Analysis of the SiSCR Genes in Foxtail Millet
4.2. Gene Structure and Conserved Motif Analysis of SiSCR Genes in Foxtail Millet
4.3. Analysis of Promoter Cis-Regulatory Elements of SiSCR Genes in Foxtail Millet
4.4. Phylogenetic Analysis of SCR in 16 Plant Species
4.5. Plant Materials and Treatments
4.6. Co-Expression Network Analysis of the SiSCR Genes in Foxtail Millet
4.7. Expression Analysis of pSuper:SiSCR1/2-GFP in Arabidopsis thaliana
4.8. Root Growth Analysis of Arabidopsis thaliana pSuper:SiSCR1/2-GFP Transgenic Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Yang, X.; Zhang, C.; Sun, Y.; Jia, X. Early millet use in West Liaohe area during early-middle Holocene. Sci. China Earth Sci. 2016, 59, 1554–1561. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, H.; Li, X.; Shen, H.; Gao, J.; Hou, S.; Zhang, B.; Mayes, S.; Bennett, M.; Ma, J.; et al. A mini foxtail millet with an Arabidopsis-like life cycle as a C(4) model system. Nat. Plants 2020, 6, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Han, Y. Pan-genome brings opportunities to revitalize the ancient crop foxtail millet. Plant Commun. 2024, 5, 100735. [Google Scholar] [CrossRef] [PubMed]
- Diao, X.; Schnable, J.; Bennetzen, J.; Li, J. Initiation of Setaria as a model plant. Front. Agric. Sci. Eng. 2014, 1, 16. [Google Scholar]
- Li, X.; Gao, J.; Song, J.; Guo, K.; Hou, S.; Wang, X.; He, Q.; Zhang, Y.; Zhang, Y.; Yang, Y. Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits, and anti-inflammatory effects. Mol. Plant 2022, 15, 1367–1383. [Google Scholar] [CrossRef]
- Nan, L.; Li, Y.; Ma, C.; Meng, X.; Han, Y.; Li, H.; Huang, M.; Qin, Y.; Ren, X. Identification and expression analysis of the WOX transcription factor family in foxtail millet (Setaria italica L.). Genes 2024, 15, 476. [Google Scholar] [CrossRef]
- Jaiswal, V.; Kakkar, M.; Kumari, P.; Zinta, G.; Gahlaut, V.; Kumar, S. Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. iScience 2022, 25, 105026. [Google Scholar] [CrossRef]
- Waseem, M.; Nkurikiyimfura, O.; Niyitanga, S.; Jakada, B.; Shaheen, I.; Aslam, M. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Mol. Biol. Rep. 2022, 49, 9673–9685. [Google Scholar] [CrossRef]
- Lim, J.; Jung, J.; Lim, C.; Lee, M.; Kim, B.; Kim, M.; Bruce, W.; Benfey, P.N. Conservation and diversification of SCARECROW in maize. Plant Mol. Biol. 2005, 59, 619–630. [Google Scholar] [CrossRef]
- Wysocka-Diller, J.; Helariutta, Y.; Fukaki, H.; Malamy, J.; Benfey, P.N. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 2000, 127, 595–603. [Google Scholar] [CrossRef]
- Lim, J.; Helariutta, Y.; Specht, C.; Jung, J.; Sims, L.; Bruce, W.; Diehn, S.; Benfey, P.N. Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. Plant Cell 2000, 12, 1307–1318. [Google Scholar] [CrossRef]
- Sabatini, S.; Heidstra, R.; Wildwater, M.; Scheres, B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 2003, 17, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, N.; Itoh, J.; Morikami, A.; Nagato, Y.; Matsuoka, M. The SCARECROW gene’s role in asymmetric cell divisions in rice plants. Plant J. 2003, 36, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Di Laurenzio, L.; Wysocka-Diller, J.; Malamy, J.; Pysh, L.; Helariutta, Y.; Freshour, G.; Hahn, M.; Feldmann, K.; Benfey, P.N. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 1996, 86, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, X.; Gao, J.; Liao, R.; Fu, J.; Bai, J.; Cui, H. SCARECROW maintains the stem cell niche in Arabidopsis roots by ensuring telomere integrity. Plant Physiol. 2023, 192, 1115–1131. [Google Scholar] [CrossRef]
- Ortiz-Ramirez, C.; Guillotin, B.; Xu, X.; Rahni, R.; Zhang, S.; Yan, Z.; Coqueiro Dias Araujo, P.; Demesa-Arevalo, E.; Lee, L.; Van Eck, J. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 2021, 374, 1247–1252. [Google Scholar] [CrossRef]
- Hughes, T.; Langdale, J. SCARECROW is deployed in distinct contexts during rice and maize leaf development. Development 2022, 149, dev200410. [Google Scholar] [CrossRef]
- Slewinski, T.; Anderson, A.; Zhang, C.; Turgeon, R. Scarecrow plays a role in establishing kranz anatomy in maize leaves. Plant Cell Physiol. 2012, 53, 2030–2037. [Google Scholar] [CrossRef]
- Hughes, T.; Sedelnikova, O.; Wu, H.; Becraft, P.; Langdale, J. Redundant SCARECROW genes pattern distinct cell layers in roots and leaves of maize. Development 2019, 146, dev177543. [Google Scholar] [CrossRef]
- Hughes, T.E.; Langdale, J.A. SCARECROW gene function is required for photosynthetic development in maize. Plant Direct 2020, 4, e00264. [Google Scholar] [CrossRef]
- Mohanasundaram, B.; Palit, S.; Bhide, A.; Pala, M.; Rajoria, K.; Girigosavi, P.; Banerjee, A. PpSCARECROW1 (PpSCR1) regulates leaf blade and mid-vein development in Physcomitrium patens. Plant Mol. Biol. 2024, 114, 12. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wei, X.; Lai, D.; Yang, H.; Feng, L.; Li, L.; Niu, K.; Chen, L.; Xiang, D.; Ruan, J. Genome-wide investigation of the GRAS transcription factor family in foxtail millet (Setaria italica L.). BMC Plant Biol. 2021, 21, 508. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Higo, K.; Ugawa, Y.; Iwamoto, M.; Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999, 27, 297–300. [Google Scholar] [CrossRef]
- Li, X.; Hou, S.; Feng, M.; Xia, R.; Li, J.; Tang, S.; Han, Y.; Gao, J.; Wang, X. MDSi: Multi-omics database for Setaria italica. BMC Plant Biol. 2023, 23, 223. [Google Scholar] [CrossRef]
- Winter, C.M.; Szekely, P.; Popov, V.; Belcher, H.; Carter, R.; Jones, M.; Fraser, S.E.; Truong, T.V.; Benfey, P.N. SHR and SCR coordinate root patterning and growth early in the cell cycle. Nature 2024, 626, 611–616. [Google Scholar] [CrossRef]
- Takatsuka, H.; Umeda, M. ABA inhibits root cell elongation through repressing the cytokinin signaling. Plant Signal. Behav. 2019, 14, e1578632. [Google Scholar] [CrossRef]
- Belda-Palazón, B.; Costa, M.; Beeckman, T.; Rolland, F.; Baena-González, E. ABA represses TOR and root meristem activity through nuclear exit of the SnRK1 kinase. Proc. Natl. Acad. Sci. USA 2022, 119, e2204862119. [Google Scholar] [CrossRef]
- Rymen, B.; Kawamura, A.; Schäfer, S.; Breuer, C.; Iwase, A.; Shibata, M.; Ikeda, M.; Mitsuda, N.; Koncz, C.; Ohme-Takagi, M. ABA suppresses root hair growth via the OBP4 transcriptional regulator. Plant Physiol. 2017, 173, 1750–1762. [Google Scholar] [CrossRef]
- Tang, S.; Li, L.; Wang, Y.; Chen, Q.; Zhang, W.; Jia, G.; Zhi, H.; Zhao, B.; Diao, X. Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoideae grasses). Sci. Rep. 2017, 7, 10009. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Ren, B.; Ding, L.; Gao, C.; Shen, Q.; Guo, S. Drought-induced root aerenchyma formation restricts water uptake in rice seedlings supplied with nitrate. Plant Cell Physiol. 2012, 53, 495–504. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhang, Y.; Wen, B.; Meng, X.; Wang, N.; Sun, M.; Zhang, R.; Zhao, X.; Tan, Q.; Xiao, W.; et al. PpNUDX8, a peach NUDIX hydrolase, plays a negative regulator in response to drought stress. Front. Plant Sci. 2022, 12, 831883. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Cheng, L.; Wang, J.; Liu, J.; Cheng, J.; Yang, Z.; Cao, R.; Han, Y.; Li, H.; Zhang, B. Carotenoid cleavage dioxygenase 1 catalyzes lutein degradation to influence carotenoid accumulation and color development in foxtail millet grains. J. Agric. Food Chem. 2022, 70, 9283–9294. [Google Scholar] [CrossRef]
- Cui, H. Killing two birds with one stone. Front. Plant Sci. 2014, 7, 701–703. [Google Scholar] [CrossRef]
- Moubayidin, L.; Salvi, E.; Giustini, L.; Terpstra, I.; Heidstra, R.; Costantino, P.; Sabatini, S. A SCARECROW-based regulatory circuit controls Arabidopsis thaliana meristem size from the root endodermis. Planta 2016, 243, 1159–1168. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, R.; Duan, W.; Xue, B.; Pan, X.; Li, S.; Sun, P.; Pi, L.; Liang, Y. BIG modulates stem cell niche and meristem development via SCR/SHR pathway in Arabidopsis roots. Int. J. Mol. Sci. 2022, 23, 6784. [Google Scholar] [CrossRef]
- Chang, J.; Hu, J.; Wu, L.; Chen, W.; Shen, J.; Qi, X.; Li, J. Three RLKs integrate SHR-SCR and gibberellins to regulate root ground tissue patterning in Arabidopsis thaliana. Curr. Biol. 2024, 34, 5295–5306.e5. [Google Scholar] [CrossRef]
- Zhou, W.; Lozano-Torres, J.; Blilou, I.; Zhang, X.; Zhai, Q.; Smant, G.; Li, C.; Scheres, B. A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 2019, 177, 942–956.e14. [Google Scholar] [CrossRef]
- Iyer-Pascuzzi, A.S.; Jackson, T.; Cui, H.; Petricka, J.J.; Busch, W.; Tsukagoshi, H.; Benfey, P.N. Cell identity regulators link development and stress responses in the Arabidopsis root. Dev. Cell 2011, 21, 770–782. [Google Scholar] [CrossRef]
- Cui, H.; Hao, Y.; Kong, D. SCARECROW has a SHORT-ROOT-independent role in modulating the sugar response. Plant Physiol. 2012, 158, 1769–1778. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, X.; Liu, J.; Gao, X.; Bai, J.; Hao, Y.; Cui, H. A mechanism coordinating root elongation, endodermal differentiation, redox homeostasis and stress response. Plant J. 2021, 107, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Levesque, M.; Vernoux, T.; Jung, J.; Paquette, A.; Gallagher, K.; Wang, J.; Blilou, I.; Scheres, B.; Benfey, P. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 2007, 316, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Ron, M.; Kajala, K.; Pauluzzi, G.; Wang, D.; Reynoso, M.; Zumstein, K.; Garcha, J.; Winte, S.; Masson, H.; Inagaki, S. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 2014, 166, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewska, A.; Pietraszewska-Bogiel, A.; Zuzga, S.; Tagashira, N.; Łotocka, B.; Malepszy, S.; Filipecki, M. Molecular characterization of SCARECROW (CsSCR) gene expressed during somatic embryo development and in root of cucumber (Cucumis sativus L.). Acta. Physiol. Plant. 2013, 35, 1483–1495. [Google Scholar] [CrossRef]
- Shaar-Moshe, L.; Brady, S. SHORT-ROOT and SCARECROW homologs regulate patterning of diverse cell types within and between species. New Phytol. 2023, 237, 1542–1549. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Lei, Y.; Wang, Y.; Li, B.; Liu, X.; An, L.; Yu, F.; Qi, Y. Chloroplast envelope ATPase PGA1/AtFtsH12 is required for chloroplast protein accumulation and cytosol-chloroplast protein homeostasis in Arabidopsis. J. Biol. Chem. 2022, 298, 102489. [Google Scholar] [CrossRef]
- Hua, D.; Wang, C.; He, J.; Liao, H.; Duan, Y.; Zhu, Z.; Guo, Y.; Chen, Z.; Gong, Z. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell 2012, 24, 2546–2561. [Google Scholar] [CrossRef]
- Okada, K.; Saito, T.; Nakagawa, T.; Kawamukai, M.; Kamiya, Y. Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol. 2000, 122, 1045–1056. [Google Scholar] [CrossRef]
- Dhondt, S.; Coppens, F.; De Winter, F.; Swarup, K.; Merks, R.; Inzé, D.; Bennett, M.; Beemster, G. SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol. 2010, 154, 1183–1195. [Google Scholar] [CrossRef]
- He, Q.; Wang, C.; He, Q.; Zhang, J.; Liang, H.; Lu, Z.; Xie, K.; Tang, S.; Zhou, Y.; Liu, B.; et al. A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria. Mol. Plant 2024, 17, 219–222. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Lan, L.; Xie, M.; Cheng, S.; Gan, X.; Huang, G.; Du, G.; Yu, K.; Ni, X.; et al. De novo genome assembly of a foxtail millet cultivar Huagu11 uncovered the genetic difference to the cultivar Yugu1, and the genetic mechanism of imazethapyr tolerance. BMC Plant Biol. 2021, 21, 271. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.; Frank, M.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef] [PubMed]
- Pysh, L.; Wysocka-Diller, J.; Camilleri, C.; Bouchez, D.; Benfey, P. The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 1999, 18, 111–119. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Yi Chuan 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Combet, C.; Blanchet, C.; Geourjon, C.; Deleage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci. 2000, 25, 147–150. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISATgenotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Yang, L.; Sun, Z.; Wang, X.; Wang, Y.; Zhang, J.; Rehman, A.; Chen, Z.; Qi, J.; Wang, B.; et al. Redox-mediated endocytosis of a receptor-like kinase during distal stem cell differentiation depends on its tumor necrosis factor receptor domain. Plant Physiol. 2019, 181, 1075–1095. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
Gene ID | Gene Name | Chromosomal Location | CDS Length | Molecular Weight (KD) | Isoelectric Point | Instability Index | Aliphatic Index | GRAVY |
---|---|---|---|---|---|---|---|---|
Si7g30800 | SiSCR1 | 7: 34622075-4625670 (+) | 2016 bp | 71.78 | 6.06 | 56.39 | 86.26 | −0.193 |
Si8g01880 | SiSCR2 | 8: 758375-761643 (−) | 2001 bp | 71.12 | 5.97 | 57.40 | 87.48 | −0.181 |
Protein | Alpha Helix (%) | Beta Sheet (%) | Extended Strand (%) | Random Coil (%) |
---|---|---|---|---|
SiSCR1 | 47.30 | 3.60 | 9.31 | 39.79 |
SiSCR2 | 46.05 | 3.58 | 9.24 | 41.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Wang, R.; Chen, S.; Gao, Q.; Zhao, Y.; Chang, S.; Li, M.; Ma, F.; Ren, X. Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis. Plants 2025, 14, 2151. https://doi.org/10.3390/plants14142151
Qin Y, Wang R, Chen S, Gao Q, Zhao Y, Chang S, Li M, Ma F, Ren X. Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis. Plants. 2025; 14(14):2151. https://doi.org/10.3390/plants14142151
Chicago/Turabian StyleQin, Yingying, Ruifu Wang, Shuwan Chen, Qian Gao, Yiru Zhao, Shuo Chang, Mao Li, Fangfang Ma, and Xuemei Ren. 2025. "Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis" Plants 14, no. 14: 2151. https://doi.org/10.3390/plants14142151
APA StyleQin, Y., Wang, R., Chen, S., Gao, Q., Zhao, Y., Chang, S., Li, M., Ma, F., & Ren, X. (2025). Tissue-Specific Expression Analysis and Functional Validation of SiSCR Genes in Foxtail Millet (Setaria italica) Under Hormone and Drought Stresses, and Heterologous Expression in Arabidopsis. Plants, 14(14), 2151. https://doi.org/10.3390/plants14142151